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ON THE SOLVABILITY OF A SYSTEM OF
CAPUTO-HADAMARD FRACTIONAL HYBRID DIFFERENTIAL

EQUATIONS SUBJECT TO SOME HYBRID BOUNDARY
CONDITIONS
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Abstract. In this work, we give some existence and regularity results for a sys-
tem of a new class of hybrid Caputo-Hadamard fractional differential equations
under hybrid boundary conditions. The technique of investigation is essentially
based on the use of a well known hybrid fixed point theorem.
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1. INTRODUCTION

The theory of fractional differential equations has received much attention
over the past years and has become an important field of investigation due to
its extensive applications in numerous branches of physics, chemistry, aerody-
namics, electrodynamics of a complex medium, polymer rheology, etc. Frac-
tional differential equations also serve as an excellent tool for the description
of hereditary properties of various materials. As a consequence, the subject
of fractional differential equations is gaining much importance and attention.
The study of hybrid fractional differential equations is an attractive topic. In
fact, this kind of problems are often encountered in several branches of engi-
neering and physics, for more information, we refer the reader to [19] and the
references therein. We recall that this class of equations involves the fractional
derivative of an unknown hybrid function with the nonlinearity depending on
it. Some recent results on hybrid differential equations can be found in (see
[1, 3, 4, 5, 6, 7, 8, 9, 13, 14, 23, 24, 26, 27]).

In this work, we are concerned with the existence and uniqueness of solutions
for the following system of the fractional differential equations

(1) Dr
1+

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
= h(τ, x(τ)), τ ∈ J.
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Here J := [1, T ] and 1 < r ≤ 2 while Dr
1+ and Iqi

1+
denote the Caputo-Hadamard

fractional derivatives of orders ϵ,ϵ ∈ {r, p}, 0 < p ≤ 1 and Hadamard integral
of order qi, respectively. We assume also that g ∈ C(J × R,R − {0}) and
f, h ∈ C(J × R,R). The boundary conditions imposed to our problem are
given by 

α1

[
x(τ)−

∑m
i=1 I

qifi(τ,x(τ))
g(τ,x(τ))

]
τ=1

+β1D
p
1+

[
x(τ)−

∑m
i=1 I

qifi(τ,x(τ))
g(τ,x(τ))

]
τ=1

= γ1,

α2

[
x(τ)−

∑m
i=1 I

qifi(τ,x(τ))
g(τ,x(τ))

]
τ=T

+β2D
p
1+

[
x(τ)−

∑m
i=1 I

qifi(τ,x(τ))
g(τ,x(τ))

]
τ=T

= γ2,

(2)

where αi, βi, γi, i = 1, 2, are real constants.
We mention here that the study of Hybrid fractional problems was the

subject of several works. For instance, we find in [2] some regularity results
concerning this type of problems, these authors opted for the use of Kras-
noselskii’s fixed point theorem to investigate the scalar case with respect to
the classical Caputo fractional derivatives. In the same direction, in [20], the
Mönch’s fixed point theorem combined with the technique of measures of weak
noncompactness was successfully used to obtain some interesting regularity re-
sults.

This paper is organized as follows. In Section 2, we recall briefly some basic
definitions and preliminary facts which will be used throughout subsequent
sections. Section 3, contains the existence of solutions for the boundary value
problem (1)–(2) which is obtained by means of an hybrid fixed point theorem
for three operators in a Banach algebra due to Dhage [10]. Finally, we illustrate
the obtained results by an example.

2. PRELIMINARIES

At first, we recall some basic concepts on fractional calculus and present
some additional properties that will be used later. For more details, we refer
to [15, 16, 18, 21, 25] and the references therein.

Definition 2.1 ([18]). The Hadamard fractional integral of order α > 0
for a function ω : J → R is defined as

(3) Iαa+ω(τ) =
1

Γ(α)

∫ τ

a

(
log

τ

s

)α−1
ω(s)

ds

s
,

where Γ is the Gamma function.

Definition 2.2 ([18]). For a function ω given on the interval J, and n−1 <
r < n, the Hadamard derivative of order α > 0 is defined by

(4)
HDα

a+ω(τ) =
1

Γ(n− α)

(
τ
d

dt

)n ∫ τ

a

(
log

τ

s

)n−α−1
ω(s)

ds

s

= δnIn−α
a+

ω(τ),
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where n = [α] + 1, and [α] denotes the integer part of the real number α and
δ = τ d

dt .

There is a recent generalization introduced in [16], where the authors define
a generalization of the Hadamard fractional derivatives and present properties
of such derivatives. This new generalization is now known as the Caputo-
Hadamard fractional derivatives and is given by the following definition:

Definition 2.3 ([16, Caputo-Hadamard fractional derivative]). Let α ≥ 0,
and n = [α] + 1, and ω(τ) ∈ ACn

δ (J), where

ACn
δ (J) =

{
ω : J → R : δn−1ω(τ) ∈ AC(J)

}
,

and δ = τ d
dt is the Hadamard derivative.

The Caputo-type modification of Hadamard fractional derivatives of order
α is given by

(5) Dα
a+ω(τ) =

H Dα
a+

(
ω(τ)−

n−1∑
k=0

δkω(a)

k!

(
log

τ

s

)k)
.

Theorem 2.4 ([16]). Let α ≥ 0, and n = [α] + 1. If ω(τ) ∈ ACn
δ (J), where

0 < a < b < ∞, then Dα
a+ω(τ) exists everywhere on J and

(i) if α /∈ N− {0}, Dα
a+f(τ) can be represented by

(6)
Dα

a+ω(τ) =
1

Γ(n− α)

∫ τ

a

(
log

τ

s

)n−α−1
δnω(s)

ds

s
,

= In−α
a+

δnω(τ).

(ii) if α ∈ N− {0}, then

(7) Dα
a+ω(τ) = δnω(τ).

In particular,

(8) D0
a+ω(τ) = ω(τ).

Caputo-Hadamard fractional derivatives can also be defined on the positive half
axis R+ by replacing a by 0 in formula (6) provided that ω(τ) ∈ ACn

δ (R+).
Thus one has

(9) cDα
a+ω(τ) =

1

Γ(n− α)

∫ τ

a

(
log

τ

s

)n−α−1
δnω(s)

ds

s
.

Proposition 2.5 ([18]). Let α > 0, β > 0, n = [α] + 1, and a > 0, then

Dα
a+

(
log

τ

a

)β−1
(ω) =

Γ(β)

Γ(β − α)

(
log

ω

a

)β−α−1
, β > n,

Dα
a+

(
log

τ

a

)k
= 0, k = 0, 1, ..., n− 1.

(10)
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Theorem 2.6 ([15]). Let ω(τ) ∈ ACn
δ (J), and α ≥ 0, β ≥ 0. Then

Iαa+I
β
a+

ω(τ) = Iβ+α
a+

ω(τ),

Dα
a+I

α
a+ω(τ) = ω(τ),

Dα
a+I

β
a+

ω(τ) = Iβ−α
a+

ω(τ),

Dα
a+D

β
a+

ω(τ) = Dα+β
a+

ω(τ).

(11)

Lemma 2.7 ([16]). Let α ≥ 0, and n = [α] + 1. If ω(τ) ∈ ACn
δ (J), then the

Caputo-Hadamard fractional differential equation

(12) Dα
a+ω(τ) = 0,

has a solution:

(13) ω(τ) =

n−1∑
k=0

ck

(
log

τ

a

)k
,

and the following formula holds:

(14) Iαa+ (Dα
a+ω) (τ) = ω(τ) +

n−1∑
k=0

ck

(
log

τ

a

)k
,

where ck ∈ R, k = 1, 2, ..., n− 1.

Now, let us consider the usual Banach space E = C([1, T ],R) endowed with
the classical supremum norm

∥ω∥ = sup
τ∈J

|ω(τ)| .

At this level, it is necessary to recall that E is a Banach algebra.
To prove the existence result for the nonlocal boundary value problem (1)–

(2), we will use the following hybrid fixed point theorem for three operators
in a Banach algebra E due to Dhage, see [10].

Lemma 2.8. Let S be a closed convex bounded nonempty subset of a Banach
algebra E, and let A,C : E → E and B : S → E be three operators such that:

(a) A and C are Lipschitzian with a Lipschitz constants δ and ρ, respectively,
(b) B is compact and continuous,
(c) x = AxBω +Cx ⇒ x in S for all ω in S,
(d) δM + ρ < 1, where M = ∥B(S)∥.
Then the operator equation x = AxBω+Cx admits at least one solution in

S.

3. MAIN RESULTS

In this section, we prove an existence result for the boundary value problems
for hybrid differential equations with fractional order on the closed bounded
interval J.



5 Caputo-Hadamard fractional hybrid differential equations 55

Lemma 3.1. Let h be a continuous function on J. Then the solution of the
boundary value problem

(15) Dr
1+

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
= h(τ, x(τ)), τ ∈ J, 1 < r ≤ 2,

with boundary conditions

α1

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
τ=1

+ β1D
p
1+

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
τ=1

= γ1,

α2

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
τ=T

+ β2D
p
1+

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
τ=T

= γ2,

(16)

satisfies the equation

(17) x(τ) = g(τ, x(τ))H(τ) +
α1v2(log τ) + γ1v1

α1v1
] +

m∑
i=1

Iqi
1+
fi(τ, x(τ)),

where
H(τ) := Ir1+h(τ)−

(log τ)
v1

{
α2I

r
1+h(T ) + β2I

r−p
1+

h(T )
}
, and

v1 =

(
α2(log T ) + β2

(log T )1−p

Γ(2− p)

)
, v2 =

γ2α1 − γ1α2

α1
.

Proof. Applying the Hadamard fractional integral operator of order r to
both sides of (15) and using Lemma 2.7, we get

(18)

[
x(τ)−

∑m
i=1 I

qi
1+
fi(τ, x(τ))

g(τ, x(τ))

]
= Ir1+h(τ) + c1 + c2(log τ), c1, c2 ∈ R.

Consequently, the general solution of (15) is given by

x(τ) = g(τ, x(τ)) (Ir1+h(τ) + c1

+c2(log τ)) +
m∑
i=1

Iqi
1+
fi(τ, x(τ)), c1, c2 ∈ R.

(19)

Applying the boundary conditions (16) in (18), a simple calculation gives

c1 =
γ1
α1

,

c2 =
1

v1

{
γ2 −

α2γ1
α1

− α2I
r
1+h(T )− β2I

r−p
1+

h(T )

}
.

Substituting the values of c1, c2 into (19), we get (17). □
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Now we list the following hypotheses.
(H1) The functions g : J×R → R {0} and h, f : J×R → R are continuous.
(H2) There exist two positive functions ω0, ϖ1 with bounds ∥ω0∥ and ∥ϖ1∥

respectively, such that

(20) |g(τ, x)− g(τ, ω)| ≤ ω0(τ)|x− ω|,

and

(21) |fi(τ, x)− fi(τ, ω)| ≤ ϖi(τ)|x− ω|,

for all (τ, x, ω) ∈ J× R× R.
(H3) There exist a function p ∈ L∞(J,R+) and a continuous nondecreasing

function φ : [0,∞) → (0,∞) such that

(22) |h(τ, x)| ≤ p(τ)φ (|x|) ,

for all τ ∈ J and x ∈ R.
(H4) There exists R > 0 such that

(23) R ≥
Mg0 +

∑m
i=1

fi
Γ(qi+1)

1−M∥ω0∥ −
∑m

i=1
∥ϖi∥

Γ(qi+1)

,

and

(24) ∥ω0∥M +
m∑
i=1

∥ϖi∥
Γ(qi + 1)

< 1,

where g0 = supτ∈J |g(τ, 0)|, fi = supτ∈J |fi(τ, 0)|, i = 1, ...,m, and

(25) M = ∥p∥φ(R)K +
|α1v2|(log τ) + |γ1v1|

|α1v1|
,

where

K =

{
(log T )r

Γ(r + 1)
+

|α2|
|v1|

(log T )r+1

Γ(r + 1)
+

|β2|
|v1|

(log T )r−p+1

Γ(r − p+ 1)

}
.

Theorem 3.2. Assume that the assumptions (H1)–(H4) are fulfilled, then
the problem (1)–(2) has at least one solution defined on J.

Proof. First, we define the set

S = {x ∈ E : ∥x∥E ≤ R} .

Clearly, S is a closed convex bounded subset of the Banach space E. By
Lemma 3.1 the boundary value problem (1)-(2) is equivalent to the equation

(26) x(τ) =
m∑
i=1

Iqi
1+
fi(τ, x(τ)) + g(τ, x(τ))G(τ) +

α1v2(log τ) + γ1v1
α1v1

], τ ∈ J.

Where
G(τ) := [Ir1+h(s, x(s))(τ)−

(log τ)
v1

{
α2I

r
1+h(s, x(s))(T ) + β2I

r−p
1+

h(s, x(s))(T )
}
.
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Now, let us introduce the following three operators A,C : E → E and B : S →
E defined by

Ax(τ) = g(τ, x(τ)), τ ∈ J,

Bx(τ) = G(τ) +
α1v2(log τ) + γ1v1

α1v1
, τ ∈ J,

and

Cx(τ) =

m∑
i=1

Iqi
1+
fi(τ, x(τ)), τ ∈ J.

Then, the integral equation (26) can be written in the operator form as

x(τ) = Ax(τ)Bx(τ) + Cx(τ), τ ∈ J.

We will show that the operators A,B and C satisfy all the conditions of Lemma
2.8. This will be achieved in the following steps.

Step1: First, we show that A and C are Lipschitzian on E. Let x, ω ∈ E.
Then by(H2),for τ ∈ J, we have

|Ax(τ)−Ay(τ)| = |g(τ, x(τ))− g(τ, ω(τ))| ≤ ω0(τ)|x(τ)− ω(τ)|,
for all τ ∈ J. Taking the supremum over τ , we obtain

∥Ax−Aω∥ ≤ ∥ω0∥∥x− ω∥,
for all x, ω → E. Therefore A is Lipschitzian on E with Lipschitz constant
∥ω0∥.

Analogously, for C : E → E, x, ω ∈ E, we have

|Cx(τ)− Cω(τ)| =

∣∣∣∣∣
m∑
i=1

Iqi
1+
fi(τ, x(τ))−

m∑
i=1

Iqi
1+
fi(τ, ω(τ))

∣∣∣∣∣
≤

m∑
i=1

1

Γ(qi)

∫ τ

1

(
log

τ

s

)
ϖi(s)|x(s)− ω(s)|ds

s

≤ ∥x(τ)− ω(τ)∥
m∑
i=1

∥ϖi∥
Γ(qi + 1)

,

which implies that

∥Cx− Cy∥ ≤
m∑
i=1

∥ϖi∥
Γ(qi + 1)

∥x(τ)− ω(τ)∥.

Hence C : E → E is Lipschitzian on E with Lipschitz constant given by
m∑
i=1

∥ϖi∥
Γ(qi + 1)

.

Step 2: The operator B is completely continuous on S. We first show that
the operator B is continuous on E. Let xn be a sequence in S converging to a
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point x ∈ S. Then by Lebesgue dominated convergence theorem, for all τ ∈ J,
we obtain

lim
n→∞

Bxn(τ) =
1

Γ(r)
lim
n→∞

∫ τ

1

(
log

τ

s

)
h(s, xn(s))

ds

s

− (log τ)

v1

{
α2

Γ(r)
lim
n→∞

∫ T

1

(
log

T

s

)
h(s, xn(s))

ds

s

+
β2

Γ(r − p)
lim
n→∞

∫ T

1

(
log

T

s

)
h(s, xn(s))

ds

s

}
+

α1v2(log τ) + γ1v1
α1v1

=
1

Γ(r)

∫ τ

1

(
log

τ

s

)
lim
n→∞

h(s, xn(s))
ds

s

− (log τ)

v1

{
α2

Γ(r)

∫ T

1

(
log

T

s

)
lim
n→∞

h(s, xn(s))
ds

s

+
β2

Γ(r − p)

∫ T

1

(
log

T

s

)
lim
n→∞

h(s, xn(s))
ds

s

}
+

α1v2(log τ) + γ1v1
α1v1

= G(τ) +
α1v2(log τ) + γ1v1

α1v1
= Bx(τ),

for all τ ∈ J. This shows that B is a continuous operator on S.
Next, we will prove that the set B(S) is a uniformly bounded in S. For any

x ∈ S, we have

|Bx(τ)| ≤ 1

Γ(r)

∫ τ

1

(
log

τ

s

)
|h(s, x(s))|ds

s

+
(log τ)

|v1|

{
|α2|
Γ(r)

∫ T

1

(
log

T

s

)
|h(s, x(s))|ds

s

+
|β2|

Γ(r − p)

∫ T

1

(
log

T

s

)
|h(s, x(s))|ds

s

}
+

|α1v2|(log τ) + |γ1v1|
|α1v1|

.

Using (22), we can write

≤ 1

Γ(r)

∫ τ

1

(
log

τ

s

)
p(s)φ (|x|) ds

s
− (log τ)

|v1|

{
|α2|
Γ(r)

∫ T

1

(
log

T

s

)
p(s)φ (|x|) ds

s

+
|β2|

Γ(r − p)

∫ T

1

(
log

T

s

)
p(s)φ (|x|) ds

s

}
+

|α1v2|(log τ) + |γ1v1|
|α1v1|

≤ ∥p∥φ(R)K +
|α1v2|(log τ) + |γ1v1|

|α1v1|
.
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Thus ∥Bx∥ ≤ M for all x ∈ S with M given in (25). This shows that B is
uniformly bounded on S.

Let τ1, τ2 ∈ J. Then for any x ∈ S, by (22) we get

|Bx(τ2)− Bx(τ1)|

≤ 1

Γ(r)

∣∣∣∣∫ τ2

1

(
log

τ2
s

)r−1
h(s)

ds

s
−
∫ τ1

1

(
log

τ1
s

)r−1
h(s)

ds

s

∣∣∣∣
+

|(log τ2)− (log τ1)|
|v1|

{
|α2|Ir1+h(T ) + |β2|Ir−p

1+
h(T )

}
+

|α1v2|
|α1v1|

|(log τ2)− (log τ1)|

≤ φ(R)∥p∥
Γ(r)

∫ τ1

1

[(
log

τ2
s

)r−1
−
(
log

τ1
s

)r−1
]
ds

s

+
φ(R)∥p∥
Γ(r)

∫ τ2

τ1

(
log

τ2
s

)r−1 ds

s

+
|(log τ2)− (log τ1)|

|v1|

{
|α2|Ir1+h(T ) + |β2|Ir−p

1+
h(T )

}
+

|α1v2|
|α1v1|

|(log τ2)− (log τ1)|.

(27)

Obviously, the right-hand side of inequality (27) tends to zero independently
of x ∈ S as τ2 → τ1. As a consequence of the Ascoli-Arzela theorem, B is a
completely continuous operator on S.

Step 3: Hypothesis (c) of Lemma 2.8 is satisfied.
Let x ∈ E and ω ∈ S be arbitrary elements such that x = AxBω + Cx.

Then we have

|x(τ)| ≤ |Ax(τ)||Bω(τ)|+ |Cx(τ)|

≤
m∑
i=1

Iqi
1+
|fi(τ, x(τ))|

+ |g(τ, x(τ))|
[

1

Γ(r)

∫ τ

1

(
log

τ

s

)
|h(s, x(s))|ds

s

+
(log τ)

|v1|

{
|α2|
Γ(r)

∫ T

1

(
log

T

s

)
|h(s, x(s))|ds

s

+
|β2|

Γ(r − p)

∫ T

1

(
log

T

s

)
|h(s, x(s))|ds

s

}
+
|α1v2|(log τ) + |γ1v1|

|α1v1|

]
≤

m∑
i=1

1

Γ(qi)

∫ τ

1

(
log

τ

s

)qi+1
(|fi(s, x(s))− fi(s, 0)|+ |fi(s, 0)|)

ds

s

+ (|g(s, x(s))− g(s, 0)|+ |g(s, 0)|)
[

1

Γ(r)

∫ τ

1

(
log

τ

s

)
φ(R)p(s)

ds

s
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+
(log τ)

|v1|

{
|α2|
Γ(r)

∫ T

1

(
log

T

s

)
φ(R)p(s)

ds

s

+
|β2|

Γ(r − p)

∫ T

1

(
log

T

s

)
φ(R)p(s)

ds

s

}
+
|α1v2|(log τ) + |γ1v1|

|α1v1|

]
≤ (∥ω0∥|x(τ)|+ g0)M +

m∑
i=1

∥ϖi∥
Γ(qi + 1)

|x(τ)|+
m∑
i=1

fi
Γ(qi + 1)

.

Thus

|x(τ)| ≤
Mg0 +

∑m
i=1

fi
Γ(qi+1)

1−M∥ω0∥ −
∑m

i=1
∥ϖi∥

Γ(qi+1)

.

Taking the supremum over τ , we get

∥x∥ ≤
Mg0 +

∑m
i=1

fi
Γ(qi+1)

1−M∥ω0∥ −
∑m

i=1
∥ϖi∥

Γ(qi+1)

≤ R.

Step 4: Finally, we show that δN +ρ < 1, that is, (d) of Lemma 2.8 holds.
Since N = ∥B(S)∥ = supx∈S {supτ∈J |Bx(τ)|} ≤ M , we have

∥ω0∥N +

m∑
i=1

∥ϖi∥
Γ(qi + 1)

≤ ∥ω0∥M +

m∑
i=1

∥ϖi∥
Γ(qi + 1)

< 1,

with δ = ∥ω0∥ and ρ =
∑m

i=1
∥ϖi∥

Γ(qi+1) . Thus, all the conditions of Lemma 2.8

are satisfied, and hence the operator equation x = AxBω +Cx has a solution
in S. As a result, problem (1)-(2) has a solution on J. □

4. EXAMPLE

Consider the following nonlocal hybrid boundary value problem:

D
3
2

1+

[
x(τ)−I

q1
1+

f1(τ,x(τ))

g(τ,x(τ))

]
= e−2(log τ)

√
9+τ

sinx(τ), τ ∈ J := [1, e],

5

[
x(τ)−I

1
5
1+

f1(τ,x(τ))

g(τ,x(τ))

]
τ=1

+3
8D

1
2

1+

[
x(τ)−I

q1
1+

f1(τ,x(τ))

g(τ,x(τ))

]
τ=1

= 1,

2
5

[
x(τ)−I

1
5
1+

f1(τ,x(τ))

g(τ,x(τ))

]
τ=T

+2
5D

1
2

1+

[
x(τ)−I

q1
1+

f1(τ,x(τ))

g(τ,x(τ))

]
τ=T

= 1.

(28)

We take

f1(τ, x(τ)) =
(log τ)2

100

(
1

2

(
x(τ) +

√
x2 + 1

)
+ log τ

)
,

g(τ, x(τ)) =

√
π(log τ)

(7π + 15(log τ)2)2
x(τ)

1 + x(τ)
+

log τ

10
,
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h(τ, x(τ)) =
e−2(log τ)

√
9 + τ

sinx(τ).

We show that

|f1(τ, x)− f1(τ, ω)| ≤
τ2

100
|x− ω|,

|g(τ, x)− g(τ, ω)| ≤
√
π

(7π + 15(log τ)2)2
|x− ω|,

h(τ, x(τ)) ≤ p(τ)φ (|x|) ,
where φ (|x|) = |x|, p(τ) = e−2(log τ). Hence, we have ω0(τ) =

(log τ)2

100 , ϖ1(τ) =√
π

(7π+15(log τ)2)2
. Then ∥ω0∥ = 1

100 , ∥ϖ1∥ =
√
π

(7π+15)2
, ∥p∥ = 0.1353, and g0 =

supτ∈J |g(τ, 0)| = 1
10 , f1 = supτ∈J |f1(τ, 0)| = 1

100 . Using these values, it
follows by (23) and (24) that the constant R satisfies the inequality 0.0035 <
R < 3.2552. As all the conditions of Theorem 3.2 are satisfied, problem (28)
has at least one solution on J.

REFERENCES

[1] B. Ahmad, S.K. Ntouyas and J. Tariboon, A nonlocal hybrid boundary value problem of
Caputo fractional integro-differential equations, Acta Math. Sci., 36 (2016), 1631–1640.

[2] B. Ahmad and S.K. Ntouyas, A note on fractional differential equations with fractional
separated boundary conditions, Abstr. Appl. Anal., 2012 (2012), Article 818703, 1–11.

[3] A. Boutiara, M.S. Abdo and M. Benbachir, Existence results for ψ-Caputo fractional
neutral functional integro-differential equations with finite delay, Turkish J. Math., 44
(2020), 2380–2401.

[4] A. Boutiara, M. Benbachir and K. Guerbati, Hilfer fractional hybrid differential equa-
tions with multi-point boundary hybrid conditions, Inter. J. Modern Math. Sci., 19
(2021), 17–33.

[5] A. Boutiara, M. Benbachir and K. Guerbati, Existence and uniqueness solutions of a
BVP for nonlinear Caputo-Hadamard fractional differential equation, J. Appl. Nonlinear
Dyn., 11 (2022), 359–374.

[6] A. Boutiara, K. Guerbati and M. Benbachir, Caputo-Hadamard fractional differential
equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020),
259–272.

[7] A. Boutiara, M. Benbachir and K. Guerbati, Caputo type fractional differential equation
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