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KERNEL STABLE AND UNIQUELY GENERATED MODULES

SERAP ŞAHINKAYA and TRUONG CONG QUYNH

Abstract. A module theoretic notion of annihilator-stable rings is defined and
some characterizations of it are studied. A module M is called kernel-stable if
every element α ∈ End(M) satisfies the following condition: if α(M) +Kerβ =
M , β ∈ End(M), then (α− γ)(m) ∈ Kerβ for an automorphism γ of M and for
all m ∈M . For a pseudo-semi-projective module M , this notion is equivalent to
that of uniquely generated module.
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1. INTRODUCTION

Following von Neumann, an element x ∈ R is called a regular element if
there exists y ∈ R such that x = xyx and R is called a regular ring if every
element is regular [16]. The unit-regular rings were defined by Ehrlich [6] in
1968 as follows: if for every x ∈ R, there exists a unit u ∈ R such that x = xux.

Let R be a ring. If, for a, b ∈ R, a = bu, where u is unit, then a and b are
called right associated. Clearly, left (right) associated elements generate the
same principal left (right) ideals Ra and Rb. But, the converse of this state-
ment does not hold in general and this case was first considered by Kaplansky
in 1949. An element a ∈ R is called left (right) uniquely generated (UG), for
b ∈ R, if Ra = Rb (aR = bR) then a and b are left (right) associated. If every
element of R has this condition then R is said to be a left (right) UG ring.
The study of UG rings was started by Kaplansky in 1949 (see [7]). Kosan
et al, in [9], defined the notion of uniquely generated modules as a module
theoretic analogue of the notion of the uniquely generated ideal, as follows:
a M -cyclic submodule N of M uniquely generated if for any two elements α
and β of End(M) such that N = α(M) = β(M), then α and β must be right
associates in End(M). In that work authors obtained a characterization of a
unit-regular endomorphism ring of a module in terms of certain uniquely gen-
erated submodules of the module. They proved that End(M) is unit-regular if
and only if End(M) is regular and all M -cyclic submodules of M are uniquely
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generated. As a result of this theorem, they obtained the main theorem of
[10]: R is unit-regular if and only if R is regular and every principal right
ideal is uniquely generated.

Rings of left stable ring range 1 were introduced in 1964 by Bass in his
seminal work on K-theory in [2]. An element a ∈ R has left stable range 1
(SR1) if Ra + Rb = R, b ∈ R, implies a − u ∈ Rb for a unit u in R. Then
Vaserstein showed that this notion is left-right symmetric. More precisely, he
showed that a ring has left stable range 1 if and only if it has right stable
range 1. But we do not know if this holds for elements.

Canfell [3, Corollary 4.4] obtained the following characterization of the left
UG rings.

Canfell’s Theorem: The following are equivalent for a ring R:
(1) If Ra+ l(b) = R, a, b ∈ R, then a− u ∈ l(b) for some unit u ∈ R.
(2) R is left UG.
(3) If Ra = Rb, a, b ∈ R, then a = vb for some left unit v ∈ R.
Clearly, every SR1 ring is left (and right) UG (the converse fails as Z is UG).

Nicholson considered the condition (1) of Canfell’s theorem as a requirement
on the element a. By analogy with the stable range 1 condition he called a
ring with this property left annihilator-stable. More precisely, an element a
in a ring R is called left annihilator-stable (left AS element) if the following
condition holds: If Ra + l(b) = R, b ∈ R, then a − u ∈ l(b) for some unit
u ∈ R. The ring R is called a left annihilator-stable ring (a left AS ring) if
every element of R is left AS. According to a Canfell’s Theorem a ring R is
left AS if and only if R is left UG.

In the present paper we defined the notion of kernel-stable modules as a
module theoretic analogue of the notion of the annihilator-stable ring. We
call an element α ∈ End(M) is kernel-stable if the following condition holds:
If α(M) +Kerβ = M , β ∈ End(M) then (α− γ)(m) ∈ Kerβ for an automor-
phism γ of M and any m ∈ M . An R-module M is called a kernel-stable if
every element of End(M) is kernel-stable. Clearly, R is annihilator-stable if
and only if RR is kernel-stable

In Section 2, we obtained the several characterization of kernel-stable mod-
ule. We also give the relationship between the notions of kernel-stable module,
uniquely generated module and stable range 1 property of End(M) (see Propo-
sition 2.4 and Theorem 2.12).

In Section 3, we weaken the notion of kernel-stable element of S = End(M)
and call it idempotent-kernel-stable. We obtained the module theoretic ver-
sion of [8, Theorem 6.2] and [4, Lemma 1] in Theorem 3.5. More precisely, we
proved that; for a pseudo-semi-projective module M over a ring R, M is idem-
potent kernel-stable if and only if f(M) is an uniquely generated submodule
of M for a regular element f of End(M) if and only if M is IC.

For the last section, we examine when the annihilator stable and kernel
stable conditions pass to matrix rings.
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Throughout this article, unless otherwise stated, all rings have unity and
all modules are unital. For a subset X of a ring R, the left annihilator of X
in R is l(X) = {r ∈ R : rx = 0 for all x ∈ X}. For any a ∈ R, we write l(a)
for l({a}). Right annihilators are defined similarly and indicated by r. We
write J(R) for the Jacobson radical of R and 1M for an identity map from
M to M . We also write N ≤e M and N ≤⊕ M to indicate that N is an
essential submodule of M and a direct summand of M , respectively. General
background material can be found in [1, 5, 11, 17].

2. RESULTS

The following lemma gives the characterization of the kernel-stable element
of an endomorphism ring of a module M .

Lemma 2.1. Let M be a module and S = End(M). The following conditions
are equivalent for an element α ∈ S:

(1) α is kernel-stable.
(2) βα(M) = β(M) implies βα = βγ for an automorphism γ of M and

γ ∈ S.

Proof. (1) ⇒ (2) : Let β be an endomorphism of M with βα(M) = β(M).
It follows that α(M) +Kerβ = M . Then by hypothesis, (α− γ)(m) ∈ Kerβ
for every m ∈M and an automorphism γ of M . Hence β(α− γ)(m) = 0, that
is βα = βγ.

(2)⇒ (1) : Let α(M)+Kerβ = M for β ∈ End(M). Then βα(M) = β(M).
But then, (2) implies that for any m ∈ M , βα(m) = βγ(m), where γ is an
automorphism of M . Then β(α− γ)(m) = 0 and so (α− γ)(m) ∈ Kerβ. �

It is not surprising that there is a relation between the notion of kernel-
stability and automorphism due to the following lemma.

Lemma 2.2. If a kernel-stable element α ∈ End(M) is right invertible (that
is a split epimorphism) or left invertible (that is a split monomorphism) then
α is an automorphism.

Proof. Let α ∈ End(M) be a right invertible kernel-stable element. Then,
there exists β ∈ End(M) such that αβ = 1M that gives αβ(M) = 1M (M).
One gets α(M) +Ker1M = M since Ker1M = 0 and α is an epimorphism. It
follows that, (α − γ)(m) ∈ Ker1M = 0 for an automorphism γ of M and for
all m ∈M as α is kernel -stable. Then γ = α which completes the proof.

If α ∈ End(M) is a left invertible kernel-stable element. Then there exits β
of End(M) such that βα = 1M and so βα(M) = M = β(M). By Lemma 2.1,
βα = βγ for an automorphism γ of M . It follows that β = γ−1 and so α = γ
an automorphism γ of M . �

Recall that a module M is called a directly-finite module if End(M) is
directly-finite, that is, gf = 1 whenever fg = 1.
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Corollary 2.3. Every kernel-stable module is directly-finite.

The converse of Corollary 2.3 is not true in general due to[12, Example 4].
A module M is pseudo-semi-projective if αS = βS for all α, β ∈ S =

End(M) with Im(α) = Im(β) (see [14, Lemma 3.1]).
The next proposition contains several new characterization of the kernel-

stable module.

Proposition 2.4. The following conditions are equivalent for a module M :

(1) M is a kernel-stable module.
(2) If α(M) +Kerβ = M , α, β ∈ End(M) then βα = βγ for an automor-

phism (split epimorphism) γ of M .
(3) If βα(M) = β(M) with α, β ∈ End(M) then βα = βγ for an auto-

morphism (split epimorphism) γ of M . Moreover, if M is a pseudo-
semi-projective module, then the above conditions are equivalent to the
following conditions:

(4) If β(M) = α(M) then β = αγ for an automorphism (split epimor-
phism) γ of M .

(5) M -cyclic submodules of M are uniquely generated.

Proof. (1)⇔ (2) It is clear from the definition of kernel-stable module.
(2) ⇒ (3) Let βα(M) = β(M) for α, β ∈ End(M). It is easy to see that

M = Kerβ + α(M). Then by (2), βα = βγ for an automorphism (split epi-
morphism) γ of M .
(3) ⇒ (1) Suppose that βα(M) = α(M). Then there exists a split epimor-
phism γ of M such that βα = βγ. Call γ′ an endomorphism of M with
γγ′ = 1M . Then γ(M) = γγ′(M). By (3), there exists a split epimorphism γ”
of M such that γγ” = γγ′ = 1. Note that γ is a monomorphism. It shows that
γ is an automorphism of M . We deduce that M is a kernel-stable module.

We now assume that M is a pseudo-semi-projective module.
(3) ⇒ (4). Suppose that β(M) = α(M). Since M is a pseudo semi-

projective module, βS = αS with S = End(M). Then α = βt1 and β = αt2
for some t1, t2 ∈ S. This gives αt2(M) = α(M). By (3), β = αt2 = αγ for
some automorphism (split epimorphism) γ of M .

(4)⇒ (5) Suppose that β(M) = α(M). By (4), there exists a split epimor-
phism γ of M such that α = βγ. Take γ′ as an endomorphism of M with
γγ′ = 1M . Then γ(M) = γγ′(M). By (4), there exists a split epimorphism γ′′

of M such that γγ′′ = γγ′ = 1M . Note that γ′′ is a monomorphism. It shows
that γ is an automorphism of M .

(5)⇒ (1) It is by Lemma 2.1. �

Example 2.5. (1) Every automorphism of M is kernel-stable.

(2) We consider the ring R =

(
Z Z
Z Z

)
and α =

(
1 2
0 1

)
∈ R. Then, α is

kernel-stable.
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One can use [12, Theorem 6] to show that there exists a module M such
that M is uniquely generated but M is not a kernel-stable module.

Lemma 2.6. If α is kernel-stable (or unit-regular) then αγ and γα are
kernel-stable (resp., unit-regular) for every automorphism γ of M .

Proof. Let α be kernel-stable element and γ be an automorphism of M . Call
β an endomorphism of M with αγ(M)+Ker(β) = M . Then α(M)+Ker(β) =
M . By our assumption, βα = βθ for some automorphism θ of M . It follows
that β(αγ) = β(θγ) and θγ is an automorphism of M . This shows that
αγ is kernel-stable. We now assume that γα(M) + Ker(β′) = M with an
endomorphism β′ of M . It is easy to see that α(M) + Ker(β′γ) = M . By
Proposition 2.4 there exists an automorphism ψ of M with (β′γ)ψ = (β′γ)α
or β′(γψ) = β′(γα).

Unit-regularity case of α was proved similarly in [12, Lemma 12]. �

It is well-known that unit-regular elements are always regular. The following
proposition provides us that the converse is true when it is also kernel-stable.

Proposition 2.7. Let M be a module and α be an endomorphism of M . If
α is regular and kernel-stable, then α is unit-regular.

Proof. Assume that α = αβα. Then α(M) = αβ(M) and (αβ)2 = αβ. We
have M = α(M) +Ker(αβ). As α is kernel-stable, αβγ = αβα = α for some
automorphism γ of M . It follows that α = αγ−1α. Thus α is unit-regular. �

The relationship between the notions of stable range 1 and kernel-stability
is given by the following Lemma.

Lemma 2.8. Let M be a pseudo-semi-projective module with S = End(M)
and α be an endomorphism of M . If α has stable range 1 in S then α is
kernel-stable.

Proof. Let β be an endomorphism of M with βα(M) = β(M). Since M
is a pseudo-semi-projective module, β = βαθ for some θ ∈ S. It means that
1S = αθ + ψ for some ψ ∈ S with βψ = 0, and so S = αS + ψS. As α has
right stable range 1 in S then there is a unit γ of S with α− γ ∈ ψS. Hence
βα = βγ which completes the proof. �

Corollary 2.9. Let M be a pseudo-semi-projective module such that S =
End(M) and α is an endomorphism of M .

(1) α is unit-regular if and only if α is regular and kernel-stable.
(2) If α+ J(S) ∈ S/J(S) is unit-regular then α is kernel-stable.

Corollary 2.10. Let M be a pseudo-semi-projective module with S =
End(M). If S/J(S) is unit-regular then M is kernel-stable.

A element α of End(M) is called a quasi-morphic element if there exist
β, γ ∈ End(M) such that α(M) = Kerβ and Kerα = γ(M). A module M is
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called a quasi-morphic module if every element of End(M) is quasi-morphic
(see [13]).

Lemma 2.11. Let M be a right R-module with S = End(M). Then the
following are equivalent:

(1) S has stable range 1.
(2) Every left unit lifts modulo every left principal ideal of S.
(3) Every right unit lifts modulo every right principal ideal of S.

Proof. By Theorem 3 in [15]. �

A right R-module M is semi-projective if and only if fS = Hom(M,fM)
for every f ∈ End(M) = S ([17, page 260]).

It is well-known that every unit regular ring has stable range 1. Also a
relationship between unit regularity of S = End(M) and uniquely generated
submodules of M is given by [9, Theorem 2.8]. For a relation between sta-
ble range 1 property of End(M) and uniquely generated submodules of M ,
following theorem is obtained.

Theorem 2.12. Let M be a semi-projective quasi-morphic module with S =
End(M). Then the following are equivalent:

(1) Every M -cyclic submodule of M is uniquely generated.
(2) S has stable range 1.

Proof. (1) ⇒ (2) By Lemma 2.11, we will show that every right unit lifts
modulo every right principal ideal of S. Let α be a right unit lifts modulo
to right principal ideal βS of S. There exists γ ∈ S such that αγ − 1 ∈ βS.
As M is a quasi morphic module, there exist f, g ∈ S such that β(M) =
Ker(f) and fα(M) = Ker(g). It follows that α(M) ≤ Ker(gf) and β(M) ≤
Ker(gf). It means that αS ≤ rS(gf) and βS ≤ rS(gf). On the other hand,
we have αS + βS = S. Thus S = rS(gf) and so gf = 0. This is proved
that f(M) = Ker(g) = fα(M). Since every M -cyclic submodule of M is
uniquely generated, there exists a unit θ of S such that fα = fθ. Thus,
(α− θ)(M) ≤ β(M). Since M is a semi-projective module, α− θ ∈ βS.

(2)⇒ (1) By Lemma 2.8 and Lemma 2.2 (1)⇒ (5). �

3. IDEMPOTENT KERNEL STABLE

In this section, we weaken the notion of kernel-stable element of S =
End(M) and call it idempotent-kernel-stable.

Lemma 3.1. Let M be a module with S = End(M) and α be an endomor-
phism of M . Then the following are equivalent:

(1) α(M) + Ker(e) = M, e2 = e ∈ S, implies (α − u)(M) ≤ Ker(e) for
some unit u ∈ S.

(2) α(M) + e(M) = M, e2 = e ∈ S, implies (α− u)(M) ≤ e(M) for some
unit u ∈ S.
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(3) α(M) + β(M) = M , β ∈ S unit-regular, implies (α − u)(M) ≤ β(M)
for some unit u ∈ S.

(4) α(M) + Ker(β) = M , β ∈ S unit-regular, implies (α − u)(M) ≤
Ker(β) for some unit u ∈ S.

Proof. (1) ⇔ (2) Let α(M) + e(M) = M, e2 = e ∈ S. Since e(M) =
Ker(1 − e) we can rewrite equation as following: α(M) + Ker(1 − e) = M .
By (1), there exists unit u ∈ S such that (α − u)(M) ≤ Ker(1 − e) = e(M).
The converse can be proved in a similar way.

(2)⇔ (3) Let α(M) + β(M) = M . Since β is unit-regular it can be written
as β = fv, composition of a unit element v ∈ S and an idempotent element
f ∈ S. So M = α(M) + β(M) = α(M) + f(M) ≤ M . By (2), (α − u)(M) ≤
f(M) = β(M) for some unit u ∈ S. Converse is clear since every idempotent
is unit-regular.

(1) ⇔ (4) Let α(M) + Ker(β) = M . Since β is unit-regular it can be
written as β = vf for some unit element v ∈ S and an idempotent element
f ∈ S. It is clear that Ker(f) = Ker(β) and so α(M) + Ker(f) = M . By
(1), (α− u)(M) ≤ Ker(f) = Ker(β) for some unit u ∈ S. �

We call an element α ∈ End(M) idempotent-kernel-stable when the equiv-
alent conditions of Lemma 3.1 hold for α and a module M is idempotent-
kernel-stable if every element of End(M) is so.

Example 3.2. Let D = Z5[x] and write k̄ = k + 5Z for all k ∈ Z and
R = {(z, α) : z ∈ Z, α ∈ D,α(0̄) = z̄ ∈ Z5}. Then RR is an idempotent-
kernel-stable module but not kernel-stable.

Ring theoretic version of this Lemma was obtained by Nicholson in [12] as
following:

Corollary 3.3 ([12, Lemma 23]). The following are equivalent for an el-
ement a ∈ R :

(1) Ra+ l(e) = R, e2 = e, implies a− u ∈ l(e) for some unit u ∈ R.
(2) Ra+Re = R, e2 = e, implies a− u ∈ Re for some unit u ∈ R.
(3) Ra+Rb = R, b unit-regular, implies a− u ∈ Rb for some unit u ∈ R.
(4) Ra+ l(b) = R, b unit-regular, implies a−u ∈ l(b) for some unit u ∈ R.

Nicholson called an element a ∈ R left idempotent-annihilator-stable (left
IAS) when these conditions hold for a, and a ring is a left IAS ring if every
element is left IAS.

Lemma 3.4. Let M be a pseudo-semi-projective module with S = End(M)
and α be an endomorphism of M . The following are equivalent:

(1) α is regular and has stable range 1 in S.
(2) α is both regular and kernel-stable.
(3) α is both regular and idempotent kernel-stable.
(4) α is unit-regular.
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Proof. (1)⇒ (2) By Lemma 2.8.
(2)⇒ (3) It is a tautology.
(3)⇒ (4) By Corollary 2.9.
(4)⇒ (1) If α is unit-regular, we write α = ve, e2 = e ∈ S and v ∈ S is unit.

By Lemma 2.6, it is enough to show that e is stable range 1. Let S = eS+βS
for β ∈ S. We show that there exists a unit u ∈ S such that e−u ∈ βS. Take
s ∈ S with 1S−es ∈ βS. Call u = 1S−es(1−e). Then u is a unit with inverse
1S +es(1−e). Then e−u = (e−1S)+es(1S−e) = (e−1S)(1S−es) ∈ βS. �

Recall that a right R-module M is said to have internal cancellation (IC)
if, whenever M = M1 ⊕M2 = M ′1 ⊕M ′2 with M1 ' M ′1, then M2 ' M ′2. It
is well-known the Ehrlich’s result ([6]) that a module M has IC if and only
if every regular element in End(M) is unit-regular. Khurana and Lam called
R an IC ring if RR has IC equivalently RR has IC ([8, page 5]). In the same
paper, authors proved that that R is IC if and only if very regular element
(unit-regular element, idempotent ) in R has right UG ([8, Theorem 6.2]). Due
to H. Chen [4, Lemma 1], R is left IAS (right IAS) if and only if R is IC. The
next theorem is the module theoretic version of these results.

Theorem 3.5. The following conditions are equivalent for any pseudo-semi-
projective module M over a ring R :

(1) M is idempotent kernel-stable.
(2) If f is a regular element of End(M), then f(M) is an uniquely gener-

ated submodule of M .
(3) M is IC.

Proof. (1)⇒ (2) Call S = End(M). Let f be a regular element of End(M).
Suppose that f(M) = g(M). There exists e2 = e ∈ End(M) such that f(M) =
e(M). Since M is a pseudo-semi-projective module, fS = eS. Call s1, s2 ∈ S
with f = es1 and e = fs2. Then es1s2 = fs2 = e and so M = s1(M)+Ker(e).
As M is idempotent kernel-stable, there is a unit u of S with e(s1 − u) = 0.
Thus f = es1 = eu. Similarly, we have g = ev for some unit v of S. It follows
that f = eu = g(v−1u). Thus, (2) is required.

(2)⇒ (3) Call f is a regular element of End(M). There exists an idempotent
e of End(M) such that f(M) = e(M). But by (2), f = eu for some unit u of
End(M). It follows that f is unit-regular. By Ehrlich’s result shown that M
is IC.

(3) ⇒ (1) Take S = End(M). Let α be an endomorphism of M and
α(M) + e(M) = M, e2 = e ∈ S. Call e1 = 1 − e and α1 = e1α. We have
(1 − e)α(M) = (1 − e)(M). Since M is a pseudo-semi-projective module,
(1 − e)αS = (1 − e)S. There exists s ∈ S such that e1 = e1αs or e1 = α1s.
But then α1sα1 = e1α1 = α1, so α1 is regular. By (3), α1 is unit-regular. It
follows that α1 is idempotent kernel-stable by Lemma 3.4. Moreover, since
α1 = e1α, α1(M) + e(M) = M . Thus, (α1 − u)(M) ≤ e(M) for some unit u
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of S. Finally, we have

(α− u)(M) = [(α1 + eα)− u](M) = [(α1 − u) + eα](M) ≤ e(M).

�
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