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ON FI-RETRACTABLE MODULES

MARZIYEH ATASHKAR and YAHYA TALEBI

Abstract. In this paper, we introduce the notion of FI-retractable modules
which is a generalization of retractable modules. A module is called FI-retract-
able if for every nonzero fully invariant submodule N of M, Hom(M,N) ̸= 0. In
this article, we continue the study of FI-retractable modules. Amongst other
structural properties, we also deal direct sums and direct summands of FI-
retractable modules. The last section of the paper is devoted to study of End(M),
such that M is FI-retractable.
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1. INTRODUCTION

Throughout this paper R denotes an arbitrary associative ring with iden-
tity and all modules are unitary right R-module. For an R-module M , S =
End(M) denotes the endomorphism ring of M . E(M), Soc(M) and Rad(M)
denote the injective hull, the socle and the Jacobson radical of M , respec-
tively. Let M be a module and N be nonzero submodule of M . Then N is
said to be an essential submodule of M denoted by N ≤e M if, K ∩ N ̸= 0
for every nonzero submodule K of M . A module M is called uniform if every
submodule of M is essential in M . Recall that M is singular (nonsingular)
provided that Z(M) = M (Z(M) = 0) where Z(M) = {x ∈ M ;xI = 0 for
some essential ideal I of R}. A submodule N of M is called fully invariant,
if for every f ∈ End(M), f(N) ⊆ N . Clearly 0 and M are fully invariant
submodules of M . There are some well-known fully invariant submodule of
a module M such as Rad(M), Soc(M), Z(M). A module M is called Duo if
every submodule of M is fully invariant. It is clear that the sum and inter-
section of any collection of fully invariant submodules are also fully invariant.
Thus the collection of fully invariant submodules of M is a sublattice of the
complete modular lattice of all submodules of M . The concept of retractable
modules introduced by Khuri [6] with the property that Hom(M,N) ̸= 0 for
every nonzero submodule N of M . Often retractability condition combined
with another conditions. For example, in the study of nonsingular modules

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2022.1.04



2 On FI-retractable modules 25

satisfying CS condition, continuous, quasi-continuous and semi-projectivity.
(see [5, 8, 9, 16]). In [13] as a generalization of retractable module, Vedadi
studied essentially retractable modules with focus on essential submodules. In
this work we present another generalization of retractable modules namely,
FI-retractable module by focus just on nonzero fully invariant submodules.
An R-module M is called fully invariant (FI) retractable, if for any nonzero
fully invariant submodule N of M , Hom(M,N) ̸= 0. Clearly retractable mod-
ules are FI-retractable but the converse is not true in general. In section 2 we
present some condition to prove that when two concepts of FI-retractable and
retractable are equivalent. Also when the FI-retractability deduced essentially
retractability and when essential retractable modules are FI-retractable. Also,
we show that FI-retractability is preserved under direct sums and present some
conditions to show that when the class of FI-retractable is closed under taking
submodules and homomorphic image. Section 3 is devoted to the properties
of FI-retractable modules and their endomorphism rings. We show that in
some conditions the endomorphism ring of FI-retractable module is field and
investigate FI-retractable modules which endomorphism ring are prime rings.

2. PRELIMINARY LEMMAS

We first recall the following elementary well known facts about fully invari-
ant submodules.

Proposition 2.1. Let R be any ring and M be a nonzero R-module.

(1) Any sum or intersection of fully invariant submodules of M is again
a fully invariant submodule.

(2) Let K ≤ N be submodules of M such that K is a fully invariant
submodule of N and N is a fully invariant submodule of M . Then K
is a fully invariant submodule of M .

(3) Let M =
⊕
i∈I

Mi and N be a fully invariant submodule of M . Then

N =
⊕
i∈I

(N ∩Mi).

(4) Let M = M1⊕M2 be the direct sum of submodules M1, M2. Then M1

is a fully invariant submodule of M if and only if Hom(M1,M2) = 0.

Proof. See [12, 2.1] and [12, 1.9]. □

Definition 2.2. An R-module M is called fully invariant retractable (FI-
retractable) provided for each nonzero fully invariant submodule N of M ,
Hom(M,N) ̸= 0.

Example 2.3. Consider R-module M where R =

(
Z4 0
Z4 Z4

)
and M =(

0 0
Z4 Z4

)
. Then N =

(
0 0

2Z4 0

)
is a fully invariant submodule of M such

that Hom(M,N) = 0.
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It is clear that every retractable module is FI-retractable but the converse
is not true in general, for example the Z-module Z4 ⊕Q is FI-retractable but
it is not retractable.

In the following result we present some conditions in which two concepts of
retractable and FI-retractable are equivalent. Following [15]M has * condition
if for any nonzero proper submodule K of M , there is an r ∈ R \ annR(M)
with Mr < K.

Proposition 2.4. Any FI-retractable module with * condition is retractable.

Proof. Suppose that M is FI-retractable and N any nonzero submodule of
M . By * condition there exists r ∈R \ annR(M) such that Mr < N . Since
Mr is fully invariant, Hom(M,Mr) ̸= 0 and so Hom(M,N) ̸= 0. □

A module M is called cocyclic provided it contains an essential simple sub-
module.

Proposition 2.5. Let M be cocyclic FI-retractable module. Then M is
retractable and Rad(M) ̸= M .

Proof. Suppose that N is simple and essential submodule of M . We first
show that N is a fully invariant submodule of M . Let f ∈ End(M). If
Kerf = 0, then N ∼= f(N). So N = f(N). If Kerf ̸= 0, then Kerf∩N ̸= 0. So
N ≤ Kerf and so f(N) = 0. HenceN is a nonzero fully invariant submodule of
M , and by assumption Hom(M,N) ̸= 0. Hence M has a maximal submodule.
Also since N is simple and essential submodule of M , it contained in any
nonzero submodule of M . Therefore M is retractable. □

Vedadi in [13] studied essentially retractability for a module M by requiring
that Hom(M,N) ̸= 0 for all N ≤e M . The following results provide the
condition that when FI-retractability deduce essentially retractability and vice
versa.

Proposition 2.6. Any FI-retractable module with nonzero socle is essen-
tially retractable.

Proof. Suppose that M is FI-retractable with Soc(M) ̸= 0 and N any
nonzero essential submodule of M . Hence Soc(M) ≤ N . Since Soc(M)
is nonzero fully invariant submodule of M , Hom(M, Soc(M)) ̸= 0. Hence,
Hom(M,N) ̸= 0. □

Following [4], a nonzero right R-module M is called endoprime if any
nonzero fully invariant submodule of M is faithful as a left module over
End(M).

Proposition 2.7. Any essentially retractable endoprime module is FI-re-
tractable.
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Proof. Suppose that M is essentially retractable endoprime and N any
nonzero fully invariant submodule of M . Let K ≤ M such that N ⊕K ≤e M .
By assumption there exists nonzero f ∈ Hom(M,N ⊕K). So πof : M → N
is nonzero where π : N ⊕K → N is the canonical map . Because if πof = 0
then f(N) ≤ N ∩K = 0 which is contradiction with endoprimity of M . □

In general the class of FI-retractable modules is not closed under taking
submodule and factor module. However, there are some special cases, as
follows.

Proposition 2.8. Let N be a fully invariant submodule of an FI-retractable
module M such that Hom(MN , N) = 0. Then the module N is FI-retractable.

Proof. Suppose that N is fully invariant submodule of M and K a nonzero
fully invariant submodule of N . Then K is fully invariant submodule of M . So
Hom(M,K) ̸= 0. Since Hom(MN , N) = 0, foi ̸= 0 where i denotes the inclusion

map of N to M . Because if foi = 0, then N ≤ Kerf . So Hom(MN , M
Kerf ) ̸= 0

and so Hom(MN , N) ̸= 0 which is in contradiction with our assumption. Hence
Hom(N,K) ̸= 0. □

Corollary 2.9. Let R be any ring and M = M1 ⊕M2 FI-retractable such
that Hom(M1,M2) = 0 or M1 is fully invariant submodule in M . Then M2 is
a FI-retractable module.

Proof. It follows that by Proposition 2.8 □

Proposition 2.10. Let M be endoprime and FI-retractable module. Then
any fully invariant submodule of M is FI-retractable.

Proof. Suppose that N is a fully invariant submodule of M and K any
nonzero fully invariant submodule of N . By FI-retractability of M there exists
nonzero f ∈ Hom(M,K). Since M is endoprime, f(N) ̸= 0. So Hom(N,K) ̸=
0. □

Proposition 2.11. Let N be a fully invariant submodule of an FI-retractable
module M . Then the module M

N is FI-retractable.

Proof. Let L be a submodule of M containing N such that L
N is a fully

invariant submodule of M
N . Let f be any endomorphism of M . Since f(N) ≤

N , f induces an endomorphism f̄ : M
N → M

N defined by f̄(m+N) = f(m)+N

for all m ∈ M . So f̄( LN ) ≤ L
N and it follows that f(L) ≤ L. Hence L is a

fully invariant submodule of M . By hypothesis, Hom(M,L) ̸= 0. Since N
is a fully invariant submodule of M , Hom(MN , L

N ) ̸= 0. It follows that M
N is

FI-retractable module. □

Proposition 2.12. Let R be any ring and M =
⊕
i∈I

Mi be a direct sum of

FI-retractable module Mi . Then M is FI-retractable.
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Proof. Let N be any fully invariant submodule of M . Then by Proposi-

tion 2.1, N =
⊕
i∈I

(N ∩ Mi). Since N ∩ Mi is a fully invariant submodule of

Mi, Hom(Mi, N ∩ Mi) ̸= 0. Hence Hom(
⊕
i∈I

Mi,
⊕
i∈I

(N ∩ Mi)) ̸= 0 and so

Hom(M,N) ̸= 0. □

Proposition 2.13. Let R be any ring and M1,M2 be R-modules such that
R = annR(M1) + annR(M2). Then the R-module M = M1 ⊕ M2 is FI-
retractable if and only if M1 and M2 are FI-retractable modules.

Proof. Suppose that R = annR(M1) + annR(M2) and f : M1 → M2 is any
homomorphism. Then

f(M1) = f(M1ann(M1)) + f(M2ann(M2))

= f(0) + f(M2)ann(M2)

≤ M2ann(M2) = 0.

So Hom(M1,M2) = 0. By Corollary 2.9, M2 is FI-retractable module. Simi-
larly, M1 is FI-retractable. Conversely, by Proposition 2.12. □

Corollary 2.14. Let R be any ring and n be a positive integer and M1, . . .,
Mn be R-modules such that R = annR(Mi) + annR(Mj) for all 1 ≤ i ≤ j ≤ n.
Then the R-module M = M1 ⊕ ... ⊕Mn is FI-retractable if and only if Mi is
FI-retractable for all 1 ≤ i ≤ n.

3. MAIN RESULT

Recall that a submodule U ⪇ M is rational in M if for any U ⪇ V ⪇ M ,
Hom(VU ,M) = 0. A module M is called polyform if every essential submodule
of M is rational in M .

Proposition 3.1. Let M be projective FI-retractable module. Then M is
nonsingular if and only if M is polyform.

Proof. Suppose thatM is nonsingular and U is an essential submodule ofM .
Let U ⪇ V ⪇ M and f ∈ Hom(VU ,M). Since V

U is singular, f = 0. Conversely,
Suppose that M is polyform. If Z(M) ̸= 0, then FI-retractability on M
implies that 0 ̸= f ∈ Hom(M,Z(M)). Since Imf is singular, Imf ∼= L

K for

K ≤e L. Now M is projective so, f : M → L
K can be extended by g : M → L

such that πog = f where π : L → L
K is canonical map. Since K ≤e L,

g−1(K) = Kerf is an essential submodule ofM . By assumptionM is polyform
so Hom( M

Kerf ,M) = 0. That is in contradiction with Hom(M,Z(M)) ̸= 0. So

Hom(M,Z(M)) = 0 and Z(M) = 0. □

A ring R is called right V -ring if every simple right R-module is injective.

Proposition 3.2. Let R be V -ring. Then any cocyclic R-module is FI-
retractable.
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Proof. Suppose that K is any nonzero fully invariant submodule of M and
N an essential simple submodule of M . Since R is V -ring, N is injective and
so is a direct summand of M . Also, N ≤ K, because N is simple and essential
submodule of M . Hence Hom(M,K) ̸= 0. □

Let M be an R-module and N submodule of M . We say that M is N -FI-
retractable if for each nonzero fully invariant submodule K of N , Hom(M,K)
̸= 0.

Lemma 3.3. Let R be any ring and M be quasi-projective R-module. If M
N

is FI-retractable and M is N -FI-retractable, then M is FI-retractable.

Proof. Let K be any nonzero fully invariant submodule of M . If N ∩K ̸= 0,
then Hom(M,N∩K) ̸= 0 because M is N -FI-retractable. So Hom(M,K) ̸= 0.
If N ∩K = 0, since M is quasi-projective N+K

N is fully invariant submodule

of M
N . So, Hom(MN , N+K

N ) ̸= 0. It follows that Hom(M,K) ̸= 0. □

Proposition 3.4. Let R be right V -ring and M be quasi-projective R-
module. Then M is FI-retractable if and only if M

Soc(M) is FI-retractable.

Proof. Suppose that M
Soc(M) is FI-retractable. By Lemma 3.3, it is enough to

show that M is Soc(M)-FI-retractable. Let N be any nonzero fully invariant
submodule of Soc(M). So there exists a simple submodule K of M such that
K ≤ N . On the other hand since R is V -ring, K is a direct summand of M .
Therefore Hom(M,N) ̸= 0. Conversely, by Proposition 2.11. □

Lemma 3.5. Let R be any ring and M be an R-module and M1, M2 sub-
modules of M . If M is Mi-FI-retractable for i = 1, 2, then M is M1⊕M2-FI-
retractable.

Proof. Suppose that N is any nonzero fully invariant submodule of M1 ⊕
M2. If N ∩ M1 ̸= 0. Since N ∩ M1 is a fully invariant submodule of M1,
Hom(M,N ∩M1) ̸= 0 and so Hom(M,N) ̸= 0. Similarly for N ∩M2 ̸= 0. □

Lemma 3.6. Let N be an essential submodule of M . If M is N -FI-retract-
able, then M is FI-retractable.

Proof. Suppose that N is an essential submodule of M and M is N -FI-
retractable. Let K be any nonzero fully invariant submodule of M . So N ∩K
is a nonzero fully invariant submodule of N and so Hom(M,N ∩ K) ̸= 0.
Hence Hom(M,K) ̸= 0. □

Proposition 3.7. Let R be right quasi-injective ring and M be R-module.
M is FI-retractable if and only if M is Z(M)-FI-retractable.

Proof. Suppose that M is Z(M)-FI-retractable. Let N be complemented
of Z(M). So, Z(M)⊕N ≤e M . By Lemma 3.6 it is enough to show that M
is (Z(M)⊕N)-FI-retractable. Suppose that K is any nonzero fully invariant
submodule of N . Let 0 ̸= x ∈ K. Since R is right quasi-injective ring and xR
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is nonsingular, xR is injective and hence is a direct summand. Consequently,
Hom(M,xR) ̸= 0 and so Hom(M,K) ̸= 0. Therefore M is N -FI-retractable.
Now, by Lemma 3.5, M is (Z(M) ⊕ N)-FI-retractable. Conversely, suppose
that M is FI-retractable. Since Z(M) is fully invariant submodule of M , then
M is Z(M)-FI-retractable. □

In the following M is a right R-module and S = End(M) is the ring of
R-endomorphism.

Proposition 3.8. Let M be finitely generated quasi-projective and FI-
retractable module with S = End(M). If M is Noetherian (Artinian), then
S is Noetherian (Artinian).

Proof. Suppose that I1 ≤ I2 ≤ · · · is ascending chain of ideals in S.
Therefore I1M ≤ I2M ≤ · · · is ascending chain of submodules in M . So
IiM = Ii+1M = · · · for some i. By FI-retractability on M and [14, 18.4]
0 ̸= Hom(M, IjM) = Ij for any j. So Ii = Ii+1 = · · · □

Proposition 3.9. Let M be FI-retractable module. If S = End(M) is
semisimple Artinian then any nonzero fully invariant submodule of M is a
direct summand.

Proof. We first prove that if I is minimal ideal of S, then IM has no non
trivial fully invariant submodule. For it, let K be any nonzero fully invariant
submodule of IM . So there exists a nonzero homomorphism f : M → K
and so, Hom(M, Imf) ≤ Hom(M, IM). On the other hand since I is a di-
rect summand, Hom(M, IM) = I. Therefore Hom(M, Imf) = I and Imf =
Hom(M, Imf)M = IM . So K = IM . It follows that IM has no non trivial
fully invariant submodule as desired. Now suppose that S = I1⊕· · ·⊕In where
each Ii (1 ≤ i ≤ n) is minimal ideal of S. Then M = SM = I1M + · · ·+ InM
and each IiM (1 ≤ i ≤ n) has no non trivial fully invariant submodule. Also
for each i ̸= j (1 ≤ i, j ≤ n) if IiM∩IjM ̸= 0, then IiM = IjM . Consequently
M is a finite direct sum of submodules of M where each of them has no non
trivial fully invariant submodule. Now suppose that M = M1⊕ · · ·⊕Mn such
that for each 1 ≤ i ≤ n, Mi has no non trivial fully invariant submodule. Let
K be any nonzero fully invariant submodule of M . Without loss of generality
suppose that K∩M1 ̸= 0. By assumption M1 has no non trivial fully invariant
submodule so K∩M1 = M1. If for each 2 ≤ i ≤ n, K∩Mi = 0, then K = M1.

Suppose thatK∩M2 ̸= 0. SoK∩M2 = M2 andK = M1⊕M2⊕(

n⊕
i=3

(K∩Mi)).

Repeat this process for (n−3)-times we have K = M1⊕· · ·⊕Mn−1⊕(K∩Mn).
If K ∩Mn = 0, then K = M1 ⊕ · · · ⊕Mn−1. If K ∩Mn ̸= 0, then K = M . □

Corollary 3.10. Let M be FI-retractable module. If S = End(M) is
semisimple Artinian, then M = Z(M) ⊕ M ′ where M ′ is nonsingular FI-
retractable.
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Proof. Suppose that M is FI-retractable and S = End(M) is semisimple
Artinian. By Proposition 3.9, Z(M) is a direct summand. SoM = Z(M)⊕M ′.
M ′ ∼= M

Z(M) is FI-retractable by Proposition 2.11. □

Proposition 3.11. Let M be an indecomposable quasi-injective module and
S = End(M). In each of the following cases S is a field:

(1) M is FI-retractable and S is division ring.
(2) M is FI-retractable and nonsingular.

Proof. (1) Let N be any nonzero fully invariant submodule of M . Then
there exists a nonzero f ∈ S such that Imf ≤ N . Since S is division ring,
there exists g ∈ S such that gf = 1. So, M = gf(M) ≤ g(N) ≤ N . Therefore
M has no non trivial fully invariant submodule. Hence by [3, exercise 29, page
183] S is a field.

(2) Let N be any nonzero fully invariant submodule of M . Then there exists
a nonzero f : M → N . Since M is nonsingular and quasi-injective, Kerf is a
direct summand of M . So, Imf is isomorphic to a direct summand of M and
so Imf is a direct summand of M because M is quasi-injective. Since M is
indecomposable, M = N . It follows that M has no non trivial fully invariant
submodule. So S is a field. □

Recall that a ring R is prime if for a, b ∈ R, aRb = 0 implies a = 0 or b = 0.

Proposition 3.12. Let M be a nonzero module with S = End(M).

(1) If M is FI-retractable and S is prime, then M is endoprime.
(2) If M is FI-retractable and endoprime, then annR(M) is prime.

Proof. (1) Suppose that N is any fully invariant submodule of M such that
annS(M) ̸= 0. Then there exists f ∈ S such that f(N) = 0. Since M is
FI-retractable, there exists nonzero g ∈ S such that Img ≤ N . So, fSg = 0.
Since S is prime, f = 0. It follows that M is endoprime.

(2) Suppose that M is FI-retractable and endoprime. Let IJ ≤ annR(M),
I ≰ annR(M), J ≰ annR(M) for some right ideals I, J of R. Since M is
FI-retractable, there exists nonzero f ∈ Hom(M,MI) such that f(MJ) ≤
MIJ = 0. Since M is endoprime, f = 0. That is a contradiction. □

Lemma 3.13. Let M be FI-retractable and N be any nonzero fully invariant
submodule of M . If End(M) is prime ring, then the restriction map α :
End(M) → End(N) is injective homomorphism of rings.

Proof. Suppose that α(f) = 0 for some f ∈ End(M). So N ≤ Kerf . By
FI-retractability of M , there exists nonzero g ∈ Hom(M,N). Hence fSg = 0
and f = 0 because S is prime ring. □

Remark 3.14. LetM is quasi-injective andN be any nonzero fully invariant
submodule of M , it is easy to verify that the restriction map α : End(M) →
End(N) is surjective homomorphism of rings.



32 M. Atashkar and Y. Talebi 9

Corollary 3.15. Let M be FI-retractable module and S = End(M) is
prime ring. If M is quasi-injective, then the endomorphism ring of any
nonzero fully invariant submodule of M is a prime ring.

Proof. Suppose that M be FI-retractable and End(M) is prime ring. Let
N be a nonzero fully invariant submodule of M . By Lemma 3.13 and Remark
3.14, End(M) ∼= End(N). So End(N) is prime ring. □

Recall that a ring R is Dedekind-finite if for any x, y ∈ R, xy = 1 implies
that yx = 1. A module M is Dedekind-finite if M ∼= M ⊕ N (for some R-
modules N) implies that N = 0. Following [11, Exercise 1.8], an R-module
M is Dedekind-finite if and only if the endomorphism ring of M is Dedekind-
finite.

Proposition 3.16. Let M be FI-retractable module and S = End(M) is
prime ring. M is Dedekind-finite if and only if there exists a nonzero fully
invariant submodule of M which is Dedekind-finite.

Proof. Suppose thatN is a fully invariant submodule ofM andN Dedekind-
finite. Since M is FI-retractable and End(M) is prime ring by Lemma 3.13,
End(M) is isomorphic subring of End(N). On the other hand, since N is
Dedekind-finite, End(N) is Dedekind-finite and so End(M) is Dedekind-finite.
Consequently, M is Dedekind-finite. □

Recall that M is a homogeneous semisimple if all simple submodules are
isomorphic.

Proposition 3.17. Let M be FI-retractable module and S = End(M)
is prime ring. If M is quasi-injective and M has a nonzero fully invari-
ant submodule which is Dedekind-finite, then S is either simple Artinian or
Soc(S) = 0.

Proof. By Proposition 3.16, M is Dedekind-finite. Suppose that Soc(S) ̸= 0.
By [1, Exercise 11(1), page 164], J(S) = 0 and Soc(S) is homogeneous. On
the other hand, since M is Dedekind-finite S is Dedekind-finite. Also, since M
is quasi-injective and J(S) = 0, S is quasi-injective. Now, by [11, Exercise 31,
page 244] for any nonzero right ideal I of S, I ⊕ I ⊕ · · · cannot be embedded
in S. So Soc(S) is finitely generated. Hence, since S is prime ring and Soc(S)
is finitely generated by [1, Exercise 11, p. 164], S is simple Artinian. □

Corollary 3.18. Let M be FI-retractable module and S = End(M) is
prime ring with Soc(S) ̸= 0. If M is quasi-injective and M has a nonzero
fully invariant submodule which is Dedekind-finite, Then S is a division ring.

Proof. By Proposition 3.17, Soc(S) is simple. Since S is prime, S is a
division ring (see [1, Exercise 11, p. 164]). □
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