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WELL-POSEDNESS AND EXPONENTIAL DECAY
FOR A LAMINATED BEAM IN THERMOELASTICITY
OF TYPE III WITH DELAY TERM

MADANI DOUIB, SALAH ZITOUNI, and ABDELHAK DJEBABLA

Abstract. In this article, we study the well-posedness and asymptotic behaviour
of solutions to a laminated beam in thermoelasticity of type III with delay term
in the first equation. We show that the system is well-posed by using Lumer-
Philips theorem and prove that the system is exponentially stable if and only if
the wave speeds are equal.
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1. INTRODUCTION

In the present paper, we are concerned onedimensional laminated beam
system in thermoelasticity of type III with delay term, which has the form

prow+G (Y — @), + o (o,8) + popr (v, t —7) =0,
(1) P2 (3w - w)tt -G (w - @w) - D (3"‘) - w):m: + Jatz = 07

Powt + G (1/} - QDI) + %'yw + %ﬁwt — Dwyy = Oa

P39tt - 59:0:0 +o (3(*) - Q,Z))tx - ketazx = 0,

where (z,t) € (0,1) x (0,4+00), with the following initial and boundary con-
ditions

¢(x,0) = po(x), pr(,0) = p1(), z € [0,1],
$(2,0) = Go(x), tu(z,0) = 1 (x). relo).
w(z,0) = wo(x),wi(x,0) = wi(z), xz € [0,1],
(2) 0(x,0) = Oy(x),0(z,0) = 01 (x), x € [0,1],
o (x,t —7) = fo(z,t—71), x € (0,1), te(0,7),
0z(0,t) = 1(0,t) = w(0,t) = 0(0,t) =0, vt > 0,
e (1,t) =¥ (1,t) =w (1,t) = 0,(1,t) = 0, vt > 0,

\

Here ¢ = ¢(x,t) denotes the transverse displacement of the beam which
departs from its equilibrium position, ¢ = 1(z, t) represents the rotation angle.
w = w(z,t) is proportional to the amount of slip along the interface at time ¢
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and longitudinal spatial variable x. § = 0(x,t) is the differential temperature,
and p1, p2, p3, G, D, o, v, B, 0, k, u1 are positive constants, us is a real
number, and 7 > 0 represents the time delay. With the increasing demand
of advanced performance, the vibration suppression of the laminated beams
has been one of the main research topics in smart materials and structures.
Laminated beam describes that two identical homogeneous beams are allowed
between the beams, which were placed on top of each and a slip at the interface.
These composite laminates usually have superior structural properties such as
adaptability. The design of their piezoelectric materials can be invoked as
both actuators and sensors [30]. Hansen [9] proposed a model of laminated
beam based on the Timoshenko system which is one of particular interest.
Hansen and Spies [10] studied the boundary stabilization of laminated beams
with structural damping, which is

p1ei + G (Y — o), =0,
3pawy + 3G (Y — ps) + dyw + 4wy — 3Dw,, = 0,

where (z,t) € (0,1) x (0,400), and p1, G, p2, D, 7y, B are positive constants
coefficients. p;p is the density of the beams, G is the shear stiffness, ps is the
mass moment of inertia, D is the flexural rigidity, y is the adhesive stiffness of
the beams, and 3 is the adhesive damping parameter. For asymptotic behav-
ior results to laminated beams, we refer the reader to [1, 15, 16, 17, 18, 29] and
the references therein. For the Timoshenko system of thermo-viscoelasticity
of type III, Messaoudi and Said-Houari [22] considered the following one-
dimensional linear Timoshenko system of thermoelastic type:

prow — K (pz +¢), =0,

,039tt — 0020 + YY1tz — Kbtz = 0,
where (z,t) € (0,1) x (0,400), they used the energy method to prove an
exponential decay under the condition 4 = £2 . A similar result was also
obtained by Rivera and Racke [28]. Since this theory predicts an infinite
speed of heat propagation, many theories have emerged, to overcome this
physical paradox. A large number of interesting decay results depending on
the stability number have been established, (see [7, 20, 21, 23] and references
therein). In [19],Y. Luan, W. Liu and G. Li considered a coupled system of a
laminated beam with thermoelasticity of type III, which has the form:

prpie + G (Y — ¢z), =0,

I, Bw =)y —DBw—1),, — G — pz) +aby =0,
Ly wit — Dy + G (Y — 0z) + 3810 + 5Pawr = 0,

p29tt - 503333 +7 (3"‘) - w)tt:}c - ket:mc = 07

where (z,t) € (0,1) x (0,+00), they used the energy method to prove an ex-
ponential decay result for the case of equal wave speeds. Time delays arise
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in many applications because most phenomena naturally depend not only on
the present state but also on some past occurrences. In recent years, the
PDEs with time delay effects have become an active area of research. Many
authors have focused on this problem (see [2, 4, 7, 24, 25, 26, 31, 32]). The
presence of delay may lead to a source of instability. In [4] for example, R.
Datko, J. Lagnese and M. P. Polis proved that a small delay may destabi-
lize a system. Nicaise, Pignotti and Valein [26] replaced the constant delay
term in the boundary condition of [24] by a time-varying delay term and ob-
tained an exponential decay result under an appropriate assumption on the
weights of the damping and delay. Moreover, Kafini et al. [13] examined
a coupling Timoshenko-thermoelasticity of type III system with time delay
and established exponential and polynomial stability results depending on the
wave propagation speeds. For other related results, we refer the reader to
[3, 5, 6, 11, 12, 14]. The purpose of this work is to study the well-posedness
and asymptotic behaviour of solutions to the laminated beam (1)-(2) in ther-
moelasticity of type III with delay term appearing in the control term in the
first equation. Introducing the delay term poy; (x,t — 7) makes the problem
different from those considered in the literature. The plan of the paper is as
follows. In Section 2, we introduce some preliminaries. In Section 3, we prove
the well-posedness of the system. In Section 4, we prove that the system is
exponentially stable in the case of equal wave speeds.

2. PRELIMINARIES

In order to prove the well-posedness result, we introduce as in [24] the new
variable z (z, p,t) = ¢t (z,t — 7p), (z,p,t) € (0,1) x (0,1) x (0,00) . Thus, we
have 72 (z, p,t) + 2, (z,p,t) = 0, (z,p,t) € (0,1) x (0,1) x (0, 00) . Therefore,
system (1) takes the form

prew + G (0 — @z), + e (v, t) + poz (z,1,1) = 0,

p2 (3w — 7/’)@5 —G W —z) — D (Bw — 1#);” + 00 =0,
(3) pPawit + G (w - @:c) + %VW + %5% — Dwz, = 0,

P30t — 005 + 0 (3w - ¢)tz — kOize = 0,

Tzt (Jf'? P t) + 2 (JJ, P t) =0,

where (z, p,t) € (0,1)x(0,1) x (0,00) , with the following initial and boundary
conditions

90(1:¢ O) = 800($)780t(x70) = 901(:13)7 T € [07 1] ;
¢(an0) = %110(1‘)7%(%0) = wl(l‘)a T € [0? 1]7
w(z,0) = wo(x),w(x,0) = wi(x), z€]0,1],

(@) 0(x,0) = by(x),0¢(x,0) = 61 (x), x €10,1],
Z(:U,p,O):fo(l’,—Tp), fL‘G(O,l), p€(0a1>7
2 (x,0,t) = ¢ (x, 1), xz € (0,1), t € (0,00),
vz(0,t) = (0,t) = w(0,t) = 0(0,t) =0, Vt>0,
o (L, t) = (1,t) =w (1,t) = 0,(1,t) =0, Vt>0
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In order to be able to use Poincaré’s inequality for #, we introduce

1 1
0 (x,t) :zG(z,t)—/O Hg(x)daz—t/o 01 (z) d.

Then by (3)4 we have
1
/ 0 (x,t)dx =0, Vt > 0.
0

In this case, Poincaré’s inequality is applicable for 8, furthermore, (go,gb,w,@,z)
satisfies the same equations and boundary conditions. In what follows, we will
work with 8. For convenience, we write # instead of 6.

We will assume that

(5) pa > |pel -

and show the well-posedness of the problem and that this condition is sufficient
to prove the uniform decay of the solution energy.

THEOREM 2.1 (Lumer-Philips). Let A : D(A) C H — H be a linear op-
erator with dense domain D (A) in a Hilbert space H. Then A is mazimal
monotone if and only if —A is the infinitesimal generator of a Cy-semigroup
of contractions on H (see [8, 27]).

3. WELL-POSEDNESS OF THE PROBLEM

In this section, we prove the well-posedness of problem (3)—(4) by using the
Lumer-Philips theorem.

From now on, we let
U= (907 Pt 3w — "l,Z), 30){/ - ¢t7wawta 07 9157 Z)T

)

then (3) and (4) can be written as an evolutionary equation

© dit(t) —AU(t), t>0,

U (0) = Uy = (00, 1, 3wo — %0, 3w1 — 11, w0, w1, 00,01, fo)”

where A is a linear operator defined by

© o Pt
Pt —pj(w—%n)x_%@t (.’L’,t)-%Z(I’,l,t)
3w —1 3(5)15 —
Swt — wt p% (¢ - Qox) + /72 (3("} - T/J)M - I%Htx
A w = W
w —& (4 )— by, - 4By, 4+ Dy,
¢ p2 P 3p2 3p2 Ut T pyrET
0 0,
9; /%‘91:10 - ;;*3 (SW 1/})1537 + p%etxx
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We consider the following spaces:

{weL2(0,1):/01w(s)ds:o},

H!(0,1) = H'Y0,1)nL2(0,1),
HZ(0,1) = {we H*(0,1):w,(0) =w, (1) =0},

L2(0,1)

and the energy space:

H = HI0,1) x L2(0,1) x H}(0,1) x L2 (0,1) x H{ (0,1)
xL*(0,1) x H} (0,1) x L2(0,1) x L*((0,1),L*(0,1)).

The inner product on Hilbert space H is defined by
_ 1 1 ~ 1
(v.0) = pl/ o prda + G/ (6 = 2) (&= @) dz + 47/ wioda
H 0 0 0
1 ~ 1
+p2/ (Bw — ), (3&) - w) dz + 3p2/ wypdx
0 t 0

+D /01 (3w — ), (3@ - &)x dz + 3D /01 wp@pda

1 1 1,1
+p3/ 0:0;dx + 5/ 0,.0,.dx + )\/ / zzdpdz,
0 0 0 0

where A is the positive constant satisfying

. Tl <A <7 @ua —|pel), if  |po| <,
(7) \ £ _
=T, it fpe| = .

The domain of A is

UecH|p0cH2(0,1)NH!(0,1),
w, € H2(0,1) N HE (0,1), b, w € HE (0,1),
¢1,0, € HL(0,1), 80 + k6, € H2(0,1), 7
z,2,€ L*((0,1),L%(0,1)), 2(z,0) = ¢ (2)

®) DA =

and it is dense in H.
The well-posedness of problem (6) is ensured by

THEOREM 3.1. Assume that Uy € H and (5) holds. Then there exists a
unique solution U € C (RT;H) of problem (6). Moreover, if Uy € D (A), then

UeC (R DA)NC (RTH)).

Proof. To obtain the above result, we need to prove that A: D (A) — H is
a maximal monotone operator. First, we prove that A is dissipative.



6 A laminated beam in thermoelasticity of type III with delay term 63

For any U € D (A), by using the inner product and integration by parts,
we can imply that

1
(AU, U),, = —46/ wfdx—k/ 02 dx — ,ul/ ?dx
0

_N2/ eiz (w,1,t) -’E—/ / 22, (z, p, t) dpdz.
0

By using Young’s inequality, the fourth term on the right-hand side of Equa-
tion (9) gives

! |p2| |2
—Mz/ iz (z,1,t)de < / idr + = 5 2?2 (z,1,t) dz.
0 0

Also, using integration by parts and the fact that z (x,0) = ¢; (x), the last
term in the right-hand side of (9) gives

A 1 1
—/ / 22, (x,p,t)dpde = // 2 (z,p,t) dpdz
T Jo Jo

= 27 ) (90? 2 (z,1,1)) d.

9)

Consequently, (9) yields

1
(AU, U), < —4/3/ wide — k / 62 dx — (M A |M2|>/ P2da
2T 2 0
A el 2
<27 5 /02 (x,1,t)dz.

A A
Keeping in mind condition (7), we observe that u; — o ‘“—;' >0, 5 |“—22| > 0.
T T

Consequently, A is a dissipative operator. Next, we prove that the operator
Id — A is surjective. Given F' = (fy, ..., fg)T € ‘H, we prove that there exists
a unique U = (¢, ¢, 3w — ¢, (3w — ), ,w,wy, 0,6;, 2) € D (A) such that

(10) (Id— AU =F

which is equivalent to

o — o= f1,

p1oe+ G (Y — ), + g + paz (v,1,t) = p1fa,

(Bw =) — Bw — ), = fs,

p2 (3w — 1), — G (¢ — ) = D (3w — 9) , + 00t = pafa,
(11) w—w = f5,

3pawt + 3G (Y — ¢z) + 4yw + 4Bwi — 3Dwzz = 3p2 fe,
0— 0= fr,

P30t — 0020 + 0 (3w — ),y — kbOtzz = p3fs,

Tz (2, p,t) + 2, (2, p, t) = T fo.
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The last equation in (11) and the fact that z (z,0) = ¢ (z,t) , we get

(12) 2w =@ e —e T4 Te / " fy (2,5) ds,
0

(11)1, (11)s, (11)5 and (11)7 give

ot =@ — f1,
(13) fjw:_ww_)tfz (3w - ¢) - f37
0p =0— fr

Inserting (13) into (11)a, (11)4, (11)g and (11)s, we get

((p1+ p1 + p2e™ ") @ = Gpre — G (3w — ), + 3Gw,
= (p1+ p1 + p2e™") fi + prfa — pare " fol e fods,
(p2+G)(Bw—1) + Gy —3Gw — D (3w — ), + 00,
(14) {=p2(f3+ fa) + 00 fr,
(3p2 + 48 + 47y + 9G) w — 3G (3w — ¥) — 3Gps — 3Dwpy
= (3p2 +48) f5 + 3p2fo,
(030 — (0 + k) Oz + 0 (Bw — ), = p3 (fr + [3) + 00z f3 — kOua f7,

Multiplying the forth equation of system (14) by @, (3&1 - &) ,@ and 0 respec-

tively, and integrating over (0, 1), we arrive

(p1 + 1+ p2e™™) [y ppda + G [} pupeda — G [ (310.1 — ), pda
- oy (1o s .
+3G fol wepdx = (p1 + p1 + poe™7) [y frgde + p1 [y fopda
—poTe T fol fol €7 fopdsdx,

(p2+G) Ji (3w —1) (3@ - @Z}) dz + D [} (3w — 1), (3@ - 1/3) da

T

+G fol Vr (3&)—12) dz — 3G fol w (3&)—12) de + o fol 0y (3&)—1; dx

(5) 3 = po [ (s + f) (30— 0) de + 0 [} 9y (30— ) dr,

(3p2+46+47+9G) [} waodz — 3G [ (3w — ¢) @dz — 3G [ p,0de
+3D [} weipda = (3p2 +48) [ fsoda + 3ps [ fowda,

ps [ 00dz + (5 + k) [ 6,0,dx + o [} (3w — ), fdz
=03 [y (fr+ fs) 0da + 0 [ 0 f30da — k [ O fr0d,
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The sum of the equations in (15) gives the following variational formulation:
S & L NT
B (907 3W—¢7Wa9) ’ (@73('0_17[))(*)76) =L (@73‘*0_1;[}7(")30) )

(16) o
V(5,30 0,@,0) € HL(0,1) x H} (0,1) x H} (0,1) x HL (0,1),

where B : (H} (0,1) x Hj (0,1) x Hj (0,1) x H} (0, 1))2 — R is the bilinear
form defined by

B <(90a 3w — wawa O)T ) (857 3w — &aLD?é)T)
1 ~
= /0 [G (¥ — ¢x) @ - %) + (p1+ w1 + p2e™ ") @ + 3Dw,,
+po (3w — 1) (3@ - 15) +D (3w — 1), (3@ - &)x + p300
+ 3o+ 4B+ 47)wid + o (3w — 1), 04 (8 + k) 0,0,

400, (3&1 — 1;)] dzx,

and L : (H}(0,1) x Hg (0,1) x Hg (0,1) x H!(0,1)) — R is the linear func-
tional given by

AT
L<<<p,3w¢,w,9) >
1 1
= / [(01 + 1+ p2e” ") f1@ + prfad — M27€_T/ e fopds
0 0

02 (s + 1) (38— 0) + 0 (Duf7) (30— §) + (3p2 + 48) s
+3pafoid + p3 (fr + f3) 0 + 0 (O f3) 0 + k (0 fr) éa:] dz.

Now, for
V = H}(0,1) x Hg (0,1) x Hy (0,1) x H; (0,1),
equipped with the norm
3w = . w, 015 = ll—ps — Bw =) + 3wll3 + lll3 + 13w — ), 13
+ [lwzll3 + 10115 + 1162115 ,

It is clear that B and L are bounded. Furthermore, using integration by parts,
we have

B (((pu 3w - w: w, G)T 9 (()07 3w - w:wv 0)T>

1
= [;kﬂ¢—%ﬁ+wm+uywuev¢%wn@w—w2+D@w—wﬁ

+ (3p2 + 48 + 47) w? + 3Dw} + p36® + (6 + k) 62] d
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2 mng,Sw—d},w,@H%/,

for some m Thus, B is coercive.

Hence, we assert that B (-, -) is a bilinear continuous coercive form on V x V,
and L (+) is a linear continuous form on V. Applying the Lax-Milgram theorem
[27], we obtain that (16) has a unique solution

(¢, 3w —,w,0) € H (0,1) x H} (0,1) x H} (0,1) x H! (0,1),
The substitution of ¢, 3w — ¥, w and 6 into (13) yields
(@1, 3ws — g, wy, ;) € HY(0,1) x HY (0,1) x HY (0,1) x H! (0,1),
Next, it remains to show that
¢ € (HZ2(0,1)NnH(0,1)), (Bw—1),we (H*(0,1)NH(0,1)),
0 € (HZ(0,1)NH;(0,1)).
Furthermore, if (3@ - qp,@,e) = (0,0,0) € HL(0,1) x H} (0,1) x H (0,1),

then (16) reduces to

B ((807 3w - 7/17 w, G)T ) (957 07 O? O)T)
1
= /0 |: -G (3(,0 - ¢)z @ — GpzeP + 3Gwe P

+ (p1 4+ uze‘T)sO@} dz
1 1
= / [(Pl + p1 4 p2e”7) f1@ + p1fa@ — M2T€_T/
0 0
for all V¢ € H! (0,1) ,which implies
Gour = (p1 + 1 + p2e™) o +3Gw, — G (3w — ),

e’ fg¢d$:| dz

(18) !
— (o1 + p1 4 p2e™ ") f1 — prfa+ MQTeT/ e’ fods.
0

Consequently, by the regularity theory for the linear elliptic equations, it fol-
lows that

o e H?(0,1)NHL(0,1).
Moreover, (17) is also true for any ¢ € C*[0,1] C H! (0,1). Hence, we have

1 1
/ Gpp¢zdz + / [(p1 + 1+ poe™™) o — G (3w — ), + 3Guwy
0 0

1
—(p1+ 1+ p2e™7) f1 — prfa+ M27'€_T/ €Tsf9d8] ¢dx = 0,
0

for all ¢ € C'[0,1]. Thus, using integration by parts and bearing in mind
(18), we obtain

o (1) 0 (1) = 2 (0)6(0) =0, € CT [0, 1].
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Therefore, ¢, (0) = ¢, (1) = 0.Consequently, we obtain

o€ H?(0,1)NH!(0,1).
Similarly, we obtain (3w —), w € H?(0,1) N H}(0,1). Also, if we take
(@, 30 — 4, w) = (0,0,0) € H!(0,1) x H} (0,1) x H{ (0,1) in (16), then using

(11)3 and (11)7, we getéO,y + kb = p36; — p3fs + 0 (3w —),,, and we
conclude thatd® + k6, € H? (0,1). Furthermore, it is obvious from

00, + kO = ,03/ O;dx — pg/ fedr 4+ 0 (3w — ),
0 0
that (66, + kbi:) (0) = (60, + kby,) (1) = 0, then, we get 60 + k6, € H2 (0,1).
Finally, it follows, from (12), that
z(2,0) = ¢ (z) and  z,2,€L*((0,1),L*(0,1)).

Hence, there exists a unique U € D (A) such that (16) is satisfied, the operator
Id — A is surjective. Moreover, it is easy to see that D (A) is dense in H.
Consequently, the result of Theorem 3.1 follows from Lumer-Philips theorem.

U
4. EXPONENTIAL STABILITY
In this section, we show that, under the assumption |uz| < pp and % = %

for the solution of problem (3)-(4) decays exponentially to the study state.
To achieve our goal we use the perturbed energy method to produce a suitable
Lyapunov functional. We define the energy functional E (¢) as

1 1
E(t) = 2/0 {PW? + p2 (3w — )7 + 3paw? + p3b7 + G (Y — p,)°

(19)

A 1
+D (3w — )2 + 4yw? + 3Dw? + 562 + ?T / 22 (x, p,t) ds] dz.
0

If the wave speeds are equal, we have the following exponentially stable result.
THEOREM 4.1. Assume that & = 22 and (5) holds. Let U’ € H, then

there exists positive constants cg, c¢1 such that the energy E (t) associated with
problem (3)-(4) satisfies E (t) < cpe™ 1%, t > 0.

To prove our this result, we will state and prove some useful lemmas in
advance.

LEMMA 4.2. Let (p,9,w,0,z) be the solution of (3)—(4) with (7). Then the
energy functional satisfies

d 1 1
aE (t) < —46/ widz — k/ 02, dx
(20) . 0 L7
- / ?dx — 02/ 22 (z,1,t)dz < 0,
0 0
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A A
here Cy =y — —~ — 420 >0, ¢y = la]
wnere Uy M1 o0 5 = U, L2 o0 2
Proof. First, multiplying (3); by ¢, integrating over (0, 1), using integration
by parts and the boundary conditions in (4), we have

d 1 1 ) 1
o \gp [ wide | -G (Y — z) przda
0 0

1 1
=—u1/ w?dm—uz/ iz (x,1,t) de,
0 0

> 0.

(21)

note that

1 1
G/O (w—ipm><ﬂtzd$——G/0 (w—%)(w—%—w)tdw

d 1 1 1
(56 [ w-eraw)+6 [ pvan

Hence, equation (21) becomes

Ld /1 24 +G/1(¢ )2d

th pl 0 Spt . 0 Sox v
1 1 1

=G (w—wm)wtdw—m/ s0§dfv—u2/ @iz (x,1,t) de,
0 0 0

Similarly, multiplying (3)2, (3)3, (3)4 by (3w —),, 3w, 0; and integrating
over (0, 1), using integration by parts and the boundary conditions in (4), we

(22)

can get
1d 1 1
pgp (o2 [ GomtareD [ oo viar)
(23) L .
= G/o (Y — @) (3w—1p)tdm—a/0 Otz (Bw — ), dz
1 1
o ;jt <3p2/ Wy 2dz + 47/ widz + 3D/ 2d:n>

:—3G/ () — pn wtdx—4ﬁ/
(25) th <p3/ 0 dac—l—é/ 92dx> —U/O (Bw — 1), Orpda — / 07, dz.

Now, multiplying (3)s, by —z and integrating over (0,1) x (0,1), using inte-
T

gration by parts and the boundary conditions in (4), we can get

(26) 2dt/ / (z,p,t)dpdx = —/ (x,1,t) — gpf) dx.
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Finally, adding (22), (23), (24), (25) and (26), we obtain

1d 1 1 1
s o [ e+ [ w—eanen [Go—upa

1 1 1 1
+p2/ (3w — ) dz +,o3/ 02dx + 5/ 62dx +47/ w?dz
0

1
+3p2 / widz + 3D de] +§& / / (z,p,t) dpdx

= —46/ 2dx — k /Gde ,ul/ gptdw—ug/ oz (x,1,t) dz
0 0

1
2 2
5 | 2 (x,l,t)dx—i—zT/O prde.

Meanwhile, using Young’s inequality, we have

1 1
_MQ/ thz(x717t)dx§ IU;|/ Sofd ‘M2|/ 717t
0 0
Hence,

d A el /1
SEW) < -4 2 2 AR 2
% < 5/ widz — / O, dr — < e ; prdx
A ‘/i2’ / 2
Sy 1
<2T 5 ; 2% (x,1,t) dz,

using (7), we obtain the result. O

Next, in order to construct a Lyapunov functional equivalent to the energy,
we will prove several lemmas with the purpose of creating negative counter-
parts of the terms that appear in the energy.

LEMMA 4.3. Let (¢, ¢, w, 0, 2) be the solution of (3)-(4). Then the functional

1
(27) I (1) = po /0 (3w — ) (30 — ¥), da

satisfies the estimate

1
11()<_/ (3w — )2 d:v—l—,oz/(?)w ¥)? dz

/ (Y — oz) dx+/ 02dz,

Proof. Taking the derivative of I (t) with respect to ¢, using (3)2 and inte-
grating by parts, we get

(28)

1 1
I = 02/0 <3w—w>§dx+G/O (4 — p0) (3w — ) da
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1 1
—D [ (Bw—v)idx+ a/ 0; (3w — ), da.
0 0

Using Young’s and Poincaré inequalities, we arrive at (28). ]
LEMMA 4.4. Let (p,9,w, 0, z) be the solution of (3)—(4). Then the functional
1
(29) I (t) = ,02/ wwdz
0

satisfies the estimate

2 1 1 1
I (t) <_37/ w?dz — D wgdx+03/ widz+
0 0

3G?
Ay

(30)
<w )’ dz,

4 2
where C5 = po + i
3y

Proof. By differentiating (29) with respect to ¢, using (3)s and integrating
by parts, we obtain

1 4 4 1
Lt = pg/ wtdx—G ¢ goz)wda:—?)’y/ 2dx—36/ wpwdz
0

—D/ 2dx

Using Young’s inequality, we establish (30). O
LEMMA 4.5. Let (p,v,w, 0, z) be the solution of (3)-(4). Then the functional

1 x 1
(81) Iy () := paps /0 (3w — v), /0 6, (y, 1) dydz — psd /0 . (3w — ) de

satisfies the estimate

1 1
Id()<—% (Sw—w)?derel/ (¢_%)2dx
(32) 0 0

1 1
+ Cy (1) / 0%.dx + &1 / (3w — )2 dw
0 0

p3G? N 5°p3 N pak? N D?p3
481 261 20 261 '
Proof. Taking the derivative of I3 (t) with respect to ¢, using (3)2, (3)4 and

integrating by parts, we get

for any 1 > 0, where Cy (e1) = op3 +

1 T
14 (1) = ps /0 (G () — 2) + D (3 — ), — 0Bhs] /O 6, (y. 1) dydz

1 T
+ p2 /0 (3(") - 1/’),: /0 [5621 + kOipy — 0 (30) - w)tx] dydx
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1 1 1 x
~3ps /0 Out (30 — ) da—0pa /0 0, (3 — ), dw = py /0 Gy /0 6, (y,1) dyde
1 1
—I—pg/o (Bw — 1), [00; + kbiy — 0 (3w — ¥),] daj—l—pg/o [—Ggpw—i—D (Bw =),
x 1 1
- aam} /O 0, (y, 1) dydz — dps /0 Ot (3w — ) dz — Oy /O 0, (3w — ), d
1 T 1
- p:»,/O G (v — m/o 0, (4, ) dyda — m/g 021 (3 — ) da
rx=1

" [pg (~Gp+ D (=), —o8) [ 0.0 dy]

1
—020/ (3W—¢)fd$+P2k/
0 0

Note that f01 O (y,t)dy = & fol 0 (y,t)dy = 0, then, by Young’s and Poincaré
inequalities with €1 > 0 to obtain (32). O

1
+0p3/ 02dx
0

=0
1

1
(Bw — ), Orpdx — ng/o 0 (Bw — ), de.

LEMMA 4.6. Let (p,1,w,0,2) be the solution of problem (3)-(4). the func-
tional

! k
(33) I (t) == / [pg@tﬁ + 50920 +0(Bw—1), 9] dz
0

satisfies the estimate

1 1 1
34 I() < -0 / 62dz + Cs () / 62dz + 5 / (3w — )2 da,
0 0 0

2
for any g9 > 0, where C5 (e2) = p3 + :7_
€2
Proof. By differentiating I, with respect to t, using (3)4 and integrating by
parts, we obtain

1 1 1
k
Lll (t) / p300dx + / p39t2d$ + / 5 (93313933 + 9330,”) dx
0 0 0
1 1
—|—/ o (3w —1),, 0dz + / 0 (3w — 1), Ordx
0 0
1 1
= / (0020 + Kbtz — 0 (3w — ), ] Oda + / p39t2dx
0 0
1 1 1
— / kOpr:0dz + / 0 (3w — 1), Odx + / o (3w — 1), O dx
0 0 0

1 1 1
= / 00,,0dx + / pgé?tgd:v + / o (3w —1), Opdx.
0 0 0

Using Young’s inequality with €2 > 0, we establish (34). O
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LEMMA 4.7. Let (o, 9, w, 0, z) be the solution of (3)—(4). Then the functional

1
D
(35) L ;:pg/o (300~ 0), (2 — ) da + =22 (30— ), gl
satisfies the estimate
G 1
Ig(t)g—z/ (pz — da:—i—/ 07, dx
0
Lo [ widz + (p + £3) (3 )2
1, | ¢ p2tes) | (3w i de

1 1
+ (DGpl - P2> /0 (Bw =), prdz + 54/0 (3w — )2 dz

D?ui [, D2u3 [*
d 1,¢)d
+ 2G254/; Spt x+ 2G2€4/0 < (x7 ) ) .T,

for any e3,e4 > 0.

Proof. By differentiating I5 with respect to ¢, using (3)1, (3)2 and integrat-
ing by parts, we obtain

1 1
L = p / (3w — )y (9o — ¥) dz + po / (3w — ), (9a — ), da
+% (Sw b),, @tdw—i—— / (3w — ), pudz
1
= /G da?—f—/ D 3w =), (9 — 1) dx
0
1
—/ 01 (2 w>dm+p2/ (8 — ), (s — ), du
0 0
D 1
—i—% ; (3w—1/1)xt<ptdm—D/ Bw—=1), (Y — ), dx

D /1(3w V), Wtdl“—DGMQ/ (Bw =), z(z,1,t)dz

1
= —G/ Oz — dgv—a/0 Oz (0z — ) dz

1
_p2/ (Bw — 1), Ypda + (DGpl — p2> /0 (Bw — 1), prdx

0
_Dm

Gw— ), odr— 22 [N 3w — ) 2 (1,0 ds
G 0 W — Pt G 0 T s Ly .

Using Young’s inequality with 3,4 > 0, we establish (36). O
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LEMMA 4.8. Let (v, 9, w, 0, z) be the solution of (3)—(4). Then the functional

11
(37) Is (t) == / / e 222 (z, p, t) dpde
0 JO

satisfies the estimate

1 1 1 1 /1
(38) If(t) < —m/ / 22 (z, p,t) dpdz — C/ 22 (x,1,1) d$+/ ©?dz,
0 Jo T Jo T Jo

for any m,c > 0.

Proof. By differentiating I with respect to ¢, using (3)5 and integrating by
parts, we obtain

9 1 1
: t)=—— / / e~27P (x,p,t) 2, (z, p, t) dpd

:—2/ / P2 (x, p,t dpdx—/ / £ e 2TP22 (x, p, )) dpdz
p
1
m/ / (z,p,t dpd:v—/ 2(z,1,t)dz + — / 2d.
T Jo

This gives (38). O
Proof of Theorem 4.1. To finalize the proof, we assume pgl = p% and define
a Lyapunov functional £ as follows

L(t):=NE(t)+ N1Fy (t) + Fy (t) + NsF5 (t) + Fy (t) + N5 F5 (t) + Fs (t) ,

where N, N1, N3, N5 are positive constants to be chosen properly later. Using
Cauchy-Schwarz inequality and the Poincare inequality, one can easily see that
all F;(t), i = 1,2,3,4,5,6 are bounded by an expression with the existing
terms in the energy E (t). This leads to the equivalence of L (t) and E (t).
Gathering the estimates in the previous lemmas and using fol 02dx < fol 62.dz,
we arrive at

ﬁl(t)<— CIN— Dzlul N5—* / dl’—D/ de
- 2G2€4 0

[ 903 by 2
— [48N — C3 — —=Nj wide — 6 dex
4e3 0
(39) -
G? 2d
— _kN — 6]\71 Cy (51) N3 — (5 (62) 2GN5:| / 0s dx

G o2 3G? ! 5
— | Ny — =N - 2 N, . —
RIS R = €1 3}/0 (e — )" da
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D 1 2 1
_ ENl —e1N3 — &9 — 64N5:| / (3w — w) dx — 37/ W2da
0

- O, 1
— %Ng — p2N1 — (p2 + 2'53) N51| / (3w - 77/})? dzx
L 0

r ¢ Dl L Lot
— _02N+T_2G2€4N5]/0 z (w,l,t)dx—m/o /0 2% (z, p,t)dpde.

At this point, we choose our constants carefully. First, we take V] large enough
and 2 small, such that%Nl — &2 > 0. Then, we choose N5 large enough, so
that %N5 — %Nl — % > 0. Next, we pick €3 small and choose N3 large
enough such that 2% N3 — po N1 — (p2 + €3) N5 > 0. Furthermore, we select &1
and &4 so small that

G o? 3G? D
fN5— N1—7—€1N3 >0 fN1—€1N3—EQ—E4N5 > 0.
2 4~y 2
Finally, we choose N so large such that
DX3 1 93
N——N;— — 46N — — —=N,
4 2G2 5 > 0, 15} Cs des 5 > 0,
GQ
N——N N3y — — —N
k D 1— 04 (61) 3 05 (62) e 5 > 0.

From the above, we deduce that for some positive constants «q, o one has
aE(t) < L(t) <agE(t).
Therefore, (39) becomes L' (t) < —cFE (t). For ¢; = i, we get
Qi

(40) L (t) < —e1L(t),Vt > 0.

A simple integration of (40) over (0,t) leads toL (t) < L£(0)e %Vt > 0. It
gives the desired result Theorem 4.1 when combined with the equivalence of
L (t) and E (t). O
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