ON FI-RETRACTABLE MODULES

MARZIYEH ATASHKAR and YAHYA TALEBI

Abstract

In this paper, we introduce the notion of FI-retractable modules which is a generalization of retractable modules. A module is called FI-retractable if for every nonzero fully invariant submodule N of M , $\operatorname{Hom}(M, N) \neq 0$. In this article, we continue the study of FI-retractable modules. Amongst other structural properties, we also deal direct sums and direct summands of FIretractable modules. The last section of the paper is devoted to study of $\operatorname{End}(M)$, such that M is FI-retractable.

MSC 2010. 30C45.
Key words. Retractable module, FI-retractable module, fully invariant submodule.

1. INTRODUCTION

Throughout this paper R denotes an arbitrary associative ring with identity and all modules are unitary right R-module. For an R-module $M, S=$ $\operatorname{End}(M)$ denotes the endomorphism ring of $M . E(M), \operatorname{Soc}(M)$ and $\operatorname{Rad}(M)$ denote the injective hull, the socle and the Jacobson radical of M, respectively. Let M be a module and N be nonzero submodule of M. Then N is said to be an essential submodule of M denoted by $N \leq_{e} M$ if, $K \cap N \neq 0$ for every nonzero submodule K of M. A module M is called uniform if every submodule of M is essential in M. Recall that M is singular (nonsingular) provided that $Z(M)=M(Z(M)=0)$ where $Z(M)=\{x \in M ; x I=0$ for some essential ideal I of $R\}$. A submodule N of M is called fully invariant, if for every $f \in \operatorname{End}(M), f(N) \subseteq N$. Clearly 0 and M are fully invariant submodules of M. There are some well-known fully invariant submodule of a module M such as $\operatorname{Rad}(M)$, $\operatorname{Soc}(M), Z(M)$. A module M is called Duo if every submodule of M is fully invariant. It is clear that the sum and intersection of any collection of fully invariant submodules are also fully invariant. Thus the collection of fully invariant submodules of M is a sublattice of the complete modular lattice of all submodules of M. The concept of retractable modules introduced by Khuri [6] with the property that $\operatorname{Hom}(M, N) \neq 0$ for every nonzero submodule N of M. Often retractability condition combined with another conditions. For example, in the study of nonsingular modules

[^0]satisfying CS condition, continuous, quasi-continuous and semi-projectivity. (see $[5,8,9,16]$). In $[13]$ as a generalization of retractable module, Vedadi studied essentially retractable modules with focus on essential submodules. In this work we present another generalization of retractable modules namely, FI-retractable module by focus just on nonzero fully invariant submodules. An R-module M is called fully invariant (FI) retractable, if for any nonzero fully invariant submodule N of $M, \operatorname{Hom}(M, N) \neq 0$. Clearly retractable modules are FI-retractable but the converse is not true in general. In section 2 we present some condition to prove that when two concepts of FI-retractable and retractable are equivalent. Also when the FI-retractability deduced essentially retractability and when essential retractable modules are FI-retractable. Also, we show that FI-retractability is preserved under direct sums and present some conditions to show that when the class of FI-retractable is closed under taking submodules and homomorphic image. Section 3 is devoted to the properties of FI-retractable modules and their endomorphism rings. We show that in some conditions the endomorphism ring of FI-retractable module is field and investigate FI-retractable modules which endomorphism ring are prime rings.

2. PRELIMINARY LEMMAS

We first recall the following elementary well known facts about fully invariant submodules.

Proposition 2.1. Let R be any ring and M be a nonzero R-module.
(1) Any sum or intersection of fully invariant submodules of M is again a fully invariant submodule.
(2) Let $K \leq N$ be submodules of M such that K is a fully invariant submodule of N and N is a fully invariant submodule of M. Then K is a fully invariant submodule of M.
(3) Let $M=\bigoplus_{i \in I} M_{i}$ and N be a fully invariant submodule of M. Then $N=\bigoplus_{i \in I}\left(N \cap M_{i}\right)$.
(4) Let $M=M_{1} \oplus M_{2}$ be the direct sum of submodules M_{1}, M_{2}. Then M_{1} is a fully invariant submodule of M if and only if $\operatorname{Hom}\left(M_{1}, M_{2}\right)=0$.

Proof. See [12, 2.1] and [12, 1.9].
Definition 2.2. An R-module M is called fully invariant retractable (FIretractable) provided for each nonzero fully invariant submodule N of M, $\operatorname{Hom}(M, N) \neq 0$.

Example 2.3. Consider R-module M where $R=\left(\begin{array}{ll}\mathbb{Z}_{4} & 0 \\ \mathbb{Z}_{4} & \mathbb{Z}_{4}\end{array}\right)$ and $M=$ $\left(\begin{array}{cc}0 & 0 \\ \mathbb{Z}_{4} & \mathbb{Z}_{4}\end{array}\right)$. Then $N=\left(\begin{array}{cc}0 & 0 \\ 2 \mathbb{Z}_{4} & 0\end{array}\right)$ is a fully invariant submodule of M such that $\operatorname{Hom}(M, N)=0$.

It is clear that every retractable module is FI-retractable but the converse is not true in general, for example the \mathbb{Z}-module $\mathbb{Z}_{4} \oplus \mathbb{Q}$ is FI-retractable but it is not retractable.

In the following result we present some conditions in which two concepts of retractable and FI-retractable are equivalent. Following [15] M has * condition if for any nonzero proper submodule K of M, there is an $r \in R \backslash \operatorname{ann}_{R}(M)$ with $M r<K$.

Proposition 2.4. Any FI-retractable module with * condition is retractable.
Proof. Suppose that M is FI-retractable and N any nonzero submodule of M. By ${ }^{*}$ condition there exists $r \in R \backslash \operatorname{ann}_{R}(M)$ such that $M r<N$. Since $M r$ is fully invariant, $\operatorname{Hom}(M, M r) \neq 0$ and so $\operatorname{Hom}(M, N) \neq 0$.

A module M is called cocyclic provided it contains an essential simple submodule.

Proposition 2.5. Let M be cocyclic FI-retractable module. Then M is retractable and $\operatorname{Rad}(M) \neq M$.

Proof. Suppose that N is simple and essential submodule of M. We first show that N is a fully invariant submodule of M. Let $f \in \operatorname{End}(M)$. If $\operatorname{Ker} f=0$, then $N \cong f(N)$. So $N=f(N)$. If $\operatorname{Ker} f \neq 0$, then $\operatorname{Ker} f \cap N \neq 0$. So $N \leq \operatorname{Ker} f$ and so $f(N)=0$. Hence N is a nonzero fully invariant submodule of M, and by assumption $\operatorname{Hom}(M, N) \neq 0$. Hence M has a maximal submodule. Also since N is simple and essential submodule of M, it contained in any nonzero submodule of M. Therefore M is retractable.

Vedadi in [13] studied essentially retractability for a module M by requiring that $\operatorname{Hom}(M, N) \neq 0$ for all $N \leq_{e} M$. The following results provide the condition that when FI-retractability deduce essentially retractability and vice versa.

Proposition 2.6. Any FI-retractable module with nonzero socle is essentially retractable.

Proof. Suppose that M is FI-retractable with $\operatorname{Soc}(M) \neq 0$ and N any nonzero essential submodule of M. Hence $\operatorname{Soc}(M) \leq N$. Since $\operatorname{Soc}(M)$ is nonzero fully invariant submodule of $M, \operatorname{Hom}(M, \operatorname{Soc}(M)) \neq 0$. Hence, $\operatorname{Hom}(M, N) \neq 0$.

Following [4], a nonzero right R-module M is called endoprime if any nonzero fully invariant submodule of M is faithful as a left module over $\operatorname{End}(M)$.

Proposition 2.7. Any essentially retractable endoprime module is FI-retractable.

Proof. Suppose that M is essentially retractable endoprime and N any nonzero fully invariant submodule of M. Let $K \leq M$ such that $N \oplus K \leq_{e} M$. By assumption there exists nonzero $f \in \operatorname{Hom}(M, N \oplus K)$. So $\pi o f: M \rightarrow N$ is nonzero where $\pi: N \oplus K \rightarrow N$ is the canonical map. Because if $\pi o f=0$ then $f(N) \leq N \cap K=0$ which is contradiction with endoprimity of M.

In general the class of FI-retractable modules is not closed under taking submodule and factor module. However, there are some special cases, as follows.

Proposition 2.8. Let N be a fully invariant submodule of an FI-retractable module M such that $\operatorname{Hom}\left(\frac{M}{N}, N\right)=0$. Then the module N is FI-retractable.

Proof. Suppose that N is fully invariant submodule of M and K a nonzero fully invariant submodule of N. Then K is fully invariant submodule of M. So $\operatorname{Hom}(M, K) \neq 0$. Since $\operatorname{Hom}\left(\frac{M}{N}, N\right)=0$, foi $\neq 0$ where i denotes the inclusion map of N to M. Because if foi $=0$, then $N \leq \operatorname{Ker} f$. So $\operatorname{Hom}\left(\frac{M}{N}, \frac{M}{\operatorname{Ker} f}\right) \neq 0$ and so $\operatorname{Hom}\left(\frac{M}{N}, N\right) \neq 0$ which is in contradiction with our assumption. Hence $\operatorname{Hom}(N, K) \neq 0$.

Corollary 2.9. Let R be any ring and $M=M_{1} \oplus M_{2}$ FI-retractable such that $\operatorname{Hom}\left(M_{1}, M_{2}\right)=0$ or M_{1} is fully invariant submodule in M. Then M_{2} is a FI-retractable module.

Proof. It follows that by Proposition 2.8
Proposition 2.10. Let M be endoprime and FI-retractable module. Then any fully invariant submodule of M is FI-retractable.

Proof. Suppose that N is a fully invariant submodule of M and K any nonzero fully invariant submodule of N. By FI-retractability of M there exists nonzero $f \in \operatorname{Hom}(M, K)$. Since M is endoprime, $f(N) \neq 0$. So $\operatorname{Hom}(N, K) \neq$ 0.

Proposition 2.11. Let N be a fully invariant submodule of an FI-retractable module M. Then the module $\frac{M}{N}$ is FI-retractable.

Proof. Let L be a submodule of M containing N such that $\frac{L}{N}$ is a fully invariant submodule of $\frac{M}{N}$. Let f be any endomorphism of M. Since $f(N) \leq$ N, f induces an endomorphism $\bar{f}: \frac{M}{N} \rightarrow \frac{M}{N}$ defined by $\bar{f}(m+N)=f(m)+N$ for all $m \in M$. So $\bar{f}\left(\frac{L}{N}\right) \leq \frac{L}{N}$ and it follows that $f(L) \leq L$. Hence L is a fully invariant submodule of M. By hypothesis, $\operatorname{Hom}(M, L) \neq 0$. Since N is a fully invariant submodule of $M, \operatorname{Hom}\left(\frac{M}{N}, \frac{L}{N}\right) \neq 0$. It follows that $\frac{M}{N}$ is FI-retractable module.

Proposition 2.12. Let R be any ring and $M=\bigoplus_{i \in I} M_{i}$ be a direct sum of FI-retractable module M_{i}. Then M is FI-retractable.

Proof. Let N be any fully invariant submodule of M. Then by Proposition 2.1, $N=\bigoplus_{i \in I}\left(N \cap M_{i}\right)$. Since $N \cap M_{i}$ is a fully invariant submodule of $M_{i}, \operatorname{Hom}\left(M_{i}, N \cap M_{i}\right) \neq 0$. Hence $\operatorname{Hom}\left(\bigoplus_{i \in I} M_{i}, \bigoplus_{i \in I}\left(N \cap M_{i}\right)\right) \neq 0$ and so $\operatorname{Hom}(M, N) \neq 0$.

Proposition 2.13. Let R be any ring and M_{1}, M_{2} be R-modules such that $R=\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)$. Then the R-module $M=M_{1} \oplus M_{2}$ is FIretractable if and only if M_{1} and M_{2} are FI-retractable modules.

Proof. Suppose that $R=\operatorname{ann}_{R}\left(M_{1}\right)+\operatorname{ann}_{R}\left(M_{2}\right)$ and $f: M_{1} \rightarrow M_{2}$ is any homomorphism. Then

$$
\begin{aligned}
f\left(M_{1}\right) & =f\left(M_{1} \operatorname{ann}\left(M_{1}\right)\right)+f\left(M_{2} \operatorname{ann}\left(M_{2}\right)\right) \\
& =f(0)+f\left(M_{2}\right) \operatorname{ann}\left(M_{2}\right) \\
& \leq M_{2} \operatorname{ann}\left(M_{2}\right)=0
\end{aligned}
$$

So $\operatorname{Hom}\left(M_{1}, M_{2}\right)=0$. By Corollary $2.9, M_{2}$ is FI-retractable module. Similarly, M_{1} is FI-retractable. Conversely, by Proposition 2.12.

Corollary 2.14. Let R be any ring and n be a positive integer and M_{1}, \ldots, M_{n} be R-modules such that $R=\operatorname{ann}_{R}\left(M_{i}\right)+\operatorname{ann}_{R}\left(M_{j}\right)$ for all $1 \leq i \leq j \leq n$. Then the R-module $M=M_{1} \oplus \ldots \oplus M_{n}$ is FI-retractable if and only if M_{i} is $F I$-retractable for all $1 \leq i \leq n$.

3. MAIN RESULT

Recall that a submodule $U \lesseqgtr M$ is rational in M if for any $U \lesseqgtr V \lesseqgtr M$, $\operatorname{Hom}\left(\frac{V}{U}, M\right)=0$. A module M is called polyform if every essential submodule of M is rational in M.

Proposition 3.1. Let M be projective FI-retractable module. Then M is nonsingular if and only if M is polyform.

Proof. Suppose that M is nonsingular and U is an essential submodule of M. Let $U \lesseqgtr V \lesseqgtr M$ and $f \in \operatorname{Hom}\left(\frac{V}{U}, M\right)$. Since $\frac{V}{U}$ is singular, $f=0$. Conversely, Suppose that M is polyform. If $Z(M) \neq 0$, then FI-retractability on M implies that $0 \neq f \in \operatorname{Hom}(M, Z(M))$. Since $\operatorname{Im} f$ is singular, $\operatorname{Im} f \cong \frac{L}{K}$ for $K \leq_{e} L$. Now M is projective so, $f: M \rightarrow \frac{L}{K}$ can be extended by $g: M \rightarrow L$ such that $\pi o g=f$ where $\pi: L \rightarrow \frac{L}{K}$ is canonical map. Since $K \leq_{e} L$, $g^{-1}(K)=\operatorname{Ker} f$ is an essential submodule of M. By assumption M is polyform so $\operatorname{Hom}\left(\frac{M}{\operatorname{Ker} f}, M\right)=0$. That is in contradiction with $\operatorname{Hom}(M, Z(M)) \neq 0$. So $\operatorname{Hom}(M, Z(M))=0$ and $Z(M)=0$.

A ring R is called right V-ring if every simple right R-module is injective.
Proposition 3.2. Let R be V-ring. Then any cocyclic R-module is $F I$ retractable.

Proof. Suppose that K is any nonzero fully invariant submodule of M and N an essential simple submodule of M. Since R is V-ring, N is injective and so is a direct summand of M. Also, $N \leq K$, because N is simple and essential submodule of M. Hence $\operatorname{Hom}(M, K) \neq 0$.

Let M be an R-module and N submodule of M. We say that M is N-FIretractable if for each nonzero fully invariant submodule K of N, $\operatorname{Hom}(M, K)$ $\neq 0$.

Lemma 3.3. Let R be any ring and M be quasi-projective R-module. If $\frac{M}{N}$ is FI-retractable and M is N-FI-retractable, then M is FI-retractable.

Proof. Let K be any nonzero fully invariant submodule of M. If $N \cap K \neq 0$, then $\operatorname{Hom}(M, N \cap K) \neq 0$ because M is N-FI-retractable. $\operatorname{So} \operatorname{Hom}(M, K) \neq 0$. If $N \cap K=0$, since M is quasi-projective $\frac{N+K}{N}$ is fully invariant submodule of $\frac{M}{N}$. So, $\operatorname{Hom}\left(\frac{M}{N}, \frac{N+K}{N}\right) \neq 0$. It follows that $\operatorname{Hom}(M, K) \neq 0$.

Proposition 3.4. Let R be right V-ring and M be quasi-projective R module. Then M is FI-retractable if and only if $\frac{M}{\operatorname{Soc}(M)}$ is FI-retractable.

Proof. Suppose that $\frac{M}{\operatorname{Soc}(M)}$ is FI-retractable. By Lemma 3.3, it is enough to show that M is $\operatorname{Soc}(M)$-FI-retractable. Let N be any nonzero fully invariant submodule of $\operatorname{Soc}(M)$. So there exists a simple submodule K of M such that $K \leq N$. On the other hand since R is V-ring, K is a direct summand of M. Therefore $\operatorname{Hom}(M, N) \neq 0$. Conversely, by Proposition 2.11.

Lemma 3.5. Let R be any ring and M be an R-module and M_{1}, M_{2} submodules of M. If M is M_{i}-FI-retractable for $i=1,2$, then M is $M_{1} \oplus M_{2}$-FIretractable.

Proof. Suppose that N is any nonzero fully invariant submodule of $M_{1} \oplus$ M_{2}. If $N \cap M_{1} \neq 0$. Since $N \cap M_{1}$ is a fully invariant submodule of M_{1}, $\operatorname{Hom}\left(M, N \cap M_{1}\right) \neq 0$ and so $\operatorname{Hom}(M, N) \neq 0$. Similarly for $N \cap M_{2} \neq 0$.

Lemma 3.6. Let N be an essential submodule of M. If M is N-FI-retractable, then M is FI-retractable.

Proof. Suppose that N is an essential submodule of M and M is N-FIretractable. Let K be any nonzero fully invariant submodule of M. So $N \cap K$ is a nonzero fully invariant submodule of N and so $\operatorname{Hom}(M, N \cap K) \neq 0$. Hence $\operatorname{Hom}(M, K) \neq 0$.

Proposition 3.7. Let R be right quasi-injective ring and M be R-module. M is FI-retractable if and only if M is $Z(M)$-FI-retractable.

Proof. Suppose that M is $Z(M)$-FI-retractable. Let N be complemented of $Z(M)$. So, $Z(M) \oplus N \leq_{e} M$. By Lemma 3.6 it is enough to show that M is $(Z(M) \oplus N)$-FI-retractable. Suppose that K is any nonzero fully invariant submodule of N. Let $0 \neq x \in K$. Since R is right quasi-injective ring and $x R$
is nonsingular, $x R$ is injective and hence is a direct summand. Consequently, $\operatorname{Hom}(M, x R) \neq 0$ and so $\operatorname{Hom}(M, K) \neq 0$. Therefore M is N-FI-retractable. Now, by Lemma 3.5, M is $(Z(M) \oplus N)$-FI-retractable. Conversely, suppose that M is FI-retractable. Since $Z(M)$ is fully invariant submodule of M, then M is $Z(M)$-FI-retractable.

In the following M is a right R-module and $S=\operatorname{End}(M)$ is the ring of R-endomorphism.

Proposition 3.8. Let M be finitely generated quasi-projective and FIretractable module with $S=\operatorname{End}(M)$. If M is Noetherian (Artinian), then S is Noetherian (Artinian).

Proof. Suppose that $I_{1} \leq I_{2} \leq \cdots$ is ascending chain of ideals in S. Therefore $I_{1} M \leq I_{2} M \leq \cdots$ is ascending chain of submodules in M. So $I_{i} M=I_{i+1} M=\cdots$ for some i. By FI-retractability on M and [14, 18.4] $0 \neq \operatorname{Hom}\left(M, I_{j} M\right)=I_{j}$ for any j. So $I_{i}=I_{i+1}=\cdots$

Proposition 3.9. Let M be FI-retractable module. If $S=\operatorname{End}(M)$ is semisimple Artinian then any nonzero fully invariant submodule of M is a direct summand.

Proof. We first prove that if I is minimal ideal of S, then $I M$ has no non trivial fully invariant submodule. For it, let K be any nonzero fully invariant submodule of $I M$. So there exists a nonzero homomorphism $f: M \rightarrow K$ and so, $\operatorname{Hom}(M, \operatorname{Im} f) \leq \operatorname{Hom}(M, I M)$. On the other hand since I is a direct summand, $\operatorname{Hom}(M, I M)=I$. Therefore $\operatorname{Hom}(M, \operatorname{Im} f)=I$ and $\operatorname{Im} f=$ $\operatorname{Hom}(M, \operatorname{Im} f) M=I M$. So $K=I M$. It follows that $I M$ has no non trivial fully invariant submodule as desired. Now suppose that $S=I_{1} \oplus \cdots \oplus I_{n}$ where each $I_{i}(1 \leq i \leq n)$ is minimal ideal of S. Then $M=S M=I_{1} M+\cdots+I_{n} M$ and each $I_{i} M(1 \leq i \leq n)$ has no non trivial fully invariant submodule. Also for each $i \neq j(1 \leq i, j \leq n)$ if $I_{i} M \cap I_{j} M \neq 0$, then $I_{i} M=I_{j} M$. Consequently M is a finite direct sum of submodules of M where each of them has no non trivial fully invariant submodule. Now suppose that $M=M_{1} \oplus \cdots \oplus M_{n}$ such that for each $1 \leq i \leq n, M_{i}$ has no non trivial fully invariant submodule. Let K be any nonzero fully invariant submodule of M. Without loss of generality suppose that $K \cap M_{1} \neq 0$. By assumption M_{1} has no non trivial fully invariant submodule so $K \cap M_{1}=M_{1}$. If for each $2 \leq i \leq n, K \cap M_{i}=0$, then $K=M_{1}$. Suppose that $K \cap M_{2} \neq 0$. So $K \cap M_{2}=M_{2}$ and $K=M_{1} \oplus M_{2} \oplus\left(\bigoplus_{i=3}^{n}\left(K \cap M_{i}\right)\right)$. Repeat this process for $(n-3)$-times we have $K=M_{1} \oplus \cdots \oplus M_{n-1} \oplus\left(K \cap M_{n}\right)$. If $K \cap M_{n}=0$, then $K=M_{1} \oplus \cdots \oplus M_{n-1}$. If $K \cap M_{n} \neq 0$, then $K=M$.

Corollary 3.10. Let M be FI-retractable module. If $S=\operatorname{End}(M)$ is semisimple Artinian, then $M=Z(M) \oplus M^{\prime}$ where M^{\prime} is nonsingular FIretractable.

Proof. Suppose that M is FI-retractable and $S=\operatorname{End}(M)$ is semisimple Artinian. By Proposition 3.9, $Z(M)$ is a direct summand. So $M=Z(M) \oplus M^{\prime}$. $M^{\prime} \cong \frac{M}{Z(M)}$ is FI-retractable by Proposition 2.11.

Proposition 3.11. Let M be an indecomposable quasi-injective module and $S=\operatorname{End}(M)$. In each of the following cases S is a field:
(1) M is $F I$-retractable and S is division ring.
(2) M is $F I$-retractable and nonsingular.

Proof. (1) Let N be any nonzero fully invariant submodule of M. Then there exists a nonzero $f \in S$ such that $\operatorname{Im} f \leq N$. Since S is division ring, there exists $g \in S$ such that $g f=1$. So, $M=g f(M) \leq g(N) \leq N$. Therefore M has no non trivial fully invariant submodule. Hence by [3, exercise 29 , page 183] S is a field.
(2) Let N be any nonzero fully invariant submodule of M. Then there exists a nonzero $f: M \rightarrow N$. Since M is nonsingular and quasi-injective, $\operatorname{Ker} f$ is a direct summand of M. So, $\operatorname{Im} f$ is isomorphic to a direct summand of M and so $\operatorname{Im} f$ is a direct summand of M because M is quasi-injective. Since M is indecomposable, $M=N$. It follows that M has no non trivial fully invariant submodule. So S is a field.

Recall that a ring R is prime if for $a, b \in R, a R b=0$ implies $a=0$ or $b=0$.
Proposition 3.12. Let M be a nonzero module with $S=\operatorname{End}(M)$.
(1) If M is $F I$-retractable and S is prime, then M is endoprime.
(2) If M is FI-retractable and endoprime, then $\operatorname{ann}_{R}(M)$ is prime.

Proof. (1) Suppose that N is any fully invariant submodule of M such that $\operatorname{ann}_{S}(M) \neq 0$. Then there exists $f \in S$ such that $f(N)=0$. Since M is FI-retractable, there exists nonzero $g \in S$ such that $\operatorname{Im} g \leq N$. So, $f S g=0$. Since S is prime, $f=0$. It follows that M is endoprime.
(2) Suppose that M is FI-retractable and endoprime. Let $I J \leq \operatorname{ann}_{R}(M)$, $I \nless \operatorname{ann}_{R}(M), J \nless \operatorname{ann}_{R}(M)$ for some right ideals I, J of R. Since M is FI-retractable, there exists nonzero $f \in \operatorname{Hom}(M, M I)$ such that $f(M J) \leq$ $M I J=0$. Since M is endoprime, $f=0$. That is a contradiction.

Lemma 3.13. Let M be FI-retractable and N be any nonzero fully invariant submodule of M. If $\operatorname{End}(M)$ is prime ring, then the restriction map α : $\operatorname{End}(M) \rightarrow \operatorname{End}(N)$ is injective homomorphism of rings.

Proof. Suppose that $\alpha(f)=0$ for some $f \in \operatorname{End}(M)$. So $N \leq \operatorname{Ker} f$. By FI-retractability of M, there exists nonzero $g \in \operatorname{Hom}(M, N)$. Hence $f S g=0$ and $f=0$ because S is prime ring.

Remark 3.14. Let M is quasi-injective and N be any nonzero fully invariant submodule of M, it is easy to verify that the restriction map $\alpha: \operatorname{End}(M) \rightarrow$ $\operatorname{End}(N)$ is surjective homomorphism of rings.

Corollary 3.15. Let M be FI-retractable module and $S=\operatorname{End}(M)$ is prime ring. If M is quasi-injective, then the endomorphism ring of any nonzero fully invariant submodule of M is a prime ring.

Proof. Suppose that M be FI-retractable and $\operatorname{End}(M)$ is prime ring. Let N be a nonzero fully invariant submodule of M. By Lemma 3.13 and Remark $3.14, \operatorname{End}(M) \cong \operatorname{End}(N)$. So $\operatorname{End}(N)$ is prime ring.

Recall that a ring R is Dedekind-finite if for any $x, y \in R, x y=1$ implies that $y x=1$. A module M is Dedekind-finite if $M \cong M \oplus N$ (for some R modules N) implies that $N=0$. Following [11, Exercise 1.8], an R-module M is Dedekind-finite if and only if the endomorphism ring of M is Dedekindfinite.

Proposition 3.16. Let M be FI-retractable module and $S=\operatorname{End}(M)$ is prime ring. M is Dedekind-finite if and only if there exists a nonzero fully invariant submodule of M which is Dedekind-finite.

Proof. Suppose that N is a fully invariant submodule of M and N Dedekindfinite. Since M is FI-retractable and $\operatorname{End}(M)$ is prime ring by Lemma 3.13, $\operatorname{End}(M)$ is isomorphic subring of $\operatorname{End}(N)$. On the other hand, since N is Dedekind-finite, $\operatorname{End}(N)$ is Dedekind-finite and so $\operatorname{End}(M)$ is Dedekind-finite. Consequently, M is Dedekind-finite.

Recall that M is a homogeneous semisimple if all simple submodules are isomorphic.

Proposition 3.17. Let M be FI-retractable module and $S=\operatorname{End}(M)$ is prime ring. If M is quasi-injective and M has a nonzero fully invariant submodule which is Dedekind-finite, then S is either simple Artinian or $\operatorname{Soc}(S)=0$.

Proof. By Proposition 3.16, M is Dedekind-finite. $\operatorname{Suppose}$ that $\operatorname{Soc}(S) \neq 0$. By [1, Exercise 11(1), page 164], $J(S)=0$ and $\operatorname{Soc}(S)$ is homogeneous. On the other hand, since M is Dedekind-finite S is Dedekind-finite. Also, since M is quasi-injective and $J(S)=0, S$ is quasi-injective. Now, by [11, Exercise 31, page 244] for any nonzero right ideal I of $S, I \oplus I \oplus \cdots$ cannot be embedded in S. So $\operatorname{Soc}(S)$ is finitely generated. Hence, since S is prime ring and $\operatorname{Soc}(S)$ is finitely generated by [1, Exercise 11, p. 164], S is simple Artinian.

Corollary 3.18. Let M be FI-retractable module and $S=\operatorname{End}(M)$ is prime ring with $\operatorname{Soc}(S) \neq 0$. If M is quasi-injective and M has a nonzero fully invariant submodule which is Dedekind-finite, Then S is a division ring.

Proof. By Proposition 3.17, $\operatorname{Soc}(S)$ is simple. Since S is prime, S is a division ring (see [1, Exercise 11, p. 164]).

REFERENCES

[1] F.W. Anderson and K.R. Fuller, Rings and Categories of Modules, Springer-Verlog, New York, 1992.
[2] K.R. Goodearl, Ring Theory: Nonsingular Rings and Modules, Marcel Dekker, New York, 1976.
[3] C. Faith, Algebra: Rings, Modules and Categories I, Springer-Verlog Berlin Heidelberg, New York, 1973.
[4] A. Haghany and M.R. Vedadi, Endoprime modules, Acta Math. Hungar., 106 (2005), 89-99.
[5] A. Haghany and M.R. Vedadi, Study of semi-projective retractable modules, Algebra Colloq., 14 (2007), 489-496.
[6] S.M. Khuri, Endomorphism rings and lattice isomorphism, J. Algebra, 56 (1979), 401408.
[7] S.M. Khuri, Endomorphism rings of nonsingular modules, Ann. Math. Qué., 4 (1980), 63-71.
[8] S.M. Khuri, Nonsingular retractable modules and their endomorphism rings, Bull. Aust. Math. Soc., 43 (1991), 63-71.
[9] S.M. Khuri, The endomorphism rings and lattice isomorphisms, East-Weast J. Math., 2 (2000), 161-170.
[10] T.Y. Lam, A First Course in Noncommutative Rings, Graduate Texts in Mathematics, Vol. 131, Springer-Verlag, 1991.
[11] T.Y. Lam, Lectures on Modules and Rings, Graduate Texts in Mathematics, Vol. 189, Springer-Verlog, New York, 1999.
[12] A.C. Ozcan and A. Harmanci, Duo modules, Glasg. Math. J., 48 (2006), 533-545.
[13] M.R. Vedadi, Essentially retractable modules, Journal of Science, Islamic Republic of Iran, 18 (2009), 37-45.
[14] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.
[15] R. Wisbauer, Modules and Algebras: Bimodule Structure and Group Action on Algebras, Pitman Monographs, Vol. 81, Addison-Weseley-Longman, 1996.
[16] Z. Zhengping, A lattice isomorphism theorem for nonsingular retractable modules, Canad. Math. Bull., 37 (1994), 140-144.

Received November 11, 2020
Accepted March 18, 2021

University of Mazandaran Department of Mathematics Iran, Babolsar
E-mail: m_atashkar62@yahoo.com https://orcid.org/0000-0002-7213-9816

E-mail: talebi@umz.ac.ir
https://orcid.org/0000-0003-2311-4628

[^0]: The authors thank the referee for his helpful comments and suggestions.

