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LEAST PRIMES WHICH SPLIT IN IMAGINARY
QUADRATIC FIELDS
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Abstract. In this paper, we bound the least primes which split in an imaginary
quadratic field in terms of its class number.
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1. INTRODUCTION

In his treatise Disquistiones Arithmeticase, Gauss presented his class num-
ber problem. For a given positive integer n, this problem asks for a list all
imaginary quadratic fields with class number n, although the original problem
was stated in the language of binary quadractic forms. Gauss conjectured that
h(D), the number of classes of primitive positive definite quadratic forms of
discriminant D, tends to infinity as −D does.

This problem has a very long history, and it has been the main subject of
research in works of many authors. Heilbronn [9] ineffectively resolved the
general problem. Gauss’s class number one problem, which refers to the case
n = 1, was proved first by Heegner [8], although the proof contains some minor
gaps. It was proved later by Baker [1] and Stark [12], who then jointly solved
the problem for n = 2 [2].

Goldfeld [6] showed that the problem can be reduced to the existance of an
elliptic curve with a Hasse-Weil L-function possessing a zero of order 3 at s = 1.
Gross and Zagier [7] proved the existance of such an elliptic curve, reducing
the problem to a finite number of computations. Oesterlé [11] generalised
Goldfeld’s theorem to the solve the problem for n = 3. Watkins [13] then
modified Goldfeld’s approach by considering Dirichlet L-functions possessing
zeroes near the real line with low height, which solved the problem for n ≤ 100.

Beckwith [3] provided an estimate for the number of negative fundamental
discriminants whose corresponding class numbers h(D) are indivisible by a
given prime and whose imaginary quadratic fields satisfy a given set of local
conditions.
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Lamzouri, Li, and Soundararajan [10] proved, among other results, upper
and lower bounds for L(1, χ) and ζ(1+ it). They also deduced explicit bounds
for the class number of imaginary quadratic fields assuming the generalised
Riemann hypothesis.

The problem of bounding the smallest rational prime which splits in a num-
ber field has been previously explored. For example, Siegel’s bound on the size
of class numbers implies that |D|1/2−ϵ ≪ h(D) ≪ |D|1/2+ϵ, as discussed in [5].
Combined with the prime number theorem, one obtains that the hK-th prime
is asymptotically greater than |D|1/2−ϵ log |D|.

The aim of this paper is to provide a lower bound on the least primes that
split in an imaginary quadratic field in terms of its class number.

2. PRELIMINARY RESULTS

We first recall some terminology regarding quadratic forms. A binary qua-
dratic form is given by

f(X,Y ) = aX2 + bXY + cY 2

for integers a, b, and c and discriminant D = b2−4ac. An integer m is said to
be represented by the quadratic form f(X,Y ) if and only if there exist integers
x and y such that m = f(x, y), and the representation is said to be proper if
gcd(x, y) = 1.

We will be interested only in positive definite quadratic forms, that is,
those with negative discriminant and which represent only positive integers.
Furthermore, we say that the quadratic form is primitive if and only if we have
gcd(a, b, c) = 1. Two forms f(X,Y ) and g(X,Y ) are said to be equivalent if
there exist integers α,β,γ, and δ such that f(X,Y ) = g(αX + βY, γX + δY )
and αδ − γβ = ±1. It is clear that this is an equivalence relation, that
equivalent forms represent the same integers, and that equivalent forms have
the same discriminant. The equivalence is said to be proper if αδ − γβ = 1,
and we say that two forms are in the same class if and only if they are properly
equivalent. Lastly, we recall that a primitive positive definite quadratic form
aX2 + bXY + cY 2 is reduced if −a < b ≤ a < c or 0 ≤ b ≤ a = c.

We will require the following four results, all of which can be found in Cox
[4].

Lemma 2.1. Let f(X,Y ) = aX2+bXY +cY 2 be a reduced primitive positive
definite quadratic form. Then, for any integers x and y,

f(x, y) ≥ (a− |b|+ c)min(x2, y2) .

Lemma 2.2. Let f(X,Y ) = aX2+bXY +cY 2 be a reduced primitive positive
definite quadratic form. Then

a ≤
√

|D|
3

.
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Theorem 2.3. Every primitive positive definite quadratic form is properly
equivalent to a unique reduced quadratic form.

Since we will be considering forms which are reduced with a fixed discrim-
inant D < 0, we immediately have the fourth result due to Lemma 2.2 and
Theorem 2.3:

Theorem 2.4. Let D < 0 be given. Then the number h(D) of classes of
primitive positive definite forms of discriminant D is finite, and it is equal to
the number of reduced forms of discriminant D.

3. MAIN RESULT

We prove the following theorem:

Theorem 3.1. Let D < 0 be an integer satisfying D ≡ 0 or 1 (mod 4), let

K = Q(
√
D), and let hK the class number of K. If the least hK +1 odd prime

numbers which split in K are denoted by p1, p2, . . . , phk+1 with p1 < p2 < · · · <
phK+1, then

phK+1 >
1

4

√
3|D| .

Proof. Note that if |D| < 23, then the result holds trivially since

1

4

√
3|D| < 2.1 .

As such, we assume in what follows that |D| ≥ 23.

If p is an odd prime which splits in K, then
(
D
p

)
= 1, and p can be

represented by a proper quadratic form of discriminant D. Hence, it can be
represented by a positive definite quadratic form of discriminant D < 0 and,
consequently, also by a reduced quadratic form of discriminant D < 0.

There exist hK reduced forms of discriminant D. Of the hK +1 least prime
numbers which do not split in K, at least two of them are then represented
by the same reduced quadratic form of discriminant D. We let pi and pj be
these two primes and f(X,Y ) = aX2+ bXY + cY 2 the form which represents
them both. We additionally assume without loss of generality that pi < pj .

The form f(X,Y ) satisfies the conditions of Lemma 2.1, so for integers x
and y we have f(x, y) ≥ (a− |b|+ c), whenever xy ̸= 0. Additionally, we have
|b| ≤ a since f(X,Y ) is reduced. Thus, f(x, y) ≥ c. If |b| = c, then we have
c = a = 1. This imposes |b| = c = 1, so that

D = b2 − 4ac = −3a2 = −3.

Since we assume that |D| ≥ 23, we must instead have |b| ≠ c, in which case we
have f(x, y) ≥ c and f(x, y) > a whenever xy ̸= 0. For xy = 0, we consider
each possibility seperately. First, if x = y = 0 we have f(0, 0) = 0. Next, if
x = 0 and y ̸= 0, we have f(0, y) = cy2 ≥ c. Finally, if x ̸= 0 and y = 0, we
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have f(x, 0) = ax2 ≥ a. Altogether, we have shown that the smallest positive
integer that f(x, y) may take is a, while the second smallest is c.

Since the smallest positive integer representable by f(X,Y ) is a, we have
pi ≥ a. Since the second smallest positive integer representable by f(X,Y ) is
c, and since pj > pi is representable by f(X,Y ), we deduce that pj ≥ c.

The discriminant of f satisfies D = b2− 4ac < 0, so −D = 4ac− b2 > 0. By

Lemma 2.2, we have a ≤
√

|D|
3

, hence

|D| = −D ≤ 4c

√
|D|
3

.

Therefore, we have
1

4

√
3|D| ≤ c ≤ pj ≤ phK+1.

The left-most expression in the above inequality cannot be an integer, so we

conclude that
1

4

√
3|D| < phK+1 as claimed. □

Example 3.2. Consider the imaginary quadratic field K = Q(
√
−163)

which has class number hK = 1. Let p1 and p2 be the two least odd prime
numbers which split in K. If p1 < p2, then Theorem 3.1 asserts that p2 ≥
1

4

√
3(163) ≈ 5.528. It is readily verified that each of the primes 2, 3, and 5

are in fact inert: OK = Z
[
−1+

√
−163

2

]
and each of the ideals (2), (3), and (5)

are prime ideals of OK .
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