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OPERATIONS ON GREEDOIDS

TALAL ALI AL-HAWARY

Abstract. Our goal in this paper is to explore the operations of deletion, con-
traction, direct sum and ordered sum of greedoids. Moreover, we introduce the
notion of balanced greedoid and give a necessary and sufficient condition for the
direct sum and ordered sum of balanced greedoids to be balanced.
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1. INTRODUCTION

We begin with some background material, which follows the terminology
and notation in [17]. A greedoid G is a pair (E,F), where F ⊆ 2E is a set
system satisfying the following conditions.

(G1) For every non-empty X ∈ F, there is an x ∈ X such that X − x ∈ F.
(G2) For all X,Y ∈ F such that the cardinality |X| of X is greater than

the cardinality |Y | of Y, there is an x ∈ X − Y such that Y ∪ x ∈ F.
Thus every matroid is a greedoid and a greedoid is a matroid if and only if

the following axiom is satisfied:
(M1) If X ∈ F and Y ⊆ X, then Y ∈ F.
For an introduction on matroids the reader is referred to [16] and [18].

Observe that axioms M1 and G2 together define a matroid and axiom G1
and the following axiom defines a greedoid:

(G2′) For X,Y ∈ F such that |X| = |Y | + 1, there is an x ∈ X − Y such
that Y ∪ x ∈ F.

The set E is called the ground set of G, the sets in F are called feasible
sets and r is the rank of G which we denote by r(G). For A ⊆ E, the rank
of A is r(A) = max{|X| : X ⊆ A,X ∈ F}. Thus A is feasible if and only if
r(A) = |A| and it is called a basis if r(A) = |A| = r(G). The collection of all
basis of G is denoted by B(G). Axiom G2 implies that bases elements have
the same size r (or r(G)). For A ⊆ E, define

F\A := {X ⊆ E −A : X ∈ F},
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and, if A is feasible, define

F/A := {X ⊆ E −A : X ∪A ∈ F}.

Then it is easy to see that the set systems obtained in both cases are greedoids
on the ground set E−A. The greedoid G\A = (E−A,F\A) is called G delete
A or the restriction of G to E − A and G/A = (E − A,F/A) is called G
contract A. For all X ⊆ E −A, it is easy to see that

rG\A(X) = r(X) and rG/A(X) = r(X ∪A)− r(A).

A greedoid G = (E,F) is called an interval greedoid if it satisfies the
interval property which is if A ⊆ B ⊆ C, A,B,C ∈ F, x ∈ E−C, A∪x ∈ F
and C ∪ x ∈ F, then B ∪ x ∈ F. Thus, matroids are interval greedoids.

Operations as basic as deletion and contraction are those of direct sum
and ordered sum.

Definition 1.1. Let G1 = (E1,F1) and G2 = (E2,F2) be two greedoids
on disjoint ground sets. Then their direct sum is the greedoid G1 ⊕ G2 =
(E1 ∪ E2,F1 ⊕ F2), where

F1 ⊕ F2 = {X1 ∪X2 : X1 ∈ F1 and X2 ∈ F2},

and the ordered sum of G1 and G2 is the greedoid G1⊗G2 = (E1∪E2,F1⊗F2),
where

F1 ⊗ F2 = F1 ∪ {B ∪X : B ∈ B(G1), X ∈ F2}.

Observe that ∅ ∈ F1 ∩ F2 and F1 ⊗ F2 ⊆ F1 ⊕ F2, thus G1 ⊗ G2 is a
subgreedoid of G1 ⊕G2.

Remark 1.2. Although we will only consider greedoids on disjoint ground
sets when talking about the operations of direct sum and ordered sum, these
operations can easily be defined on the disjoint union of the ground sets of
any greedoids.

Greedoids were invented in 1981 by Korte and Lovász [15]. Originally, the
main motivation for proposing this generalization of the matroid concept (see
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) came from combinatorial optimization. Korte
and Lovász had observed that the optimality of a “greedy” algorithm could in
several instances be traced back to an underlying combinatorial structure that
was not a matroid and so they named it a greedoid. In 1991, Korte, Lovász and
Schrader [14] introduced greedoid as a special kind of antimatroids. In 1992,
Björner and Ziegler [17] explained the basic ideas and gave a few glimpses of
more specialized topics related to greedoids. In 1992, Broesma and Li [11]
extended the “connectivity” concept from matroids to greedoids and in 1997,
Gordon [13] extended Crapo’s β invariant from matroids to greedoids. In this
paper, we extend the density concept from matroids and graphs to greedoids.
We also study some greedoid preserving operations.
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2. DELETION AND CONTRACTION GREEDOIDS

In this section, we study properties of greedoid deletion and contraction
operations and show that these operations commute. We start by proving the
following.

Proposition 2.1. If BA is a basis for the restriction G|A of G to A, then

F(G/A) = {X ⊆ E −A : G|A has a basis B such that X ∪B ∈ F(G)}
= {X ⊆ E −A : X ∪BA ∈ F(G)}.

Proof. Clearly {X ⊆ E −A : G|A has a basis B such that X ∪B ∈ F(G)}
contains the set {X ⊆ E − A : X ∪ BA ∈ F(G)}. Suppose X ∪ B ∈ F(G) for
some basis B of G|A. We shall show that X ∈ F(G/A). Clearly X ∪ B is a
basis of X ∪A, so r(X ∪B) = r(X ∪A). Therefore,

rG/A(X) = r(X ∪A)− r(B) = r(X ∪B)− r(B) = |X ∪B| − |B| = |X|,

that is, X ∈ F(G/A). Hence,

{X ⊆ E −A : G|A has a basis B such that X ∪B ∈ F(G)} ⊆ F(G/A).

Finally we show {X ⊆ E − A : X ∪ BA ∈ F(G)} contains F(G/A). If X ∈
F(G/A), then |X| = rG/A(X) = r(X ∪A)− r(A) = r(X ∪BA)− |BA|. Hence
|X ∪BA| = r(X ∪BA), so X ∪BA ∈ F(G). 2

Corollary 2.2. If BA is a basis for G|A, then a bases of G/A is

B(G/A) = {B ⊆ E −A : G|A has a basis B′ such that B ∪B′ ∈ B(G)}
= {B ⊆ E −A : B ∪BA ∈ B(G)}.

Observe that B(G\A) is the set of maximal members of {B−A : B ∈ B(G)}
and F(G/A) ⊆ F(G\A) for every feasible set A in G. Next, we give a necessary
and sufficient condition for the contraction of a feasible set to be the same as
the deletion of that set.

Proposition 2.3. If A is a feasible set in G, then

G/A = G\A if and only if r(G\A) = r(G)− r(A).

Proof. Suppose G/A = G\A and let B be a basis of G\A. Then B is a
basis of G/A and hence by Corollary 2.2, B .∪BA is a basis of G for some basis
BA of G|A. Thus r(G) = |B .∪BA| = |B| + |BA| = r(A) + r(G\A). Suppose
r(G\A) = r(G) − r(A). Since F(G/A) ⊆ F(G\A), to show G/A = G\A, we
need only show F(G\A) ⊆ F(G/A). But if X ∈ F(G\A), then X is a subset of
a basis B of G\A and B is contained in a basis B .∪B′ of G. Evidently,

r(G) = |B′ .∪B| = |B|+ |B′| = r(G\A) + |B′|.

Since r(G\A) = r(G) − r(A), we have r(A) = |B′|, that is, B′ is a basis of
G|A. Hence B ∈ B(G/A), so X ∈ F(G/A) and G/A = G\A. □



6 T.A. Al-Hawary 4

Corollary 2.4. For all A ∈ F, G/A = G\A if and only if r(G\A) ≤
r(G/A).

Proof. If G/A = G\A, then clearly r(G\A) ≤ r(G/A). If r(G\A) ≤ r(G/A),
then as F(G/A) is a subset of F(G\A) we must have r(G\A) ≥ r(G/A). Thus
G/A = G\A. □

In the next proposition, we show that the operations of deletion and con-
traction commute.

Proposition 2.5. Let G = (E,F) be a greedoid. Then

(G\A′)/A = (G/A)\A′ = {X ⊆ E − (A′ ∪A) : X ∪A ∈ F},

for A ∩A′ = ∅, A ∈ F and A′ ⊆ E.

Proof. We need only show (G\A′)/A and (G/A)\A′ have the same collec-
tions of feasible sets. If X ∈ F(G\A′)/A, then X ⊆ (E−A′)−A and X ∪A ∈ F.
That is, X ⊆ (E − A) − A′ and X ∈ FG/A and hence X ∈ F(G/A)\A′ . Con-
versely, if X ∈ F(G/A)\A′ , then X ⊆ (E − A) − A′ and X ∈ FG/A. That is,
X ⊆ (E − A′) − A and X ∪ A ∈ F and hence X ∈ F(G\A′)/A. Therefore,
F(G\A′)/A = F(G/A)\A′ . □

The straightforward proof of the following proposition is omitted.

Proposition 2.6. {B1∪B2 : B1 ∈ B(G1) and B2 ∈ B(G2)} = B(G1⊗G2)
which is equal to B(G1 ⊕G2).

Corollary 2.7. Let G1 = (E1,F1) and G2 = (E2,F2) be greedoids on
disjoint ground sets. If X ⊆ E1 ∪ E2, then

rG1⊗G2(X) = rG1⊕G2(X) = rG1(X ∩ E1) + rG2(X ∩ E2).

3. ON GREEDOID PRESERVING OPERATIONS

In this section, we prove the operations of direct sum and ordered sum take
interval greedoids to interval greedoids. In fact, we show that the direct sum
and ordered sum of greedoids G1 and G2 is an interval greedoid if and only if
G1 and G2 are both interval greedoids. We also introduce balanced greedoids
and give a condition for the direct sum and ordered sum of balanced greedoids
to be balanced.

Theorem 3.1. Let G1 = (E1,F1) and G2 = (E2,F2) be greedoids on disjoint
ground sets. Then G1 and G2 are interval greedoids if and only if G1 ⊕G2 is
an interval greedoid.

Proof. Suppose G1 and G2 are interval greedoids. If A ⊆ B ⊆ C, A,B,C ∈
F1 ⊕ F2, x ∈ E1 ∪ E2 − C, A ∪ x ∈ F1 ⊕ F2, and C ∪ x ∈ F1 ⊕ F2, then
A = A1∪A2, B = B1∪B2, C = C1∪C2 where Ai, Bi, Ci are feasible sets in Gi

for i = 1, 2, Ai ∪ x ∈ Fi (as Ai ∪ x = (A1 ∪A∪ x)∩Ei). Similarly, Ci ∪ x ∈ Fi.
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Moreover, x ∈ (E1 ∪ E2 − C1) ∩ (E1 ∪ E2 − C2). Hence suppose x ∈ Ei − Ci

for i = 1 or i = 2 and as Ai ⊆ Bi ⊆ Ci, Bi ∪ x ∈ Fi. But

B ∪ x = B1 ∪B2 ∪ x = (B1 ∪ x) ∪B2 ∈ F1 ⊕ F2.

Therefore, G1 ⊕G2 is an interval greedoid.
Suppose G1 ⊕ G2 is an interval greedoid. If A ⊆ B ⊆ C, A,B,C ∈ F1,

x an element in E1 − C, A ∪ x ∈ F1, and C ∪ x ∈ F1, then as ∅ ∈ F2,
A ∪ ∅ ⊆ B ∪ ∅ ⊆ C ∪ ∅, A ∪ ∅, B ∪ ∅, C ∪ ∅ ∈ F1 ⊕ F2, x ∈ E1 ∪ E2 − C,
(A ∪ x) ∪ ∅, (B ∪ x) ∪ ∅ ∈ F1 ⊕ F2 and as G1 ⊕ G2 is an interval greedoid,
B ∪ x = (B ∪∅) ∪ x ∈ F1 ⊕ F2. But B ∪ x = (B ∪ x) ∩E1 ∈ F1 and hence G1

is an interval greedoid. Similarly, G2 is an interval greedoid. □

Theorem 3.2. Let G1 = (E1,F1) and G2 = (E2,F2) be greedoids on disjoint
ground sets. Then G1 and G2 are interval greedoids if and only if G1 ⊗G2 is
an interval greedoid.

Proof. The proof of the necessary condition is similar to that of the direct
sum one in the preceding theorem and is left to the reader. Suppose G1⊗G2 is
an interval greedoid. If A ⊆ B ⊆ C, A,B,C ∈ F1, x ∈ E1−C, A∪x ∈ F1, and
C∪x ∈ F1, then A,B,C ∈ F1⊗F2, x ∈ E1∪E2−C, A∪x,C∪x ∈ F1⊗F2 and
as G1⊗G2 is an interval greedoid, B ∪x ∈ F1⊗F2. But as F1⊗F2 ⊆ F1⊕F2,
B ∪ x ∈ F1 ⊕ F2. Thus B ∪ x = (B ∪ x)∩E1 ∈ F1 and hence G1 is an interval
greedoid. Similarly, G2 is an interval greedoid. □

In [12], a condition for the direct sum of balanced matroids to be balanced
was given. Next, we prove a similar result for loopless greedoids.

Definition 3.3. The density of a loopless greedoid (i.e. has no elements

of rank zero) G = (E,F) is given by d(G) := |G|
r(G) . A greedoid G is balanced

if d(K) ≤ d(G) for all non-empty subgreedoids K of G.

Theorem 3.4. The direct sum (respectively, the ordered sum) of balanced
loopless greedoids G1 and G2, on disjoint ground sets, is balanced if and only
if

d(G1) = d(G2) = d(G1 ⊕G2)(respectively, d(G1) = d(G2) = d(G1 ⊗G2)).

Proof. We only prove the direct sum part since the order sum one is similar.
Let G1 = (E1,F1) and G2 = (E2,F2) be balanced greedoids on disjoint ground
sets. Suppose that G1 ⊕ G2 is balanced. Evidently d(Gi) ≤ d(G1 ⊕ G2) for
i = 1, 2 and thus

|E1|r(G1) + |E1|r(G2) ≤ |E1|r(G1) + |E2|r(G2) and

|E2|r(G1) + |E2|r(G2) ≤ |E1|r(G2) + |E2|r(G2).

So, |E1|r(G2) ≤ |E2|r(G1) ≤ |E1|r(G2) which implies |E2|r(G1) = |E1|r(G2)
or

d(G2) =
|E2|
r(G2)

=
|E1|
r(G1)

= d(G1) = d(G1 ⊕G2).
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Conversely, suppose that d(G1) = d(G2) = d(G1⊕G2). If N is a subgreedoid

of G1⊕G2, then N = N1⊕N2 where each Ni = N∩Ei. Thus d(Ni) =
|E(Ni)|
r(Ni)

≤
|E1|
r(G1)

and hence

|E(N1)|r(G1) + |E(N2)|r(G1) ≤ |E1|r(N1) + |E1|r(N2),

and

d(N) =
|E(N1)|+ |E(N2)|
r(N1) + r(N2)

≤ |E1|
r(G1)

= d(G1 ⊕G2).

Therefore, G1 ⊕G2 is balanced. □
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