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PARSEVAL’S EQUALITY IN FUZZY NORMED LINEAR SPACES

BAYAZ DARABY, FATANEH DELZENDEH, and ASGHAR RAHIMI

Abstract. In this paper, we investigate Parseval’s equality and define the fuzzy
frame on Felbin fuzzy Hilbert spaces. For showing the importance of defining
fuzzy frame, we know that, in the classical Hilbert space, C(Ω) is not normable,
but, in this manuscript, we prove that C(Ω) (the vector space of all continuous
functions on Ω) is normable in a Felbin fuzzy Hilbert space and so the defining
fuzzy frame on C(Ω) is possible. These consequences of the category of fuzzy
frames in Felbin fuzzy Hilbert spaces are wider than the category of the frames
in the classical Hilbert spaces.
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1. INTRODUCTION

The idea of fuzzy norms on a linear space was first introduced by Katsaras
[17] in 1984. Later on, many authors, Felbin [15], Cheng, Mordeson [5], Bag
and Samanta [2] etc. gave different definitions of fuzzy normed linear spaces.
R. Biswas [4] and A. M. El-Abye and H. M. El-Hamouly [14] tried to give
a meaningful definition of fuzzy inner product space and associated a fuzzy
norm function with those definitions which are restricted to the real linear
space only. P. Mazumder and S.K. Samanta introduced the definition of fuzzy
inner product space from the point of veiw of Bag and Samanta fuzzy norm[2].
Recently, B. Daraby and et. al. [7] studied some properties of fuzzy Hilbert
spaces and they showed that all results in classical Hilbert spaces are immedi-
ate consequences of the corresponding results for Felbin-fuzzy Hilbert spaces.
Moreover, by an example, they showed that the spectrum of the category of
Felbin- fuzzy Hilbert spaces is broader than the category of classical Hilbert
spaces [8]. Also, in [20], M. Mursaleen and et. al. investigated the convergence
of fuzzy number sequences in general form statistically.

One of the important concepts in the study of vector spaces is the basis,
which allows every vector to be uniquely represented as a linear combination
of the basis elements. The main feature of a basis {xk} in a Hilbert space H is
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that every x ∈ H can be represented as a linear combinations of the elements
xk in the form:

(1) x =
∞∑
k=1

ck(x)xk.

The coefficients ck(x) are unique. However, the linear independence prop-
erty for a basis, which implies the uniqueness of coefficients, is restrictive in
applications; sometimes it is impossible to find vectors which both fulfill the
basis requirements and also satisfy external conditions demanded by applied
problems. For such purposes, a more flexible types of spanning sets is needed.
Frames provide these alternatives. Frames are used in signal and image pro-
cessing, non-harmonic Fourier series, data compression and sampling theory.
Today, frame theory has ever increasing applications to problems in both pure
and applied mathematics physics, engineering, computer science etc.

Many physical systems are inherently nonlinear functions and must be de-
scribed by non-linear models. But some systems have of uncertain structured
and it is not possible to provide an accurate mathematical model. Therefore,
to these systems, the conventional control models can not be used, for solving
this problems, we need to use a new concept namely fuzzy frames theory and
fuzzy waveletes. Fuzzy frame and fuzzy wavelet inspired from frame theory,
wavelet theory and fuzzy concepts. For achieveing approximation functions,
control and identification of nonlinear systems are presented [3, 21] . It not
only retains the frame and wavelet properties but also has advantages such as
simple structure to approximation and good interperability approximation of
non-linear functions.

We introduce the concept of a fuzzy inner product and show the Parseval’s
equality holds with Felbin-fuzzy norm. In this paper, we study the Parseval’s
equality in fuzzy normed linear spaces and define fuzzy frame in Felbin-fuzzy
Hilbert spaces. For more illustration, we expressed some examples of fuzzy
frames.

2. SOME PRELIMINARIES

In this section, some definitions and preliminary results are given which will
be used in this paper. For details, we refer to [1, 9, 10, 16].

Definition 2.1 ([16]). A mapping η : R −→ [0, 1] is called a fuzzy real
number with α-level set [η]α = {t : η (t) ≥ α}, if it satisfies the following
conditions:
N1) there exists t0 ∈ R such that η (t0) = 1.
N2) for each α ∈ (0, 1], there exist real numbers η−α ≤ η+α such that the α-level
set [η]α is equal to the closed interval [η−α , η

+
α ].

The set of all fuzzy real numbers is denoted by F (R). If η ∈ F (R) and
η(t) = 0 whenever t < 0, then it is called a non-negative fuzzy real number and
F+(R) denotes the set of all non-negative fuzzy real numbers. Real number
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η− ∈ F+(R) for all and each α ∈ (0, 1] is positive. The fuzzy real number
defined by

r̃(t) =

{
1 , t = r
0 , t 6= r,

it follows that R can be embedded in F (R).

Definition 2.2 ([16]). Let X be a vector space over R. Assume the map-
pings

L,R : [0, 1]× [0, 1] −→ [0, 1]

are symmetric and non-decreasing in both arguments, and that L (0, 0) = 0
and R (1, 1) = 1.

Let ‖.‖ : X −→ F+ (R). The quadruple (X, ‖.‖, L,R) is called a fuzzy
normed linear space (briefly, FNS) with the fuzzy norm ‖.‖, if the following
conditions are satisfied:

(F1) if x 6= 0, then inf0<α≤1 ‖x‖−α > 0,
(F2) ‖x‖ = 0̃ if and only if x = 0,
(F3) ‖rx‖ = |r̃|‖x‖ for x ∈ X and r ∈ R,
(F4) for all x, y ∈ X,

(F4L) ‖x+y‖ (s+ t) ≥ L (‖x‖ (s) , ‖y‖ (t)) whenever s ≤ ‖x‖−1 , t ≤ ‖y‖−1 and
s+ t ≤ ‖x+ y‖−1 ,

(F4R) ‖x+y‖ (s+ t) ≤ R (‖x‖ (s) , ‖y‖ (t)) whenever s ≥ ‖x‖−1 , t ≥ ‖y‖−1 and
s+ t ≥ ‖x+ y‖−1 .

Definition 2.3 ([1]). Let X be a vector space over R. Suppose ‖.‖ : X −→
F+(R) is a mapping satisfying:

(i) ‖x‖ = 0̃ iff x = 0,
(ii) ‖rx‖ = r̃ � ‖x‖,where x ∈ X and r ∈ R,
(iii) for all x, y ∈ X, ‖x+ y‖ 4 ‖x‖ ⊕ ‖y‖ and
(A’) x 6= 0 then ‖x‖(t) = 0, for all t ≤ 0.

Then (X, ‖.‖) is called a fuzzy normed linear space and ‖.‖ is called a fuzzy
norm on X.

In the rest of this paper, we use this definition of fuzzy norm. We note that
‖.‖sα, s = −,+ are crisp norms on X where [‖x‖]α = [‖x‖−α , ‖x‖+α ], 0 < α ≤ 1.

Definition 2.4 ([16]). Let (X, ‖.‖) be a FNS.

i) A sequence {xn} ⊆ X is siad to converge to x ∈ X, if limn→∞ ‖xn −
x‖+α = 0, for all α ∈ (0, 1].

ii) A sequence {xn} ⊆ X is called Cauchy, if limm,n→∞ ‖xn − xm‖+α = 0,
for all α ∈ (0, 1].

Definition 2.5 ([16]). Let (X, ‖.‖) be a FNS. A subset A of X is said to
be complete, if every Cauchy sequence in A converges in A.
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Definition 2.6 ([16]). Let X be a vector space over R. A Felbin-fuzzy
inner product on X is a mapping 〈., .〉 : X × X −→ F (R) such that for all
vectors x, y, z ∈ X and all r ∈ R, we have:

(IP1) 〈x+ y, z〉 = 〈x, z〉 ⊕ 〈y, z〉;
(IP2) 〈rx, y〉 = r̃〈x, y〉;
(IP3) 〈x, y〉 = 〈y, x〉;
(IP4) 〈x, x〉 ≥ 0̃;
(IP5) infα∈(0,1]〈x, x〉−α > 0 if x 6= 0;

(IP6) 〈x, x〉 = 0̃ if and only if x = 0.

The vector space X equipped with a Felbin-fuzzy inner product is called a
Felbin-fuzzy inner product space.

A Felbin-fuzzy inner product on X defines a fuzzy number

(2) ‖x‖ =
√
〈x, x〉,∀x ∈ X.

Definition 2.7 ([16]). Let (X∗, ‖.‖∗) be a completion of a Felbin-fuzzy
normed linear space (X, ‖.‖) and x∗, y∗ ∈ X∗ with representatives {xn} and
{yn}, respectively. Suppose α ∈ (0, 1] and {αk} is a strictly increasing sequence
converging to α. Define

[〈x∗, y∗〉]α = [limn,k→∞〈xn, yn〉−αk
, limn,k→∞〈xn, yn〉+αk

].

Lemma 2.8 ([16]). A fuzzy inner product space X together with its corre-
sponding norm ‖.‖ satisfy the Schwarz inequality

|〈x, x〉| ≤ ‖x‖‖y‖, ∀x, y ∈ X.

Theorem 2.9 ([16]). The function ‖.‖ defined in Definition (2.6) is a fuzzy
norm.

A fuzzy Hilbert space is a complete Felbin-fuzzy inner product space with
the Felbin-fuzzy norm defined by relation (2).

Lemma 2.10 ([8]). Let γ, δ ∈ F (R) and [γ]α = [γ−α , γ
+
α ], [δ]α = [δ−α , δ

+
α ].

Then for all α ∈ (0, 1],

[γ ⊕ δ]α = [γ−α + δ−α , γ
+
α + δ+α ]

[γ 	 δ]α = [γ−α − δ−α , γ+α − δ+α ]

[γ � δ]α = [γ−α δ
−
α , γ

+
α δ

+
α ]

[
1

γ
]α = [

1

γ+α
,

1

γ−α
]

[|γ|]α = [max(0, γ−α , γ
+
α ),max(|γ−α |, |γ+α |].

Theorem 2.11 ([8, Bessel’s inequality]). Let H be a Felbin-fuzzy inner
product space and for any x ∈ H there exists {xn} ⊂ H, xn → x, {en} be a
fuzzy orthonormal sequence in H, then∑∞

n=1 |〈x, en〉|2 4 ‖x‖2.
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3. FUZZY FRAME

In this section, after a short introduction to history of frame, we define
fuzzy frame and prove some new results.

Frames were introduced already in 1952 by Duffin and Schaeffer in the
fundamental paper [13]; they used frames as a tool in the study of nonharmonic
Fourier series, i.e., sequences of the type {eiλnx}n∈Z , where {λn}n∈Z is a family
of real or complex numbers. Apparently, the importance of the concept was
not realized by the mathematical community; at least it took almost 30 years
before the next treatment appeared in print. Frames were presented in the
abstract setting, and again used in the context of nonharmonic Fourier series.
Then, in 1985, as the wavelet area began, Daubechies, Grossmann and Meyer
[11, 12] observed that frames can be used to find series expansions of functions
in L2(R) which are very similar to expansions using orthogonal bases.

Definition 3.1 (Fuzzy orthonormal set and sequences). A fuzzy orthogonal
set M in a fuzzy inner product space X is a subset M ⊂ X whose elemmaents
are pairwise orthogonal. A fuzzy orthonormal set M ⊂ X is a fuzzy orthogonal
set in X whose elements have fuzzy norm 1̃, that is, for all x, y ∈M ,

〈x, y〉 =

{
1̃ , x = y
0̃ , x 6= y.

If a fuzzy orthogonal or fuzzy orthonormal set M is countable, we can ar-
rage it in a sequence {xn} and call it a fuzzy orthogonal or fuzzy orthonormal
sequence, respectively. More generally, a family {xi}i∈I , is called fuzzy orthog-
onal if xi ⊥ xj for all i, j ∈ I, i 6= j. The family is called fuzzy orthonormal if

it is fuzzy orthogonal and all xi have fuzzy norm 1̃, so that for all i, j ∈ I. We
have

〈xi, xj〉 = δ̃ij =

{
1̃ , i = j
0̃ , i 6= j.

A linear combination of fuzzy vectors x1, x2, · · · , xn of a fuzzy vector space X
is an expression of the form

α̃1x1 + α̃2x2 + · · ·+ α̃nxn,

where the coefficients α̃1, α̃1, · · · , α̃n are fuzzy numbers. For any nonempty
subset M ⊂ X the set of all linear combinations of fuzzy vectors of M is
called the span of M . Obviously, this is a subspace Y of X, we say that Y is
generated by M .

Definition 3.2. Linear independence of a given set M of fuzzy vectors
x1, x2, · · · , xn, n ≥ 1 in a fuzzy vector space X is defined by means of the
equation

(3) α̃1x1 + α̃2x2 + · · ·+ α̃nxn

where α̃1, α̃1, · · · , α̃n are fuzzy numbers. Equation (3) holds for α̃1 = α̃1 =
· · · = α̃n = 0̃. If this is the only n-tuple of fuzzy numbers for which (3) holds,
the set is said to be linearly independent.
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Theorem 3.3. Let H be a fuzzy Hilbert space. If {en}∞n=1 is a fuzzy or-
thonormal sequence in H, then the following statements are equivalent:

i) {en}∞n=1 is complete fuzzy orthonormal.
ii) If 〈x, en〉 = 0̃ for n = 1, 2, · · · , then x = 0.
iii) x =

∑∞
n=1〈x, en〉en, ∀x ∈ H.

iv) ‖x‖2 =
∑∞

n=1 |〈x, en〉|2, For every x ∈ H.

Proof. (i)⇒(ii) Let {ei} be a complete fuzzy orthonormal sequence and

〈x, en〉 = 0̃ for n = 1, 2, · · · . Setting for a fixed i and choosing ei =
x

‖x‖
, we

have: ‖ei‖2 = 〈ei, ei〉 = 1̃ and 〈ei, en〉 = 0̃ for n = 1, 2, . . . . Therefore we get a
fuzzy orthonormal sequence, that is a contraction to completeness. Therfore
ei = 0 and it follows that x = 0.

(ii)⇒(iii) This is obvious.
(iii)⇒(iv) Suppose that x =

∑∞
n=1〈x, en〉en and let

[〈x, en〉]α =
[
〈x, en〉−α , 〈x, en〉+α

]
.

Then

‖x‖+2

α =

〈 ∞∑
n=1

〈x, en〉+α en,
∞∑
n=1

〈x, en〉+α en

〉

=
∞∑
n=1

〈x, en〉+α 〈x, en〉+α 〈en, en〉 =
∞∑
n=1

|〈x, en〉+α |2.

Similarly, ‖x‖−2

α =
∑∞

n=1 |〈x, en〉−α |2. �

Remark 3.4. The mentioned equality in Theorem 3.3 (iv), is called Parse-
val’s equation.

Let X 6= {0} be a finite-dimensional fuzzy vector space. We will assume
that X is equipped with a Felbin-fuzzy inner product 〈., .〉, which we choose
to be linear in the first entry. A sequence in X is a basis for X if th following
conditions are satisfied:

i) X = span{ek}nk=1,

ii) {ek}nk=1 is linearly independent, i.e., if x =
∑n

k=1 α̃kek = 0̃ for some

scalar coefficients {α̃k}nk=1, then α̃k = 0̃ for all k = 1, ..., n.

As a consequence of this definition, every x ∈ X has a unique representation in
terms of the elements in the basis, i.e., there exist unique coefficients {α̃k}nk=1
such that

(4) x =

n∑
k=1

α̃kek.

Sometimes, in particular in high-dimensional vector spaces, it is cumbersome
to find the coefficients {α̃k}nk=1. But if {ek}nk=1 is a fuzzy orthonormal basis,
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i.e., a basis for which

〈ek, ej〉 = δ̃ij =

{
1̃ , k = j
0̃ , k 6= j,

then the coefficients {α̃k}nk=1 are easy to find. Taking the fuzzy inner product
of x in (4) and let [〈x, ej〉]α = [〈x, ej〉−α , 〈x, ej〉+α ] with an arbitrary ej gives:

〈x, ej〉−α = 〈
∑n

k=1 α̃kek, ej〉−α =
∑n

k=1 α̃k〈ek, ej〉−α = α̃j ,

and

〈x, ej〉+α = 〈
∑n

k=1 α̃kek, ej〉+α =
∑n

k=1 α̃k〈ek, ej〉+α = α̃j .

So

(5) x =

n∑
k=1

〈x, ek〉ek.

We now introduce fuzzy frames.

Definition 3.5. A countable family of elements {xn}n∈I in finite-dimensio-
nal fuzzy Hilbert space X is a fuzzy frame for X if there exist fuzzy numbers
η, µ ∈ F (R) and η, µ � 0̃ such that

(6) η‖x‖2 4
∑
n∈I
|〈x, xn〉|2 4 µ‖x‖2,∀x ∈ X.

The numbers η, µ are called fuzzy frame bounds. Fuzzy frame bounds are
not unique. The optimal lower fuzzy frame bound is supremum over all upper
fuzzy frame bounds, and the optimal upper fuzzy frame bound is the infimum
over all upper fuzzy frame bounds. Note that the optimal fuzzy frame bounds
actually are fuzzy frame bounds. The fuzzy frame is normalized if ‖xn‖ = 1̃
for all n ∈ I. A tight fuzzy frame is fuzzy frame with equal fuzzy frame
bounds and in case η = µ = 1̃, we call Parseval fuzzy frame. In case the upper
Inequality in 6 satisfy, {xn}n∈I is called fuzzy Bessel sequence. It follows from
the definition that if {xn}n∈I is a fuzzy frame for X, then span{xn}n∈I = X.

Theorem 3.6. Let X be a fuzzy Hilbert space and {en}n∈I be a fuzzy or-
thonormal sequence of X. Then for every x ∈ X,∑

n∈I |〈x, xn〉|2 4 µ‖x‖2.

Proof. By Bessel’s inequality in crisp inner product, we have∑
n∈I |〈x, xn〉|2 4 µ‖x‖2.

Since ‖.‖sα where s = −,+ is classic norms on X we have:∑
n∈I |〈x, xn〉−α |2 4 µ(‖x‖−α )2,

and ∑
n∈I |〈x, xn〉+α |2 4 µ(‖x‖+α )2.

It follows that for every x ∈ X,
∑

n∈I |〈x, xn〉|2 4 µ‖x‖2. �
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Example 3.7. Let {en}2n=1 be a fuzzy orthonormal basis for a two-dimensio-
nal fuzzy vector space X with fuzzy inner product µ. Let

x1 = e1, x2 = e1 − e2, x3 = e1 + e2.

Then {xn}3n=1 is a fuzzy frame for V . Since [〈x, xn〉]α = [〈x, xn〉−α , 〈x, xn〉+α ]

3∑
k=1

|〈x, xn〉−α |2 = |〈x, x1〉−α |2 + |〈x, x2〉−α |2 + |〈x, x3〉−α |2

= |〈x, e1〉−α |2 + |〈x, e1 − e2〉−α |2 + |〈x, e1 + e2〉−α |2

= |〈x, e1〉−α |2 + |〈x, e1〉−α − 〈x, e2〉−α |2 + |〈x, e1〉−α + 〈x, e2〉−α |2

4 3̃(‖x‖−α )2

and
3∑

k=1

|〈x, xn〉+α |2 = |〈x, x1〉+α |2 + |〈x, x2〉+α |2 + |〈x, x3〉+α |2

= |〈x, e1〉+α |2 + |〈x, e1 − e2〉+α |2 + |〈x, e1 + e2〉+α |2

= |〈x, e1〉+α |2 + |〈x, e1〉+α − 〈x, e2〉+α |2 + |〈x, e1〉+α + 〈x, e2〉+α |2

4 3̃(‖x‖+α )2

thus µ = 3̃ is an upper fuzzy frame bound, i.e.,
∑3

k=1 |〈x, xn〉|2 4 3̃‖x‖2.
Similarly, ∑3

k=1 |〈x, xn〉±α |2 < 2̃(‖x‖±α )2.

Thus
∑3

k=1 |〈x, xn〉|2 < 2̃‖x‖2. And η = 2̃ is a lower fuzzy frame bound.

Example 3.8. Let {xn}∞n=1 := {e1, 1√
2
e2,

1√
2
e2,

1√
3
e3,

1√
3
e3,

1√
3
e3, · · · }; that

is, {xn}∞n=1 is the sequence where each vector
1√
k
ek, k ∈ N , is repeated k

times. Then, for each x ∈ X,
∞∑
n=1

|〈x, xn〉±α |2 =

∞∑
k=1

k̃|〈x, 1√
k
xk〉±α |2

=
∞∑
k=1

k̃|〈 1√
k
xk, x〉±α |2

= (‖x‖±α )2.

therefore
∑∞

n=1 |〈x, xn〉|2 = ‖x‖2 and {xn}∞n=1 is a fuzzy frame for X with

fuzzy frame bound η = µ = 1̃.

From [8], we know that each classical Hilbert space is a Felbin fuzzy Hilbert
space, and all the results and theorems in the classical Hilbert space are true
for the Felbin fuzzy Hilbert spaces. Therefore, each frame in the classical space
is a fuzzy frame for the Felbin fuzzy Hilbert space. In the following, we give
an example that it is not frame in the classical Hilbert space, but in the Felbin
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fuzzy Hilbert space, it is a fuzzy frame, and this is the reason for studying
fuzzy frames in the Felbin fuzzy Hilbert space.

In the following example, we give a frame on C(Ω).

Example 3.9. Suppose that {gk(.)}k∈I is a sequence on C(Ω) (the vector

space of all continuous functions on Ω) where gk(x) = sin
x

k
and 0 < x ≤ 1.

We show that {gk(.)}k∈I is fuzzy frame on C(Ω).

If α ∈ (0, 1], then there exists n such that
1

n+ 1
< 1 − α ≤ 1

n
. Consider

kn = [
1

n
, 1− 1

n
], then Ω =

⋃
n∈I kn.

For f ∈ C(Ω) and let [〈f, gk〉]α = [〈f, gk〉−α , 〈f, gk〉+α ] we have:∑
k∈I
|〈f, gk〉−α |2 =

∑
k∈I

(∫
kn

fgkdµ

)2

4
∑
k∈I

(∫
kn

f2dµ

∫
kn

g2kdµ

)

= (‖f‖−α )2µ(kn)

∞∑
k=1

1

k2

= µ(‖f‖−α )2,

and ∑
k∈I
|〈f, gk〉+α |2 =

∑
k∈I

(∫
kn

fgkdµ

)2

4
∑
k∈I

(∫
kn

f2dµ

∫
kn

g2kdµ

)

= (‖f‖+α )2µ(kn)
∞∑
k=1

1

k2

= µ(‖f‖+α )2.

Thus ∑
k∈I |〈f, gk〉|2 4 µ‖f‖2,

and the sequence {gk(.)}k∈I is a fuzzy Bessel sequence on C(Ω).
For the lower boundedness, we consider

η :=
∑

k∈I |〈f, gk〉−α |2 =
∧{∑

k∈I |〈f, gk〉−α |2 : f ∈ C(Ω), ‖f‖−α = 1
}

.

It is clear that η > 0. Now given f ∈ C(Ω) and f 6= 0, we have∑
k∈I
|〈f, gk〉−α |2 =

∑
k∈I

(∫
kn

fgkdµ

)2
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=
∑
k∈I

(∫
kn

f

‖f‖−α
gkdµ

)2

(‖f‖−α )2

< η(‖f‖−α )2,

for similarly we consider

η :=
∑

k∈I |〈f, gk〉+α |2 =
∧{∑

k∈I |〈f, gk〉+α |2 : f ∈ C(Ω), ‖f‖+α = 1
}

.

It is clear that η > 0. Now given f ∈ C(Ω) and f 6= 0, we have∑
k∈I
|〈f, gk〉+α |2 =

∑
k∈I

(∫
kn

fgkdµ

)2

=
∑
k∈I

(∫
kn

f

‖f‖+α
gkdµ

)2

(‖f‖+α )2

< η(‖f‖+α )2,

Hence ∑
k∈I |〈f, gk〉|2 < η‖f‖2,

and {gk(.)}k∈I is a fuzzy frame on C(Ω).

4. CONCLUSION

We know that C(Ω) was not normable on the classical Hilbert spaces, but
in this paper we have shown C(Ω) is normable over fuzzy Hilbert spaces and
by an example we defined fuzzy frame on C(Ω). In the above discussion, a
frame in the classical Hilbert space is a fuzzy frame in the Felbin fuzzy Hilbert
space. Therefore, all the frame theorems in the classical state have equivalent
results in the Felbin’s fuzzy Hilbret space.
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