ON A CLASS OF MEROMORPHIC FUNCTIONS DEFINED BY USING A FRACTIONAL OPERATOR

ESZTER GAVRIŞ

Abstract. We introduce a class of meromorphic functions $S D_{\lambda}^{\nu, n}(\alpha)$ using the fractional operator

$$
\mathcal{D}_{\lambda}^{\nu, n} f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} \frac{(\nu+1)_{k+1}}{(2-\lambda)_{k+1}}(k+2)^{n+1} a_{k} z^{k}
$$

$-\infty<\lambda<2, \nu>-1, n \in \mathbb{N}_{0}=\{0,1,2, \ldots\}$. Some inclusion relations and other properties of the class are investigated.
MSC 2010. 30C45.
Key words. Meromorphic function, fractional operator, integral operator.

1. INTRODUCTION

Let Σ denote the class of functions of the form $f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} a_{k} z^{k}$, which are analytic in $\mathbb{U}^{*}=\{z: 0<|z|<1\}$.

Motivated by [5], we define the fractional operator $\mathcal{D}_{\lambda}^{\nu, n}: \Sigma \rightarrow \Sigma$, by

$$
\mathcal{D}_{\lambda}^{\nu, n} f(z)=\frac{1}{z}+\sum_{k=0}^{\infty} \frac{(\nu+1)_{k+1}}{(2-\lambda)_{k+1}}(k+2)^{n+1} a_{k} z^{k},
$$

where $-\infty<\lambda<2, \nu>-1, n \in \mathbb{N}_{0}, z \in \mathbb{U}^{*}$ and the symbol $(\gamma)_{k}$ denotes the Pochhammer symbol, for $\gamma \in \mathbb{C}$, defined by

$$
(\gamma)_{k}=\left\{\begin{array}{l}
1, k=0 \\
\gamma(\gamma+1) \ldots(\gamma+k-1), k \in \mathbb{N}
\end{array}=\frac{\Gamma(\gamma+k)}{\Gamma(\gamma)}, \gamma \in \mathbb{C} \backslash \mathbb{Z}_{0}^{-} .\right.
$$

We note that the operator $\mathcal{D}_{0}^{0, n} f(z)=\frac{1}{z}+\sum_{k=0}^{\infty}(k+2)^{n} a_{k} z^{k}$ was introduced and studied in [6].

Remark 1.1. The operator $\mathcal{D}_{\lambda}^{\nu, n}$ satisfies the following identities:

$$
\begin{gather*}
\mathcal{D}_{\lambda}^{\nu, n+1} f(z)=2 \mathcal{D}_{\lambda}^{\nu, n} f(z)+z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}, \tag{1}\\
\mathcal{D}_{\lambda}^{\nu+1, n} f(z)=\frac{\nu+2}{\nu+1} \mathcal{D}_{\lambda}^{\nu, n} f(z)+\frac{1}{\nu+1} z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}, \tag{2}
\end{gather*}
$$

The author thanks the referee for his helpful comments and suggestions.

$$
\begin{equation*}
\mathcal{D}_{\lambda+1}^{\nu, n} f(z)=\frac{2-\lambda}{1-\lambda} \mathcal{D}_{\lambda}^{\nu, n} f(z)+\frac{1}{1-\lambda} z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}, \tag{3}
\end{equation*}
$$

where $-\infty<\lambda<2, \nu>-1, n \in \mathbb{N}_{0}$.
Definition 1.2. A function $f \in \Sigma$ is said to be in the class $S D_{\lambda}^{\nu, n}(\alpha)$ if it satisfies

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}-2\right)<-\alpha, z \in \mathbb{U}, \tag{4}
\end{equation*}
$$

for some $\alpha(0 \leq \alpha<1),-\infty<\lambda<2, \nu>-1, n \in \mathbb{N}_{0}$.
To prove our results, we need the followings.
Lemma 1.3 ([3]). Let the function w be regular and nonconstant in $|z|<1$, with $w(0)=0$. If $|w|$ attains its maximum value on the circle $|z|=r<1$ at a point z_{0}, then we have $z_{0} w^{\prime}\left(z_{0}\right)=k w\left(z_{0}\right)$, where k is a real number and $k \geq 1$.

Lemma 1.4 ([4]). Let $\phi(u, v)$ be a complex valued function, $\phi: D \rightarrow \mathbb{C}, D \subset$ \mathbb{C}^{2}, and let $u=u_{1}+\mathrm{i} u_{2}, v=v_{1}+\mathrm{i} v_{2}$. Suppose that the function $\phi(u, v)$ satisfies the following conditions:
(i) $\phi(u, v)$ is continuous in D;
(ii) $(1,0) \in D$ and $\Re(\phi(1,0))>0$;
(iii) $\Re\left(\phi\left(\mathrm{i} u_{2}, v_{1}\right)\right) \leq 0$ for all $\left(\mathrm{i} u_{2}, v_{1}\right) \in D$ such that $v_{1} \leq \frac{-\left(1+u_{2}^{2}\right)}{2}$.

Let $p(z)=1+p_{1} z+p_{2} z^{2}+\ldots$ be regular in \mathbb{U} such that $\left(p(z), z p^{\prime}(z)\right) \in D$ for all $z \in \mathbb{U}$. If $\Re\left(\phi\left(p(z), z p^{\prime}(z)\right)\right)>0, z \in \mathbb{U}$, then $\Re(p(z))>0, z \in \mathbb{U}$.

2. MAIN RESULTS

To prove our results, we use the methods used in $[2,6]$.
Theorem 2.1. $S D_{\lambda}^{\nu, n+1}(\alpha) \subset S D_{\lambda}^{\nu, n}(\alpha), n \in \mathbb{N}_{0}$.
Proof. Let $f \in S D_{\lambda}^{\nu, n+1}(\alpha)$. Therefore, we have

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}-2\right)<-\alpha, z \in \mathbb{U} . \tag{5}
\end{equation*}
$$

Let w be a regular function in the unit disk \mathbb{U}, with $w(0)=0$, defined by

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}-2=-\frac{1+(2 \alpha-1) w(z)}{1+w(z)} . \tag{6}
\end{equation*}
$$

The equality (6) may be written as

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{1+(3-2 \alpha) w(z)}{1+w(z)} . \tag{7}
\end{equation*}
$$

Differentiating (7) logarithmically and multiplying by z, we obtain

$$
\begin{equation*}
\frac{z\left(\mathcal{D}_{\lambda}^{\nu, n+1} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}-\frac{z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{z(3-2 \alpha) w^{\prime}(z)}{1+(3-2 \alpha) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} . \tag{8}
\end{equation*}
$$

Using (1) in (8) we get

$$
\begin{align*}
& \frac{\mathcal{D}_{\lambda}^{\nu, n+2} f(z)-2 \mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}-\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)-2 \mathcal{D}_{\lambda}^{\nu, n} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)} \tag{9}\\
& =\frac{z(3-2 \alpha) w^{\prime}(z)}{1+(3-2 \alpha) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} .
\end{align*}
$$

Using (7) in (9) we get after some calculations the following

$$
\frac{\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}-2+\alpha}{1-\alpha}=\frac{2 z w^{\prime}(z)}{(1+w(z))(1+(3-2 \alpha) w(z))}-\frac{1-w(z)}{1+w(z)}
$$

We claim that $|w(z)|<1$ for $z \in \mathbb{U}$. Otherwise there exists a point $z_{0} \in \mathbb{U}$ such that $\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Using Lemma 1.3, we obtain

$$
\frac{\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f\left(z_{0}\right)}{\mathcal{D}_{\lambda}^{\nu, n+1} f\left(z_{0}\right)}-2+\alpha}{1-\alpha}=\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(1+(3-2 \alpha) w\left(z_{0}\right)\right)}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)}
$$

Thus

$$
\left.\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f\left(z_{0}\right)}{\mathcal{D}_{\lambda}^{\nu, n+1} f\left(z_{0}\right)}-2+\alpha\right) \geq \frac{1}{1-\alpha}\right) \geq 0
$$

which contradicts (5). Hence $|w(z)|<1$ for $z \in \mathbb{U}$ and from (6) follows (4). Consequently, $f \in S D_{\lambda}^{\nu, n}(\alpha)$.

Remark 2.2. Taking $\lambda=0$ and $\nu=0$, we obtain Theorem 2.1 from [6].
Using Lemma 1.4 instead of Lemma 1.3 we will obtain an improvement of Theorem 2.1.

THEOREM 2.3. $S D_{\lambda}^{\nu, n+1}(\alpha) \subset S D_{\lambda}^{\nu, n}(\beta)$, for $n \in \mathbb{N}_{0}$, where

$$
\begin{equation*}
\beta=\frac{5+2 \alpha-\sqrt{(3-2 \alpha)^{2}+8}}{4} \tag{10}
\end{equation*}
$$

and $\beta \in(\alpha, 1)$.
Proof. Let $f \in S D_{\lambda}^{\nu, n+1}(\alpha)$, where $0 \leq \alpha<1$, and let p be a function defined by

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\gamma+(1-\gamma) p(z), \gamma>1, z \in \mathbb{U} \tag{11}
\end{equation*}
$$

where $\gamma=\frac{(3-2 \alpha)+\sqrt{(3-2 \alpha)^{2}+8}}{4}$. Then the function p is of the form $p(z)=$ $1+p_{1} z+p_{2} z^{2}+\ldots$ and analytic in \mathbb{U}. Differentiating logarithmically both sides of (11) and making use of the identity (1), we obtain

$$
\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}=\gamma+(1-\gamma) p(z)+\frac{z(1-\gamma) p^{\prime}(z)}{\gamma+(1-\gamma) p(z)}
$$

or

$$
\begin{gathered}
-\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+2} f(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}-2\right)-\alpha \\
=\Re\left(2-\alpha-\gamma-(1-\gamma) p(z)-\frac{(1-\gamma) z p^{\prime}(z)}{\gamma+(1-\gamma) p(z)}\right)>0, z \in \mathbb{U} .
\end{gathered}
$$

We define the function ϕ by

$$
\phi(u, v)=2-\alpha-\gamma-(1-\gamma) u-\frac{(1-\gamma) v}{\gamma+(1-\gamma) u} .
$$

Then ϕ has the following properties:
(i) ϕ is continuous in $D=\left(\mathbb{C}-\left\{\frac{-\gamma}{1-\gamma}\right\}\right) \times \mathbb{C}$;
(ii) $(1,0) \in D$ and $\Re(\phi(1,0))=1-\alpha>0$;
(iii) for all ($\mathrm{i} u_{2}, v_{1}$) $\in D$ such that $v_{1} \leq-\frac{1}{2}\left(1+u_{2}^{2}\right)$,

$$
\begin{aligned}
\Re\left(\phi\left(\mathrm{i} u_{2}, v_{1}\right)\right) & =2-\alpha-\gamma-\frac{\gamma(1-\gamma) v_{1}}{\gamma^{2}+(1-\gamma)^{2} u_{2}^{2}} \\
& \leq 2-\alpha-\gamma+\frac{\gamma(1-\gamma)\left(1+u_{2}^{2}\right)}{2\left(\gamma^{2}+(1-\gamma)^{2} u_{2}^{2}\right)} \\
& =-\frac{(1-\gamma)(1-2 \gamma) u_{2}^{2}}{2 \gamma\left(\gamma^{2}+(1-\gamma)^{2} u_{2}^{2}\right)} \leq 0 .
\end{aligned}
$$

Therefore, by Lemma 1.4, we have $\Re p(z)>0$ in \mathbb{U}, hence $\Re \frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{D, n} f(z)}<\gamma, z \in$ \mathbb{U}, or equivalently $\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}-2\right)<-\beta, z \in \mathbb{U}$, where β is given by (10). Consequently, $f \in S D_{\lambda}^{\nu, n}(\beta)$.

Remark 2.4. Taking $\lambda=0$ and $\nu=0$, we obtain a particular case of Theorem 2.5 from [1].

Theorem 2.5. $S D_{\lambda}^{\nu+1, n}(\alpha) \subset S D_{\lambda}^{\nu, n}(\alpha), \nu>-1$.
Proof. Let $f \in S D_{\lambda}^{\nu+1, n}(\alpha)$. Therefore, we have

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu+1, n} f(z)}-2\right)<-\alpha, z \in \mathbb{U} . \tag{12}
\end{equation*}
$$

Let w be a regular function in the unit disk \mathbb{U}, with $w(0)=0$, defined by (6). Using (1) and (2), the equality (7) may be written as

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda}^{\nu+1, n} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{\nu+1+(3-2 \alpha+\nu) w(z)}{(\nu+1)(1+w(z))} . \tag{11}
\end{equation*}
$$

Differentiating (13) logarithmically and multiplying by z, we obtain

$$
\begin{equation*}
\frac{z\left(\mathcal{D}_{\lambda}^{\nu+1, n} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{\nu+1, n} f(z)}-\frac{z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{(3-2 \alpha+\nu) z w^{\prime}(z)}{\nu+1+(3-2 \alpha+\nu) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} \tag{14}
\end{equation*}
$$

Using (1) in (14) we get

$$
\begin{align*}
& \frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} f(z)-2 \mathcal{D}_{\lambda}^{\nu+1, n} f(z)}{\mathcal{D}_{\lambda}^{\nu+1, n} f(z)}-\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)-2 \mathcal{D}_{\lambda}^{\nu, n} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)} \tag{15}\\
& =\frac{(3-2 \alpha+\nu) z w^{\prime}(z)}{\nu+1+(3-2 \alpha+\nu) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)}
\end{align*}
$$

Using (7) in (15) we get after some calculations the following

$$
\frac{\frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu+1, n} f(z)}-2+\alpha}{1-\alpha}=\frac{2 z w^{\prime}(z)}{(1+w(z))(\nu+1+(3-2 \alpha+\nu) w(z))}-\frac{1-w(z)}{1+w(z)} .
$$

We claim that $|w(z)|<1$ for $z \in \mathbb{U}$. Otherwise there exists a point $z_{0} \in \mathbb{U}$ such that $\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Using Lemma 1.3, we obtain

$$
\frac{\frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} f\left(z_{0}\right)}{\mathcal{D}_{\lambda}^{\nu+1, n} f\left(z_{0}\right)}-2+\alpha}{1-\alpha}=\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(\nu+1+(3-2 \alpha+\nu) w\left(z_{0}\right)\right)}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)} .
$$

Thus

$$
\Re\left(\frac{\frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} f\left(z_{0}\right)}{\mathcal{D}_{\lambda}^{\nu+1, n} f\left(z_{0}\right)}-2+\alpha}{1-\alpha}\right) \geq \frac{1}{2(2-\alpha+\nu)}>0
$$

which contradicts (12). Hence $|w(z)|<1$ for $z \in \mathbb{U}$ and from (6) follows (4). Consequently, $f \in S D_{\lambda}^{\nu, n}(\alpha)$.

THEOREM 2.6. $S D_{\lambda+1}^{\nu, n}(\alpha) \subset S D_{\lambda}^{\nu, n}(\alpha),-\infty<\lambda<1$.
Proof. Let $f \in S D_{\lambda+1}^{\nu, n}(\alpha)$. Therefore, we have

$$
\begin{equation*}
\Re\left(\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda+1}^{\nu, n} f(z)}-2\right)<-\alpha, z \in \mathbb{U} \tag{16}
\end{equation*}
$$

Let w be a regular function in the unit disk \mathbb{U}, with $w(0)=0$, defined by (6).
Using (1) and (3), the equality (7) may be written as

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda+1}^{\nu, n} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{1-\lambda+(3-2 \alpha-\lambda) w(z)}{(1-\lambda)(1+w(z))} \tag{17}
\end{equation*}
$$

Differentiating (17) logarithmically and multiplying by z, we obtain
(18) $\frac{z\left(\mathcal{D}_{\lambda+1}^{\nu, n} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda+1}^{\nu, n} f(z)}-\frac{z\left(\mathcal{D}_{\lambda}^{\nu, n} f(z)\right)^{\prime}}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{(3-2 \alpha-\lambda) z w^{\prime}(z)}{1-\lambda+(3-2 \alpha-\lambda) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)}$.

Using (1) in (18) we get

$$
\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} f(z)-2 \mathcal{D}_{\lambda+1}^{\nu, n} f(z)}{\mathcal{D}_{\lambda+1}^{\nu, n} f(z)}-\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)-2 \mathcal{D}_{\lambda}^{\nu, n} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=
$$

$$
\begin{equation*}
\frac{(3-2 \alpha-\lambda) z w^{\prime}(z)}{1-\lambda+(3-2 \alpha-\lambda) w(z)}-\frac{z w^{\prime}(z)}{1+w(z)} . \tag{19}
\end{equation*}
$$

Using (7) in (19) we get after some calculations the following

$$
\frac{\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda+1}^{\nu, n} f(z)}-2+\alpha}{1-\alpha}=\frac{2 z w^{\prime}(z)}{(1+w(z))(1-\lambda+(3-2 \alpha-\lambda) w(z))}-\frac{1-w(z)}{1+w(z)} .
$$

We claim that $|w(z)|<1$ for $z \in \mathbb{U}$. Otherwise there exists a point $z_{0} \in \mathbb{U}$ such that $\max _{|z|<\left|z_{0}\right|}|w(z)|=\left|w\left(z_{0}\right)\right|=1$. Using Lemma 1.3, we obtain

$$
\frac{\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} f\left(z_{0}\right)}{\mathcal{D}_{\lambda+1}^{D_{1+1}} f\left(z_{0}\right)}-2+\alpha}{1-\alpha}=\frac{2 k w\left(z_{0}\right)}{\left(1+w\left(z_{0}\right)\right)\left(1-\lambda+(3-2 \alpha-\lambda) w\left(z_{0}\right)\right)}-\frac{1-w\left(z_{0}\right)}{1+w\left(z_{0}\right)} .
$$

Thus

$$
\Re\left(\frac{\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} f\left(z_{0}\right)}{\mathcal{D}_{\lambda+1}^{\nu, n} f\left(z_{0}\right)}-2+\alpha}{1-\alpha}\right) \geq \frac{1}{2(2-\alpha-\lambda)}>0,
$$

which contradicts (16). Hence $|w(z)|<1$ for $z \in \mathbb{U}$ and from (6) follows (4). Consequently, $f \in S D_{\lambda}^{\nu, n}(\alpha)$.

Theorem 2.7. Let $f \in \Sigma$ satisfying the condition

$$
\begin{gather*}
\Re\left(\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}-2\right)<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)}, z \in \mathbb{U}, \\
n \in \mathbb{N}_{0},-\infty<\lambda<2, \nu>-1, c>0 \tag{20}
\end{gather*}
$$

$$
F(z)=\frac{c}{z^{c+1}} \int_{0}^{z} t^{c} f(t) d t \in S D_{\lambda}^{\nu, n}(\alpha) .
$$

Proof. From the definition of F we have

$$
\begin{equation*}
z\left(\mathcal{D}_{\lambda}^{\nu, n} F(z)\right)^{\prime}=c \mathcal{D}_{\lambda}^{\nu, n} f(z)-(c+1) \mathcal{D}_{\lambda}^{\nu, n} F(z) . \tag{21}
\end{equation*}
$$

Using (21) and (1), the inequality (20) may be written as

$$
\Re\left(\frac{\frac{\mathcal{D}_{\lambda}^{\nu, n+2} F(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}+(c-1)}{1+(c-1) \frac{\mathcal{D}_{\lambda}^{\nu, n} F(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}}-2\right)<-\alpha+\frac{1-\alpha}{2(1-\alpha+c)} .
$$

Let w be a regular function in the unit disk \mathbb{U}, with $w(0)=0$, defined by

$$
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}{\mathcal{D}_{\lambda}^{\nu, n} F(z)}-2=-\frac{1+(2 \alpha-1) w(z)}{1+w(z)} .
$$

This equality may be written as

$$
\begin{equation*}
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}{\mathcal{D}_{\lambda}^{\nu, n} F(z)}+c-1=\frac{c+(2-2 \alpha+c) w(z)}{1+w(z)} \tag{22}
\end{equation*}
$$

Differentiating (22) logarithmically and simplifying we obtain

$$
\begin{gathered}
\frac{\frac{\mathcal{D}_{\lambda}^{\nu, n+2} F(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}+(c-1)}{1+(c-1) \frac{\mathcal{D}_{\lambda}^{\nu, n} F(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}}-2 \\
=-\left(\alpha+(1-\alpha) \frac{1-w(z)}{1+w(z)}\right)+\frac{2(1-\alpha) z w^{\prime}(z)}{(1+w(z))(c+(2-2 \alpha+c) w(z))} .
\end{gathered}
$$

The remaining part of the proof is similar to that of Theorem 2.1.
Remark 2.8. Taking $\lambda=0$ and $\nu=0$, we obtain Theorem 2.2 from [6].
THEOREM 2.9. $f \in S D_{\lambda}^{\nu, n}(\alpha)$ if and only if the integral operator $F \in$ $S D_{\lambda}^{\nu, n+1}(\alpha)$, where $F(z)=\frac{1}{z^{2}} \int_{0}^{z} t f(t) d t$.

Proof. From the definition of F we have

$$
\begin{equation*}
z\left(\mathcal{D}_{\lambda}^{\nu, n} F(z)\right)^{\prime}+2 \mathcal{D}_{\lambda}^{\nu, n} F(z)=\mathcal{D}_{\lambda}^{\nu, n} f(z) \tag{23}
\end{equation*}
$$

By using the relation (1), the equality (23) becomes $\mathcal{D}_{\lambda}^{\nu, n} f(z)=\mathcal{D}_{\lambda}^{\nu, n+1} F(z)$. Hence $\mathcal{D}_{\lambda}^{\nu, n+1} f(z)=\mathcal{D}_{\lambda}^{\nu, n+2} F(z)$. Therefore

$$
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{\mathcal{D}_{\lambda}^{\nu, n+2} F(z)}{\mathcal{D}_{\lambda}^{\nu, n+1} F(z)}
$$

This completes the proof.
Remark 2.10. Taking $\lambda=0$ and $\nu=0$, we obtain Theorem 2.3 from [6].
ThEOREM 2.11. $f \in S D_{\lambda}^{\nu, n}(\alpha)$ if and only if the integral operator $F \in$ $S D_{\lambda}^{\nu+1, n}(\alpha)$, where $F(z)=\frac{\nu+1}{z^{\nu+2}} \int_{0}^{z} t^{\nu+1} f(t) d t$.

Proof. From the definition of F we have

$$
\begin{equation*}
z\left(\mathcal{D}_{\lambda}^{\nu, n} F(z)\right)^{\prime}+(\nu+2) \mathcal{D}_{\lambda}^{\nu, n} F(z)=(\nu+1) \mathcal{D}_{\lambda}^{\nu, n} f(z) \tag{24}
\end{equation*}
$$

By using the relation (2), the equality (24) becomes $\mathcal{D}_{\lambda}^{\nu, n} f(z)=\mathcal{D}_{\lambda}^{\nu+1, n} F(z)$.
Hence $\mathcal{D}_{\lambda}^{\nu, n+1} f(z)=\mathcal{D}_{\lambda}^{\nu+1, n+1} F(z)$. Therefore

$$
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{\mathcal{D}_{\lambda}^{\nu+1, n+1} F(z)}{\mathcal{D}_{\lambda}^{\nu+1, n} F(z)}
$$

This completes the proof.

THEOREM 2.12. $f \in S D_{\lambda}^{\nu, n}(\alpha)$ if and only if the integral operator $F \in$ $S D_{\lambda+1}^{\nu, n}(\alpha)$, where $F(z)=\frac{1-\lambda}{z^{2-\lambda}} \int_{0}^{z} t^{1-\lambda} f(t) d t$.

Proof. From the definition of F we have

$$
\begin{equation*}
z\left(\mathcal{D}_{\lambda}^{\nu, n} F(z)\right)^{\prime}+(2-\lambda) \mathcal{D}_{\lambda}^{\nu, n} F(z)=(1-\lambda) \mathcal{D}_{\lambda}^{\nu, n} f(z) \tag{25}
\end{equation*}
$$

By using the relation (3), the equality (25) becomes $\mathcal{D}_{\lambda}^{\nu, n} f(z)=\mathcal{D}_{\lambda+1}^{\nu, n} F(z)$. Hence $\mathcal{D}_{\lambda}^{\nu, n+1} f(z)=\mathcal{D}_{\lambda+1}^{\nu, n+1} F(z)$. Therefore

$$
\frac{\mathcal{D}_{\lambda}^{\nu, n+1} f(z)}{\mathcal{D}_{\lambda}^{\nu, n} f(z)}=\frac{\mathcal{D}_{\lambda+1}^{\nu, n+1} F(z)}{\mathcal{D}_{\lambda+1}^{\nu, n} F(z)} .
$$

This completes the proof.

REFERENCES

[1] F.M. Al-Oboudi and H.A. Al-Zkeri, On some classes of meromorphic starlike functions defined by a differential operator, Global Journal of Pure and Applied Mathematics, 3 (2007), 1-11.
[2] N.E. Cho and J.A. Kim, On certain classes of meromorphically starlike functions, Int. J. Math. Math. Sci., 18 (3) (1995), 463-468.
[3] I.S. Jack, Functions starlike and convex of order α, J. Lond. Math. Soc., 3 (1971), 469-474.
[4] S.S. Miller and P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289-305.
[5] P. Sharma, R.K. Raina and G.Ş. Sălăgean, Some geometric properties of analytic functions involving a new fractional operator, Mediterr. J. Math., 13 (2016), 4591-4605.
[6] B. A. Uralegaddi and C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Aust. Math. Soc., 43 (1991), 137-140.

Received August 1, 2019
Accepted December 4, 2019

Babeş-Bolyai University
Faculty of Mathematics and Computer Science
Department of Mathematics
Cluj-Napoca, Romania
E-mail: szatmari.eszter@math.ubbcluj.ro

