MATHEMATICA, 64 (87), N $^{\circ}$ 1, 2022, pp. 14–23

ON CONNECTED SPACES VIA *m*-STRUCTURES

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. In this paper, we introduce and investigate *m*-separated sets and *m*-connected sets in a topological space (X, τ) with a minimal structure m_X . As a special case, by setting $m_X = \tau^*$, we obtain properties of *-separated sets and *_s-connected sets.

MSC 2010. 54A05.

Key words. *m*-structure, *m*-separated, *m*-connected, ideal topological space, *-separated, \ast_s -connected.

1. INTRODUCTION

Ekici and Noiri [11] introduced and studied *-separated sets and $*_s$ -connected sets in an ideal topological space (X, τ, \mathcal{I}) [13]. Sathiyasundari and Renukadevi [19] obtained further properties of *-separated sets and $*_s$ -connected sets. In this paper, we introduce and investigate the notions of *m*-separated sets and *m*-connected sets in a topological space (X, τ) with a minimal structure m_X . By setting $m_X = \tau^*$, we obtain properties of *- separated sets of results of this paper. Recently, papers [1–7] have introduced some new classes of sets via *m*-structures.

2. MINIMAL STRUCTURES

DEFINITION 2.1. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily m_X of $\mathcal{P}(X)$ is called a minimal structure (briefly *m*-structure) on X [18] if $\emptyset \in m_X$ and $X \in m_X$. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

DEFINITION 2.2. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) α -open [17] if $A \subseteq Int(Cl(Int(A)))$,
- (2) semi-open [14] if $A \subseteq Cl(Int(A))$,
- (3) preopen [16] if $A \subseteq Int(Cl(A))$,
- (4) b-open [10] if $A \subseteq Int(Cl(A)) \cup Cl(Int(A))$,
- (5) β -open [8] or semi-preopen [9] if $A \subseteq Cl(Int(Cl(A)))$.

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2022.1.03

The family of all α -open (resp. semi-open, preopen, b-open, semi-preopen) sets in (X, τ) is denoted by $\alpha(X)$ (resp. SO(X), PO(X), BO(X), SPO(X)).

DEFINITION 2.3. Let X be a nonempty set and m_X an *m*-structure on X. For a subset A of X, the m_X -closure of A and the m_X -interior of A are defined in [15] as follows:

(1) $mCl(A) = \cap \{F \subseteq X : A \subseteq F, X \setminus F \in m_X\},\$

(2) $mInt(A) = \bigcup \{ U \subseteq X : U \subseteq A, U \in m_X \}.$

REMARK 2.4. Let (X, τ) be a topological space and A a subset of X. If $m_X = \tau$ (resp. SO(X), PO(X), BO(X), SPO(X)), then we have

(1) mCl(A) = Cl(A) (resp. sCl(A), pCl(A), bCl(A), spCl(A)),

(2) mInt(A) = Int(A) (resp. sInt(A), pInt(A), bInt(A), spInt(A)).

LEMMA 2.5 ([15]). Let X be a nonempty set and m_X a minimal structure on X. For subsets A and B of X, the following properties hold:

(1) $m\operatorname{Cl}(X \setminus A) = X \setminus m\operatorname{Int}(A)$ and $m\operatorname{Int}(X \setminus A) = X \setminus m\operatorname{Cl}(A)$,

(2) If $(X \setminus A) \in m_X$, then mCl(A) = A and if $A \in m_X$, then mInt(A) = A,

- (3) $mCl(\emptyset) = \emptyset$, mCl(X) = X, $mInt(\emptyset) = \emptyset$ and mInt(X) = X,
- (4) If $A \subseteq B$, then $mCl(A) \subseteq mCl(B)$ and $mInt(A) \subseteq mInt(B)$,
- (5) $A \subseteq mCl(A)$ and $mInt(A) \subseteq A$,
- (6) mCl(mCl(A)) = mCl(A) and mInt(mInt(A)) = mInt(A).

LEMMA 2.6 ([18]). Let X be a nonempty set with an m-structure m_X and A a subset of X. Then $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$. for every $U \in m_X$ containing x.

DEFINITION 2.7. An *m*-structure m_X on a nonempty set X is said to have property \mathcal{B} [15] if the union of any family of subsets belong to m_X belongs to m_X .

REMARK 2.8. Let (X, τ) be a topological space. Then the families $\alpha(X)$, SO(X), PO(X), BO(X) and SPO(X) are *m*-structures on X with property \mathcal{B} .

LEMMA 2.9 ([18]). Let X be a nonempty set and m_X an m-structure on X satisfying property \mathcal{B} . For a subset A of X, the following properties hold:

(1) $A \in m_X$ if and only if mInt(A) = A,

(2) A is m_X -closed if and only if mCl(A) = A,

(3) $mInt(A) \in m_X$ and mCl(A) is m_X -closed.

A subfamily \mathcal{I} of the power set $\mathcal{P}(X)$ of a nonempty set X is called an ideal if the following properties are satisfied: (1) $A \in \mathcal{I}$ and $B \subseteq A$ imply $B \in \mathcal{I}$; (2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply $A \cup B \in \mathcal{I}$. A topological space (X, τ) with an ideal \mathcal{I} on X is called an ideal topological space and is denoted by (X, τ, \mathcal{I}) . For an ideal topological space and a subset A of X, $A^*(\mathcal{I})$ is defined as follows: $A^*(\mathcal{I}) = \{x \in X : U \cap A \notin \mathcal{I} \text{ for every open set } U \text{ containing } x\}$. In [13], $A^*(\mathcal{I})$ (briefly A^*) is called the local function of A with respect to \mathcal{I} and τ and $Cl^*(A) = A^* \cup A$ defines a Kuratowski closure operator for a topology τ^* . which is finer than τ . A subset A is *-closed if and only if $A^* \subseteq A$. Naturally, the complement of a *-closed set is said to be *-open.

DEFINITION 2.10 ([12]). An ideal topological space (X, τ, \mathcal{I}) is said to be *- connected if X cannot be written as the disjoint union of a nonempty open set and a nonempty *-open set.

DEFINITION 2.11 ([11]). Nonempty subsets A, B of an ideal topological space (X, τ, \mathcal{I}) are said to be *-separated if $Cl^*(A) \cap B = A \cap Cl(B) = \emptyset$.

DEFINITION 2.12 ([11]). A subset A of an ideal topological space (X, τ, \mathcal{I}) is said to be $*_s$ -connected if A is not the union of two *-separated sets in (X, τ, \mathcal{I}) .

3. *m*-SEPARATED SETS

A topological space (X, τ) with an *m*-structure m_X on X is called briefly a mixed space and is denoted by (X, τ, m_X) .

DEFINITION 3.1. Let (X, τ, m_X) be a mixed space. Nonempty subsets A, B of X are said to be *m*-separated if $\operatorname{Cl}(A) \cap B = \emptyset = A \cap \operatorname{mCl}(B)$.

If $\tau \subseteq m_X$, then every separated sets are *m*-separated but the converse is not true as shown in the following example.

EXAMPLE 3.2. Let $X = \{a, b, c, d\}, \tau = \{X, \emptyset, \{a\}, \{c\}, \{a, b\}, \{a, c\}, \{a, b, c\}, \{a, c, d\}\}$ and $m_X = \mathcal{P}(X)$. Let $A = \{a\}$ and $B = \{b\}$. Then A and B are *m*-separated sets but they are not separated.

PROPOSITION 3.3. Let (X, τ, m_X) be a mixed space. If A and B are nonempty disjoint subsets of X such that A is m_X -open and B is open, then A and B are m-separated.

Proof. Since $A \cap B = \emptyset$, $A \subseteq X \setminus B$ and so $\operatorname{Cl}(A) \subseteq \operatorname{Cl}(X \setminus B) = X \setminus B$. Then, $\operatorname{Cl}(A) \cap B = \emptyset$. Again $B \subseteq X \setminus A$ and so $m\operatorname{Cl}(B) \subseteq m\operatorname{Cl}(X \setminus A) = X \setminus A$. Thus, $m\operatorname{Cl}(B) \cap A = \emptyset$. Therefore, A and B are m-separated.

COROLLARY 3.4. Let (X, τ, m_X) be a mixed space and $\tau \subseteq m_X$. Then the disjoint nonempty open sets of X are m-separated.

PROPOSITION 3.5. Let A and B be two m-separated sets in a mixed space (X, τ, m_X) . If C and D are nonempty subsets such that $C \subseteq A$ and $D \subseteq B$, then C and D are also m-separated.

Proof. Since A and B are m-separated, $Cl(A) \cap B = \emptyset = A \cap mCl(B)$. Now, $C \cap mCl(D) \subseteq A \cap mCl(B) = \emptyset$ and so $C \cap mCl(D) = \emptyset$. Similarly, we can prove that $Cl(C) \cap D = \emptyset$. Hence C and D are m-separated.

THEOREM 3.6. Let (X, τ, m_X) be a mixed space, m_X have property \mathcal{B} and $\tau \subseteq m_X$. If the union of two m-separated sets is a closed set, then one set is an m_X -closed and the other is closed.

Proof. Let *A* and *B* be two *m*-separated sets such that $A \cup B$ is closed. Then $A \cap m\operatorname{Cl}(B) = \emptyset = \operatorname{Cl}(A) \cap B$. Since $A \cup B$ is closed, $A \cup B = \operatorname{Cl}(A) \cup \operatorname{Cl}(B)$. Now, $\operatorname{Cl}(A) = \operatorname{Cl}(A) \cap [\operatorname{Cl}(A) \cup \operatorname{Cl}(B)] = \operatorname{Cl}(A) \cap [A \cup B] = [\operatorname{Cl}(A) \cap A] \cup [\operatorname{Cl}(A) \cap B] = A \cup \emptyset = A$ and so *A* is closed. Also, $B \subseteq A \cup B$ implies that $m\operatorname{Cl}(B) \subseteq m\operatorname{Cl}[A \cup B] \subseteq \operatorname{Cl}[A \cup B] = A \cup B$ and so $m\operatorname{Cl}(B) = m\operatorname{Cl}(B) \cap [A \cup B] = [m\operatorname{Cl}(B) \cap A] \cup [\operatorname{Cl}(B) \cap B] = \emptyset \cup B = B$. Hence by Lemma 2.9, *B* is m_X -closed.

THEOREM 3.7. Let (X, τ, m_X) be a mixed space and τ and m_X satisfy the conditions:

(1) m_X has property \mathcal{B} .

(2) the intersection of an open set and an m_X -open set is m_X -open.

If A and B are m-separated sets of X and $A \cup B \in \tau$, then A and B are m_X -open and open respectively.

Proof. Since A and B are m-separated in X, then $B = [A \cup B] \cap [X \setminus Cl(A)]$. Since $A \cup B \in \tau$ and Cl(A) is closed in X, then B is open. Since A and B are m-separated in X, then $A = [A \cup B] \cap [X \setminus mCl(B)]$. Since $A \cup B \in \tau$ and mCl(B) is m_X -closed in X, then A is m_X -open.

LEMMA 3.8. Let (X, τ) be topological space. $A \subseteq Y \subseteq X$ and $Y \in \tau$. Then the following are equivalent:

(1) A is open in Y;

(2) A is open in X.

LEMMA 3.9. Let (X, τ, m_X) be a mixed space and $B \subseteq Y \subseteq X$. Then $mCl^Y(B) = mCl(B) \cap Y$.

LEMMA 3.10. Let (X, τ) be topological space and $A, B \subseteq Y \subseteq X$. The following are equivalent:

(1) A, B are m-separated in Y;

(2) A, B are m-separated in X.

Proof. It follows form Lemma 3.9 that $mCl^{Y}(A) \cap B = \emptyset = A \cap Cl^{Y}(B)$ if and only if $mCl(A) \cap B = \emptyset = A \cap Cl(B)$.

4. *m*-CONNECTED SPACES

In this section, we give the properties of m-separated sets and m-connected sets.

DEFINITION 4.1. A subset A of a mixed space (X, τ, m_X) is said to be *m*-connected if A is not the union of two *m*-separated sets in (X, τ, m_X) .

If $\tau \subseteq m_X$, then every *m*-connected mixed space is connected but the converse is not true as shown in the following example.

EXAMPLE 4.2. Let $X = \mathbb{Q}$ be the set of all rational numbers with left ray topology τ_L and $m_X = \mathcal{P}(X)$. Then the mixed space (X, τ_L, m_X) is a connected space but it is not *m*-connected. THEOREM 4.4. Let Y be an open subset of a mixed space (X, τ, m_X) . If m_X has property \mathcal{B} and the intersection of an open set and an m_X -open set is m_X -open, then the following properties are equivalent:

- (1) The subset Y is m-connected in X;
- (2) The subspace $(Y, \tau_Y, (m_X)_Y)$ is m-connected in X.

Proof. (1) \Rightarrow (2): Suppose that Y is not m^* -connected. There exist nonempty disjoint an m_Y -open set A and an open set B in Y such that $Y = A \cup B$. Since Y is open in X, A is m_X -open and by Lemma 3.8, B open in X. Since A and B are disjoint, then $\operatorname{Cl}(A) \cap B = \emptyset = A \cap \operatorname{mCl}(B)$. This implies that A, B are m-separated sets in X. Thus, Y is not m-connected in X. This is a contradiction.

 $(2) \Rightarrow (1)$: Suppose that Y is not *m*-connected in X. There exist *m*-separated sets A, B such that $Y = A \cup B$. By Theorem 3.7, A and B are m_X -open and open in X, respectively. Since Y is open in X, A is m_Y -open and B is open in Y. Since A and B are *m*-separated in X, then A and B are nonempty disjoint. Thus, Y is not m^* -connected. This is a contradiction. \Box

COROLLARY 4.5 ([11]). Let Y be an open subset of an ideal topological space (X, τ, \mathcal{I}) . The following are equivalent:

- (1) Y is $*_s$ -connected in (X, τ, \mathcal{I}) ,
- (2) Y is *-connected in (X, τ, \mathcal{I}) .

COROLLARY 4.6. Let (X, τ, m_X) be a mixed space such that m_X has property \mathcal{B} and the intersection of an open set and an m_X -open set is m_X -open. Then X is m-connected if and only if X is m^* -connected.

Proof. The proof follows from Theorem 4.4.

THEOREM 4.7. Let (X, τ, m_X) be a mixed space, X not m-connected and A be a subset of X such that (i) $A \neq \emptyset$, X and (ii) A is open in X and m_X -closed in X. If Y is a nonempty m-connected subset of X, then either $Y \subseteq A$ or $Y \subseteq X \setminus A$.

Proof. Let $X = A \cup B$, where $B = X \setminus A$. Then $Y = X \cap Y = [A \cup B] \cap Y = (A \cap Y) \cup (B \cap Y)$. Also $[A \cap Y] \cap Cl[B \cap Y] \subseteq A \cap Cl(B) = \emptyset$, since $A \cap B = \emptyset$ and A is open. This implies that $[A \cap Y] \cap Cl[B \cap Y] = \emptyset$. Similarly, $mCl[A \cap Y] \cap [B \cap Y] \subseteq mCl(A) \cap B = A \cap B = \emptyset$ implies that $mCl[A \cap Y] \cap [B \cap Y] = \emptyset$. It is given that Y is m-connected subspace of X. Hence it cannot happen that $A \cap Y \neq \emptyset$ and $B \cap Y \neq \emptyset$, Since Y is an m-connected subspace of X, Y cannot admit any m-separation. Hence $A \cap Y = \emptyset$ or $B \cap Y = \phi$ implies that $Y \subseteq A$ or $Y \subseteq X - A$.

THEOREM 4.8. Let (X, τ, m_X) be a mixed space. If A is an m-connected set of X and H, G are m-separated sets of X with $A \subseteq H \cup G$, then either $A \subseteq H$ or $A \subseteq G$.

Proof. Let $A \subseteq H \cup G$. Since $A = [A \cap H] \cup [A \cap G]$, then $[A \cap H] \cap mCl[A \cap G] \subseteq H \cap mCl(G) = \emptyset$. By similar way, we have $[A \cap G] \cap Cl[A \cap H] \subseteq G \cap Cl(H) = \emptyset$. Then $A \cap H$ and $A \cap G$ are *m*-separated sets. Suppose that $A \cap H$ and $A \cap G$ are nonempty. Then A is not *m*-connected. This is a contradiction. Thus, either $A \cap H = \emptyset$ or $A \cap G = \emptyset$. This implies that $A \subseteq H$ or $A \subseteq G$.

COROLLARY 4.9 ([11]). Let (X, τ, \mathcal{I}) be an ideal topological space. If A is a $*_s$ -connected set of X and H, G are *-separated sets of X with $A \subseteq H \cup G$, then either $A \subseteq H$ or $A \subseteq G$.

THEOREM 4.10. Let A be an m-connected set of a mixed space (X, τ, m_X) . If $A \subseteq B \subseteq mCl(A)$, then B is m-connected.

Proof. Suppose that B is not m-connected. There exist m-separated sets H and G such that $B = H \cup G$. This implies that H and G are nonempty and $G \cap \operatorname{Cl}(H) = \emptyset = H \cap m\operatorname{Cl}(G)$. By Theorem 4.8, we have either $A \subseteq H$ or $A \subseteq G$. Suppose that $A \subseteq G$. Then $m\operatorname{Cl}(A) \subseteq m\operatorname{Cl}(G)$ and $H \cap m\operatorname{Cl}(A) = \emptyset$. This implies that $H \subseteq B \subseteq m\operatorname{Cl}(A)$ and $H = m\operatorname{Cl}(A) \cap H = \emptyset$. Thus H is an empty set. Since H is nonempty, this is a contradiction. Suppose that $A \subseteq H$. By similar way, it follows that G is empty. This is a contradiction. Hence, B is m-connected.

COROLLARY 4.11 ([11]). If A is a $*_s$ -connected set of an ideal topological space (X, τ, \mathcal{I}) and $A \subseteq B \subseteq Cl^*(A)$, then B is $*_s$ -connected.

COROLLARY 4.12. Let (X, τ, m_X) be a mixed space. If A is an m-connected set, then mCl(A) is m-connected.

THEOREM 4.13. Let $\{N_i : i \in I\}$ is a nonempty family of *m*-connected sets of a mixed space (X, τ, m_X) . If $\bigcap_{i \in I} N_i \neq \emptyset$, then $\bigcup_{i \in I} N_i$ is *m*-connected.

Proof. Suppose that $\bigcup_{i \in I} N_i$ is not *m*-connected. Then we have $\bigcup_{i \in I} N_i = H \cup G$, where *H* and *G* are *m*-separated sets in *X*. Since $\cap_{i \in I} N_i \neq \emptyset$, we have a point $x \in \bigcap_{i \in I} N_i$. Since $x \in \bigcup_{i \in I} N_i$, either $x \in H$ or $x \in G$. Suppose that $x \in H$. Since $x \in N_i$ for each $i \in I$, then N_i and *H* intersect for each $i \in I$. By Theorem 4.8 $N_i \subseteq H$ or $N_i \subseteq G$. Since *H* and *G* are disjoint, $N_i \subseteq H$ for all $i \in I$ and hence $\bigcup_{i \in I} N_i \subseteq H$. This implies that *G* is empty. This is a contradiction. Suppose $x \in G$. By similar way, we have that *H* is empty. This is a contradiction. Thus $\bigcup_{i \in I} N_i$ is *m*-connected.

COROLLARY 4.14. Let (X, τ, m_X) be a mixed space and $\{A_\alpha : \alpha \in \Delta\}$ be a family of m-connected subsets of X, and A be an m-connected subset of X. If $A \cap A_\alpha \neq \emptyset$ for every $\alpha \in \Delta$, then $A \cup (\cup A_\alpha)$ is m-connected.

Proof. By Theorem 4.13, $A \cup A_{\alpha}$ is *m*-connected for each $\alpha \in \Delta$ and $\cap (A \cup A_{\alpha}) \supseteq A \neq \emptyset$. Therefore, by Theorem 4.13 $\cup (A \cup A_{\alpha}) = A \cup (\cup A_{\alpha})$ is *m*-connected.

COROLLARY 4.15 ([11]). If $\{M_i : i \in I\}$ is a nonempty family of $*_s$ connected sets of an ideal topological space (X, τ, \mathcal{I}) with $\bigcap_{i \in I} M_i \neq \emptyset$, then $\bigcup_{i \in I} M_i$ is $*_s$ -connected.

THEOREM 4.16. Let (X, τ, m_X) be a mixed space and $\tau \subseteq m_X$. Every continuous image of an m-connected space is a connected space.

Proof. Let $f: (X, \tau, m_X) \to (Y, \sigma)$ be a continuous function and X is mconnected space. If possible suppose that f(X) is not a connected subset of Y. Then, there exists nonempty separated sets A and B such that $f(X) = A \cup B$. Since f is continuous and $A \cap \operatorname{Cl}(B) = \emptyset = \operatorname{Cl}(A) \cap B$, $\operatorname{Cl}(f^{-1}(A)) \cap f^{-1}(B) \subseteq f^{-1}(\operatorname{Cl}(A)) \cap f^{-1}(B) = f^{-1}[\operatorname{Cl}(A) \cap B] = \emptyset$, $f^{-1}(A) \cap \operatorname{mCl}(f^{-1}(B)) \subseteq f^{-1}(A) \cap G^{-1}(\operatorname{Cl}(B)) = f^{-1}[A \cap \operatorname{Cl}(B)] = \emptyset$. Since A and B are nonempty, $f^{-1}(A) \cap f^{-1}(\operatorname{Cl}(B) = f^{-1}[A \cap \operatorname{Cl}(B)] = \emptyset$. Since A and B are nonempty, $f^{-1}(A)$ and $f^{-1}(B)$ are nonempty. Therefore, $f^{-1}(A)$ and $f^{-1}(B)$ are m-separated and $X = f^{-1}(A) \cup f^{-1}(B)$. This is contrary to the assumption that X is m-connected. Therefore, f(X) is connected. \Box

THEOREM 4.17. Let (X, τ, m_X) be a mixed space and H a subset of X. If every pair of distinct points of H are elements of some m-connected subset of H, then H is an m-connected subset of X..

Proof. Suppose H is not m-connected. Then there exist nonempty subsets A and B of X such that $\operatorname{Cl}(A) \cap B = \emptyset = A \cap m\operatorname{Cl}(B)$ and $H = A \cup B$. Since A and B are nonempty, there exists a point $a \in A$ and a point $b \in B$. By hypothesis, a and b must be elements of an m-connected subset C of H. Since $C \subseteq A \cup B$, by Theorem 4.8, either $C \subseteq A$ or $C \subseteq B$. Consequently, either a and b are both in A or both in B. Let $a, b \in A$. Then $A \cap B \neq \emptyset$. This is contrary to the fact that A and B are disjoint. Similarly, if we suppose that $a, b \in B$, then we have a contradiction. Therefore, H must be m-connected.

THEOREM 4.18. Let (X, τ, m_X) be a mixed space and X is m-connected. If A is an m-connected subset of X such that $X \setminus A$ is the union of two mseparated sets B and C, then $A \cup B$ and $A \cup C$ are m-connected.

Proof. Suppose $A \cup B$ is not *m*-connected. Then there exist two nonempty *m*-separated sets *G* and *H* such that $A \cup B = G \cup H$. Since *A* is *m*-connected, $A \subseteq A \cup B = G \cup H$, by Theorem 4.8, either $A \subseteq G$ or $A \subseteq H$. Suppose $A \subseteq G$. Since $A \cup B = G \cup H$, $A \subseteq G$ implies that $A \cup B \subseteq G \cup B$ and so $G \cup H \subseteq G \cup B$. Hence $H \subseteq B$. Since *B* and *C* are *m*-separated, *H* and *C* are also *m*-separated. Thus, *H* is *m*-separated from *G* as well as *C*. Now, $mCl(H) \cap [G \cup C] = [mCl(H) \cap G] \cup [mCl(H) \cap C] = \emptyset$ and $H \cap Cl[G \cup C] = H \cap [Cl(G) \cup Cl(C)] = [H \cap Cl(G)] \cup [H \cap Cl(C)] = \emptyset$. Therefore, *H* is *m*-separated from $G \cup C$. Since $X \setminus A = B \cup C$, $X = A \cup [B \cup C] = [A \cup B] \cup C = [G \cup H] \cup C$,

since $A \cup B = G \cup H$ and so $X = [G \cup C] \cup H$. Thus, X is union of two nonempty *m*-separated sets $G \cup C$ and H, which is a contradiction. Similar contradiction will arise if $A \subseteq H$. Hence, $A \cup B$ is *m*-connected. Similarly, we can prove that $A \cup C$ is *m*-connected.

The following example shows that the union of two m-connected sets is not an m-connected set.

EXAMPLE 4.19. Consider the mixed space (X, τ, m_X) where $X = \{a, b, c, d\}$, $\tau = \{\emptyset, \{b\}, \{b, c\}, \{a, b, d\}, X\}$ and $m_X = \{\emptyset, \{b\}, \{b, c\}, \{c\}, \{a, d\}, \{a, c, d\}, X\}$. If $A = \{b\}$ and $B = \{a, d\}$, then A and B are m-connected. But $A \cup B = \{a, b, d\}$. Here $mCl(\{b\}) \cap \{a, d\} = \{b\} \cap \{a, d\} = \emptyset$ and $\{b\} \cap Cl(\{a, d\}) = \{b\} \cap \{a, d\} = \emptyset$ and so $\{b\}$ and $\{a, d\}$ are m-separated sets. Hence, $A \cup B$ is not m-connected.

COROLLARY 4.20 ([19]). If A is a $*_s$ -connected subset of a $*_s$ -connected ideal topological space (X, τ, \mathcal{I}) such that $X \setminus A$ is the union of two *-separated sets B and C, then $A \cup B$ and $A \cup C$ are $*_s$ -connected.

THEOREM 4.21. Let (X, τ, m_X) be a mixed space If A and B are m-connected sets of X such that none of them is m-separated, then $A \cup B$ is m-connected.

Proof. Let A and B be m-connected in X. Suppose $A \cup B$ is not mconnected. Then, there exist two nonempty m-separated sets G and H such that $A \cup B = G \cup H$. Since A and B are m-connected, by Theorem 4.8, either $A \subseteq G$ and $B \subseteq H$ or $B \subseteq G$ and $A \subseteq H$. Let $A \subseteq G$ and $B \subseteq H$. Then, since G and H are m-separated, by Proposition 3.5 A and B are m-separated. This is a contradiction. Similarly, let $B \subseteq G$ and $A \subseteq H$. Then B and A are m-separated. This is a contradiction. Hence $A \cup B$ is m-connected.

DEFINITION 4.22. Let (X, τ, m_X) be a mixed space and $x \in X$. The union of all *m*-connected subsets of X containing x is called the *m*-component of X containing x.

LEMMA 4.23. The m-component of each point x of a mixed space (X, τ, m_X) is the maximal m-connected set of X that contains x.

LEMMA 4.24. The set of all distinct m-components of a mixed space (X, τ, m_X) forms a partition of X.

Proof. Let A and B be two distinct m-components of X. Suppose A and B intersect. Then, by Theorem 4.13, $A \cup B$ is m-connected in X. Since $A \subseteq A \cup B$, then A is not maximal. Thus, A and B are disjoint.

LEMMA 4.25. Each m-component of a mixed space (X, τ, m_X) , where m_X has property \mathcal{B} , is an m_X -closed in X.

Proof. Let A be an m-component of X. By Corollary 4.12, mCl(A) is m-connected and A = mCl(A). Thus, by Lemma 2.9 A is m_X -closed in X.

THEOREM 4.26. Let (X, τ, m_X) be a mixed space. Then each m-connected subset of X which both open and m_X -closed is m-component of X.

Proof. Let A be an m-connected subset of X which both open and m_X closed. Let $x \in A$. Since A is an m-connected subset of X containing x, if C is the m-component containing x, then $A \subseteq C$. Let A be a proper subset of C. Then C is nonempty and $C \cap (X \setminus A) \neq \emptyset$. Since A is open and m_X -closed, $X \setminus A$ is closed and m_X -open and $[A \cap C] \cap [(X \setminus A) \cap C] = \emptyset$. Also $[A \cap C] \cup [(X \setminus A) \cap C] = [A \cup (X \setminus A)] \cap C = C$. Again A and $X \setminus A$ are two nonempty disjoint open and m_X -open set respectively, such that $A \cap Cl(X \setminus A) = \emptyset = mCl(A) \cap (X \setminus A)$. This implies $(A \cap C) \cap Cl[(X \setminus A) \cap C] = \emptyset = mCl(A \cap C) \cap [(X \setminus A) \cap C]$. This shows that A and $C \setminus A$ are m-separated sets. This is a contradiction. Hence, A is not a proper subset of C and A = C. Therefore, A is an m-component of X.

COROLLARY 4.27 ([19]). Let (X, τ, \mathcal{I}) be an ideal topological space. Then, each $*_s$ -connected subset of X which is both open and *-closed is a *-component of X.

THEOREM 4.28. Let (X, τ, m_X) be a mixed space such that $\tau \subseteq m_X$ and $A \subseteq X$. If C is an m-connected subset of X that intersects both A and $X \setminus A$, then C intersects Bd(A), the boundary of A.

Proof. Suppose $C \cap Bd(A) = \emptyset$. Then $C \cap Cl(A) \cap Cl(X \setminus A) = \emptyset$. Now, $C = C \cap X = C \cap (A \cup (X \setminus A)) = (C \cap A) \cup (C \cap (X \setminus A))$. Also, $mCl(C \cap A) \cap (C \cap (X \setminus A)) \subseteq mCl(C) \cap mCl(A) \cap C \cap (X \setminus A) = C \cap mCl(A) \cap (X \setminus A) = \emptyset$. and $(C \cap A) \cap Cl(C \cap (X \setminus A)) \subseteq C \cap A \cap Cl(C) \cap Cl(X \setminus A) = C \cap Cl(X \setminus A) \cap A = \emptyset$. Thus, $C \cap A$ and $C \cap (X \setminus A)$ form an *m*-separation for *C*, which is a contradiction. Hence, $C \cap Bd(A) \neq \emptyset$.

REFERENCES

- A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica, 58(81) (2016), 3–13.
- [2] A. Al-Omari and H. Al-saadi, A topology via ω-local functions in ideal spaces, Mathematica, 60(83) (2018), 103–110.
- [3] A. Al-Omari and T. Noiri, Generalizations of regular and normal spaces, Annales Univ. Sci. Budapest., 61 (2018), 121–135.
- [4] A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61(84) (2019), 101–110.
- [5] A. Al-Omari, H. Al-saadi and T. Noiri, On extremally disconnected spaces via mstructures, Commun. Korean Math. Soc., 34, 1, (2019), 351–359.
- [6] H. Al-saadi and A. Al-Omari, Some operators in ideal topological spaces, Missouri J. Math. Sci., 30 (2018), 59–71.
- [7] H. Al-saadi, A. Al-Omari and T. Noiri, On hyperconnected spaces via m-structures, Italian Journal of Pure and Applied Mathematics, 42 (2019), 290–300.
- [8] M.E. Abd El-Monsef, S.N. El-Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bulletin of the Faculty of Science. Assiut University, 12 (1983), 77–90.
- [9] D. Andrijević, *Semi-preopen sets*, Mat. Vesnik, **38** (1986), 24–32.

- [10] D. Andrijević, On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [11] E. Ekici and T. Noiri, Connectedness in ideal tological spaces, Novi Sad Journal of Mathematics, 38 (2008), 65–70.
- [12] E. Ekici and T. Noiri, *-hyperconnected ideal topological spaces, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 58 (2012), 121–129.
- [13] D. Jankovic and T.R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [14] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [15] H. Maki, K.C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure and Applied Mathematics Journal, 49 (1999), 17–29.
- [16] A.S. Mashhour, M.E. Abd El-Monsef and S.N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [17] O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
 [18] V. Popa and T. Noiri, On M-continuous functions, Anal. Univ. "Dunărea de Jos"
- Galați, Ser. Mat. Fiz. Mec. Teor., Fasc. II, **18** (2000), 31–41.
- [19] N. Sathiyasundari and V. Renukadevi, Note on *-connected ideal spaces, Novi Sad Journal of Mathematics, 42 (2012), 15–20.

Received October 10, 2020 Accepted February 14, 2021 Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com https://orcid.org/0000-0002-6696-1301

2949-1 Shiokita-cho Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142 Japan E-mail: t.noiri@nifty.com https://orcid.org/0000-0002-0862-5297