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ON A CLASS OF MEROMORPHIC FUNCTIONS
DEFINED BY USING A FRACTIONAL OPERATOR

ESZTER GAVRIS

Abstract. We introduce a class of meromorphic functions SDY"(«) using the
fractional operator

pI— 1
DY (2 ;+Z v+ ’”1 (k+2)" a2,
k+1
D

—00 <A< 2,v>-1,n€eNyg=1{0,1,2,... }. Some inclusion relations and other
properties of the class are investigated.
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1. INTRODUCTION

Let ¥ denote the class of functions of the form f(z) = 1 + 372 ax2,
which are analytic in U* = {z : 0 < |z| < 1}.
Motivated by [5], we define the fractional operator Dy" : £ — X, by

vn 1 = <V+ 1)k+1 1 k
DY f(2) =~ 4+ Y o (4 2) gk,

where —co < A < 2,v > —1,n € Ny, z € U* and the symbol () denotes the
Pochhammer symbol, for v € C, defined by

— Tk ]
(wk—{WW+&)47+k_1%k€N = rm)77€C\Zm

We note that the operator Dy f(2) = L + 7% (k + 2)"ay.2* was introduced
and studied in [6].

REMARK 1.1. The operator D" satisfies the following identities:
(1) DY f(2) = 2D f(2) + 2(DY" f(2))

v+ 2 DY
v+1 >‘

@) DY () = () + =D 1))
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2—A 1
(3) DYt f(2) = ﬁpi’nf(z) + ﬁz(pi’nf(z))/,
where —oco < A < 2,v > —1,n € Ny.
DEFINITION 1.2. A function f € ¥ is said to be in the class SDY"(«) if it
satisfies

DK,nJrlf(Z) B B
(4) R (Dinf(z) 2) < -,z €0,

for some (0 < a<1),—c0o < A< 2,v>—1,n€ Ny.
To prove our results, we need the followings.

LEMMA 1.3 ([3]). Let the function w be regular and nonconstant in |z| < 1,
with w(0) = 0. If |w| attains its mazimum value on the circle |z] =r <1 at a
point zg, then we have zow'(z9) = kw(z), where k is a real number and k > 1.

LEMMA 1.4 ([4]). Let ¢(u,v) be a complex valued function, ¢ : D — C, D C
C2, and let u = uy +iug, v = v1 +ive. Suppose that the function ¢(u,v) satisfies
the following conditions:

(i) ¢(u,v) is continuous in D;

(ii) (1,0) € D and R(¢(1,0)) > 0,

(iii) R(p(iug,v1)) <0 for all (iug,v1) € D such that v1 < 7(1;1@.

Let p(z) = 1+ p1z + p22% + ... be reqular in U such that (p(z),2p'(z)) € D
for all z € U. If R(p(p(z), 20/ (2))) > 0,z € U, then R(p(z)) >0,z € U.

2. MAIN RESULTS
To prove our results, we use the methods used in [2, 6].
THEOREM 2.1. SD¥" ! (a) € SDY"(a),n € Ny.
Proof. Let f € SD¥"*!(a). Therefore, we have

(5) %(W—2><—Q,ZGU.
Dy f(2)
Let w be a regular function in the unit disk U, with w(0) = 0, defined by
) DK’::lf(z) 1+ a-Tu()
D" f(2) 1+ w(z)

The equality (6) may be written as
™ DK’:ZI f(2) _ 1+ (3~ 2a)u(z)
D" f(2) 1+ w(z)
Differentiating (7) logarithmically and multiplying by z, we obtain
2DV 2D f(2) 23— 2a0)w'(2)  2w(2)

(8) DK’"Hf(Z) B D™ f(z) T 1+ (3—20)w(z) 1+w(z)
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Using (1) in (8) we get
DY f(z) — 2D (2) DY f(2) - 2D7" f(2)
D" £(2) ) D)
2(3 = 2a)w'(2) 2w'(2)
T 1+ (B3—2a)w(z) 1+w(z)
Using (7) in (9) we get after some calculations the following

DY f(2)

(9)

-2+«

DY HLf(2) B 2zw'(z) 1—w(2)
l1-a T (I+w)A+ B -20)w(z) 1+w)
We claim that |w(z)| < 1 for z € U. Otherwise there exists a point zp € U
such that \Ilrflli(l |lw(z)| = |w(z0)] = 1. Using Lemma 1.3, we obtain
’DV’”Jr2 2
D?’”“fgzzi —2ta B 2kw(zo) 1 —w(z0)
e T (T+w(20)(1+ B —2)w(z))  1+w(z0)’
Thus pmio
Bl _9ta
o | 220 s_1 o
1—a ~22-a) ’

which contradicts (5). Hence |w(z)| < 1 for z € U and from (6) follows (4).
Consequently, f € SD{™(«). O

REMARK 2.2. Taking A = 0 and v = 0, we obtain Theorem 2.1 from [6].

Using Lemma 1.4 instead of Lemma 1.3 we will obtain an improvement of
Theorem 2.1.

THEOREM 2.3. SDK’nH(a) C SDY"™(B), for n € Ny, where

5420 —+/(3—2a)2+8
4 Y

(10) 8=
and € (a,1).

Proof. Let [ € SDK’nH(a), where 0 < a < 1, and let p be a function
defined by

Dl/,n—‘rlf(z)
(11) W=V+(1—V)p(z)77>l,zeu
where v = (B-20)+ T (8220)°+8 " Then the function p is of the form p(z) =

1+ piz+ pez® + ... and analymc in U. Differentiating logarithmically both
sides of (11) and making use of the identity (1), we obtain

DY f(2) 2(1—)p'(2)
DY f(2) v+ (1 =7)p(2)’

=7+ 1 =p(z) +
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Di,n+2f(z)
—%<DWH1—2 —a
=R(2—a—7-(1-7)p(2)

We define the function ¢ by

or

P(u,v) =2—a—y—(1-7)u—
Then ¢ has the following properties:
(i) ¢ is continuous in D = (C — {% ) x C;
(i) (1,0) € D and R(¢(1,0)) =1 —a > 0;
(iii) for all (iug,v1) € D such that v; < —3(1 4 u3),
(1= u
v+ (1= 7)%u3
(1 =) +ud)
2(7% + (1= 7)?u3)
(L-n =273 _
N 2 2,2\ =
2y(7% + (1 —7)%u3)

v,n+1
Therefore, by Lemma 1.4, we have Rp(z) > 0 in U, hence %D*u,niﬂz) <7v,z€
A

R(p(iug,v1)) =2—a—v—

<2—-—a—v+

f(z)
. DY f(2) .
U, or equivalently ¥ DG) T 2| < —fB,z € U, where 3 is given by (10).
A
Consequently, f € SD{™(8). O

REMARK 2.4. Taking A = 0 and v = 0, we obtain a particular case of
Theorem 2.5 from [1].

THEOREM 2.5. SD¥™"(a) € SDY™ (), v > —1.

Proof. Let f € SDKH’"(a). Therefore, we have
v+1,n+1
DY f(2)

Let w be a regular function in the unit disk U, with w(0) = 0, defined by (6).
Using (1) and (2), the equality (7) may be written as

DY E(2) v +1+ (3—2a+ v)w(z)

(12) - 2) < —-a,z€U.

13 AT =
(13) DY f(2) v+ 1)1+ w(z))
Differentiating (13) logarithmically and multiplying by z, we obtain
) ZOIE) ADPIE) | G2 nadls) | sw)
DY f(2) DY"f(z)  v4+14+@B-2a+v)w(z) 1+w(z)
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Using (1) in (14) we get
DY (z) — 2D (z) DY () — 2D (2)
DY f(2) - DY f(2)
_ B-2a+4v)eu'(z) 2'(2)
v+1+B-2a+v)w(z) 1+w(z)
Using (7) in (15) we get after some calculations the following
va1,n+1
Dﬁ;“”f{i? —2+ta B 220/ (2) 1= w(z)
11—« 1+wkz)rv+1+@B-2a+rv)w(z)) 1+w(z)
We claim that |w(z)]
such that max |w(z)]

(15)

< 1 for z € U. Otherwise there exists a point zy € U
= |w(zp)| = 1. Using Lemma 1.3, we obtain

|21<|=0]
,DK+1,n+1f(ZO)
D) T 2kw(z0) 1= w(z)
1—a (M4 w(z0) v+ 14+ (3 —2a+v)w(z)) 1+ w(zo)
Thus o
Sy, ~ 2t e 1
R|— - > >0
e “22-a+v) ’

which contradicts (12). Hence |w(z)| < 1 for z € U and from (6) follows (4).
Consequently, f € SD{™(a). O

THEOREM 2.6. SDYV (o) C SDY™(ar), =00 < A < 1.
Proof. Let f € SDYY (). Therefore, we have

Dl/ n+1f(z)
x Atl —a, z .
(16) < DI ) 2) <-a,z€U

Let w be a regular function in the unit disk U, with w(0) = 0, defined by (6).
Using (1) and (3), the equality (7) may be written as

Aﬂf() 1—=XA+(3=2a—-MNw(z)

7
1 D) 0N ()
Differentiating (17) logarithmically and multiplying by z, we obtain
as) (DY f(2)) 2DYMf(R) . (B2 Nzw'(z)  zw(2)
Dy f(2) DY"f(z)  1-A+(B-2a—Nw(z) 1+w(z)

Using (1) in (18) we get
DY f(2) —2DYT f(z) DY p(z) — 2DY" f(2)

Dy f(2) D" f(2)
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(B-2a—-Nzuw'(z)  zu'(z)
I-A+B-2a—MNw(z) 1+w(z)

Using (7) in (19) we get after some calculations the following

(19)

DY n+1f(z)
A‘jrllllf(Z) —2+a B 22w’ (2) 1-w(?)
1-« 1+ w)A=A+ B =20 —-Nw(z) 14+w(z)

We claim that |w(z)| < 1 for z € U. Otherwise there exists a point zp € U
z =

|
)|

such that ‘r|nax lw( |lw(zo)| = 1. Using Lemma 1.3, we obtain
DU o)
Dy 2t 2k (z0) 11— w(z)
-« (1+w(20))(1 =X+ (3—2a—Nw(z0)) 1+ w(zo)
Thus )
Diff f(z0)
R Dy f(20) 2+a > 1 S0
1—a —22-—a-]) ’

which contradicts (16). Hence |w(z)| < 1 for z € U and from (6) follows (4).
Consequently, f € SD{™(«). O

THEOREM 2.7. Let f € X satisfying the condition

Dy () 1-a
§R<'D§\7nf<z)2 <*a+m,Z€U,

(20) neNy,—co<A<2v>—-1,¢>0,
then

C

F(2) = o / t°f(t)dt € SDY"™ ().
0

Proof. From the definition of F' we have
(21) 2(DY"F(z)) = ¢DY" f(2) — (¢ + 1)DY"F(2).
Using (21) and (1), the inequality (20) may be written as

v,n+2
gb,n+1ing) + (C — 1) 1 —
A z) «
" orre 2 ST Y e g
— [, Nl S/ -
1 + (C 1)Di’n+1F(Z)

Let w be a regular function in the unit disk U, with w(0) = 0, defined by
DY E(2) o L+ (2a—1u(z)

DY F () T 1+ w(z)
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This equality may be written as

DY R (2) o1 + (2 = 2a+ c)w(z)

(22) DY F(z) 14+ w(z)

Differentiating (22) logarithmically and simplifying we obtain

DY R(2)
DY R(2)

1+ (c—-1)

+(c—1)

DY R (2)

< La )1 - w(z)) N 2(1 — a)zw'(2)
=—|(a -« .
1+ w(z) (I+w(2)(c+ (2 —2a+c)w(z))
The remaining part of the proof is similar to that of Theorem 2.1. O

REMARK 2.8. Taking A =0 and v = 0, we obtain Theorem 2.2 from [6].
THEOREM 2.9. f € SDY"(a) if and only if the integral operator F &
SDK’"H(Q), where F(z) = Z% Jtf(t)dt.
0

Proof. From the definition of F' we have
(23) z(DY"F(2)) + 2DY"F(2) = DY f(2).
By using the relation (1), the equality (23) becomes DY™ f(z) = DK’"HF(Z).
Hence DK’"H f(z) = DK’”+2F(2). Therefore
DY f(z) _ DYTF(z)
DY"f(z)  DY™PE(2)
This completes the proof. ]

REMARK 2.10. Taking A = 0 and v = 0, we obtain Theorem 2.3 from [6].
THEOREM 2.11. f € SD{"(«) if and only if the integral operator F &
z
SDKH’”(a), where F(z) = %5 [T f(t)dt.
0

Proof. From the definition of F' we have
(24) 2(DY"F(2)) + (v +2)DY"F(2) = (v + 1)DY" f(2).
By using the relation (2), the equality (24) becomes DY" f(z) = Dy " F(2).
Hence DY f(z) = DYV F(2). Therefore
DZ:TLJrlf(Z) _ DK+1,H+1F(Z) |
Dzvnf(z) DK"F].;TLF(Z)
This completes the proof. O
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THEOREM 2.12. f € SD{" () if and only if the integral operator F &
A

z

SDYY (), where F(z) = =12 [t )

z

[en]

Proof. From the definition of ' we have
(25) 2Dy F(2)) + (2= NDY"F(2) = (1 = )DY"f(2).
By using the relation (3), the equality (25) becomes DY" f(2) = DY}, F(2).

Hence DK’”H f(z)= szf 'F(2). Therefore

DY f(z)  DYITIF(2)

Dy"f(2)  DyiF(2)

This completes the proof. O
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