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GLOBAL EXISTENCE AND ENERGY DECAY OF SOLUTIONS
FOR A WAVE EQUATION WITH A TIME-VARYING

DELAY TERM

AISSA BENGUESSOUM

Abstract. In this paper, we consider in a bounded domain the wave equation
with a weak internal time-varying delay term:

utt(x, t)−∆xu(x, t) + µ1(t)ut(x, t) + µ2(t)ut(x, t− τ(t)) = 0.

Under appropriate conditions on the functions µ1 and µ2, we prove global ex-
istence of solutions by the Faedo-Galerkin method and establish a decay rate
estimate for the energy using the multiplier method.
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1. INTRODUCTION

In this paper, we investigate the existence and decay properties of solutions
to the following initial-boundary value problem for a linear wave equation of
the from:

(P )


utt(x, t)−∆xu(x, t) + µ1(t)ut(x, t)
+µ2(t)ut(x, t− τ(t)) = 0 in Ω×]0,+∞[,
u(x, t) = 0 on Γ×]0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,
ut(x, t− τ(0)) = f0(x, t− τ(0)) in Ω×]0, τ(0)[,

where Ω is a bounded domain in Rn, n ∈ N∗, with a smooth boundary ∂Ω = Γ,
τ(t) > 0 is a time-varing delay term and the initial data (u0, u1, f0) belong to
a suitable function space.

In absence of delay (µ2 = 0), the energy of problem (P ) is exponentially
decaying to zero provided that µ1 is constant, see, for instance, [5, 6, 9, 10, 14].
On the contrary, if µ1 = 0 and µ2 > 0 (a constant weight), that is, there exits
only the internal delay, the system (P ) becomes unstable (see, for instance
[7]). In recent years, the PDEs with time delay effects have become an active
area of research since they arise in many pratical problems (see, for example,
[1, 21]). In [7], it has been shown that a small delay at the boundary can
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turn a well-behave hyperbolic system into a wild one and, therefore, delay
becomes a source of instability. To stabilize a hyperbolic system involving
input delay terms, additional control terms will be necessary (see [15, 17,
22]). For instance, the authors of [15] studied the wave equation with a linear
internal damping term with constant delay (τ=const. in the problem (P ))
and determined suitable relations between µ1 and µ2, for which the stability
or alternatively instability takes place. More precisely, they showed that the
energy is exponentially stable if µ2 < µ1 and they also found a sequence of
delays for which the corresponding solution of (P ) will be instable if µ2 ≥ µ1.
The main approach used in [15] is an observability inequality obtained with a
Carleman estimate. The same results were obtained if both the damping and
the delay are acting on the boundary. We also recall the result by Xu, Yung
and Li [22], where the authors proved a result similar to the one in [15] for
the one-space dimension by adopting the spectral analysis approach.

In [19], Nicaise, Pignotti and Valein extended the above result to higher
space dimensions and established an exponential decay.

Very recently, in [2], the energy of problem (P ) is exponentially decaying
under appropriate conditions on two functions µ1 and µ2 are time-varying.

The case of time-varying delay in the wave equation has been studied re-
cently by Nicaise, Valein and Fridman [18] in one-space dimension. They
proved an exponential stability result under the condition

µ2 <
√

1− dµ1,

where the fuction τ satisfies

τ ′(t) ≤ d, ∀t > 0,

for a constant d < 1.
In [19], Nicaise, Pignotti and Valein extended the above result to higher

space dimensions and established an exponential decay.
Our purpose in this paper is to give an energy decay estimate of the solution

of problem (P ) in the presence of a time-varing delay term in the feedback.
We use the Galerkin approximation scheme and the multiplier technique to
prove our results.

2. PRELIMINARIES AND MAIN RESULTS

First assume the following hypotheses:
(H1) τ is a function such that

(1) τ ∈W 2,∞([0, T ]), ∀T > 0,

(2) 0 < τ0 ≤ τ(t) ≤ τ1, ∀ t > 0,

(3) τ ′(t) ≤ d < 1, ∀ t > 0,

where τ0 and τ1 are two positive constants.
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(H2) µ1 : R+ →]0,+∞[ is a non-increasing function of class C1(R+) satis-
fying

(4)

∣∣∣∣µ′1(t)

µ1(t)

∣∣∣∣ ≤M,

such that M > 0.
(H3) µ2 : R+ → R is a function of class C1(R+), which is not necessarily

positive or monotone, such that

(5)
∣∣µ2(t)

∣∣ ≤ βµ1(t),

(6)
∣∣µ′2(t)

∣∣ ≤ M̃µ1(t),

for some 0 < β <
√

1− d and M̃ > 0.
We now state a lemma needed later.

Lemma 2.1 ([12]). Let E : R+ → R+ be a non increasing function and
φ : R+ → R+ an increasing C1 function such that

φ(0) = 0 and φ(t)→ +∞ as t→ +∞.
Assume that there exist σ > −1 and ω > 0 such that

(7)

∫ +∞

S
E1+σ(t)φ′(t) dt ≤ 1

ω
Eσ(0)E(S), 0 ≤ S < +∞.

Then

(8) E(t) = 0 ∀t ≥ E(0)σ

ω|σ|
, if − 1 < σ < 0,

(9) E(t) ≤ E(0)

(
1 + σ

1 + ωσφ(t)

) 1
σ

∀ t ≥ 0, if σ > 0,

(10) E(t) ≤ E(0)e1−ωφ(t) ∀ t ≥ 0, if σ = 0.

We introduce, as in [15], the new variable

(11) z(x, ρ, t) = ut(x, t− ρ τ(t)), x ∈ Ω, ρ ∈]0, 1[, t > 0.

Then, we have

(12) τ(t)zt(x, ρ, t) + (1− ρ τ ′(t))zρ(x, ρ, t) = 0, in Ω×]0, 1[×]0,+∞[.

Therefore, problem (P ) takes the form:

(13)



utt(x, t)−∆xu(x, t) + µ1(t)ut(x, t)
+µ2(t) z(x, 1, t) = 0, in Ω×]0,+∞[,

τ(t)zt(x, ρ, t) + (1− ρτ ′(t))zρ(x, ρ, t) = 0, in Ω×]0, 1[×]0,+∞[,
u(x, t) = 0, on Γ×]0,+∞[,
z(x, 0, t) = ut(x, t), on Ω×]0,+∞[,
u(x, 0) = u0(x), ut(x, 0) = u1(x), in Ω,
z(x, ρ, 0) = f0(x,−ρ τ(0)), in Ω×]0, 1[.
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Let ξ be a positive constant such that

(14)
β√

1− d
< ξ < 2− β√

1− d
.

We define the energy associated to the solution of problem (13) by the following
formula:

(15) E(t) =
1

2
‖ut(x, t)‖22 +

1

2
‖∇xu(x, t)‖22 +

ξ(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx,

where ξ(t) = ξµ1(t).
We have the following theorem.

Theorem 2.2. Let (u0, u1, f0) ∈ (H2(Ω)∩H1
0 (Ω))×H1

0 (Ω)×H1
0 (Ω;H1(0, 1))

satisfy the compatibility condition

f0(·, 0) = u1.

Assume that the hypotheses (H1)-(H3) hold. Then problem (P ) admits a
unique global strong solution

u ∈ L∞loc((−τ(0),+∞);H2(Ω) ∩H1
0 (Ω)),

ut ∈ L∞loc((−τ(0),+∞);H1
0 (Ω)),

utt ∈ L∞loc((−τ(0),+∞);L2(Ω)).

Moreover, for some positive constants c, ω, we obtain the following decay
property:

(16) E(t) ≤ cE(0)e−ω
∫ t
0 µ1(s) ds, ∀ t ≥ 0.

We finish this section by giving an explicit upper bound for the derivative
of the energy.

Lemma 2.3. Let (u, z) be a solution to the problem (13). Then, the energy
functional defined by (15) satisfies

E′(t) ≤ −µ1(t)

(
1− ξ

2
− β

2
√

1− d

)
‖ut‖22

−µ1(t)

(
ξ(1− τ ′(t))

2
− β
√

1− d
2

)∫
Ω
z2(x, 1, t) dx.(17)

Proof. Multiplying the first equation in (13) by ut(x, t) and integrating the
result over Ω, we obtain

(18)

1
2

d
dt(‖ut(x, t)‖

2
2 + ‖∇u(x, t)‖22) + µ1(t)

∫
Ω
u2
t (x, t) dx

+µ2(t)

∫
Ω
z(x, 1, t)ut(x, t) dx = 0.
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We multiply the second equation in (13) by ξ(t)z and integrate over Ω×]0, 1[
to obtain:
(19)

ξ(t)τ(t)

∫
Ω

∫ 1

0
ztz(x, ρ, t) dρdx = −ξ(t)

2

∫
Ω

∫ 1

0
(1−ρτ ′(t)) ∂

∂ρ
(z(x, ρ, t))2 dρdx.

Consequently, we have

d

dt

(
ξ(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx

)
= −ξ(t)

2

∫
Ω

∫ 1

0

∂

∂ρ
((1− ρτ ′(t))z2(x, ρ, t)) dρ dx

+
ξ′(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx

=
ξ(t)

2

∫
Ω

(z2(x, 0, t)− z2(x, 1, t)) dx+
ξ(t)τ ′(t)

2

∫
Ω
z2(x, 1, t) dx

+
ξ′(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx.

(20)

From (15), (18) and (20) we obtain

d

dt

(
ξ(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx

)
= −ξ(t)

2

∫
Ω

∫ 1

0

∂

∂ρ
((1− ρτ ′(t))z2(x, ρ, t)) dρ dx

+
ξ′(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx

=
ξ(t)

2

∫
Ω

(z2(x, 0, t)− z2(x, 1, t)) dx+
ξ(t)τ ′(t)

2

∫
Ω
z2(x, 1, t) dx

+
ξ′(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx.

(21)

Due to Young’s inequality, we have

µ2(t)

∫
Ω
z(x, 1, t)ut(x, t) dx ≤ |µ2(t)|

2
√

1− d
‖ut‖22

+
|µ2(t)|

√
1− d

2

∫
Ω
z2(x, 1, t) dx.

(22)

Inserting (22) into (21), we obtian

E′(t) ≤ −
(
µ1(t)− ξ(t)

2
− |µ2(t)|

2
√

1− d

)
‖ut‖22

−
(
ξ(t)

2
− ξ(t)τ ′(t)

2
− |µ2(t)|

√
1− d

2

)∫
Ω
z2(x, 1, t) dx



6 Global existence and energy decay of solutions for a wave equation 37

+
ξ′(t)τ(t)

2

∫
Ω

∫ 1

0
z2(x, ρ, t) dρdx.

Then, we have

E′(t) ≤ −µ1(t)

(
1− ξ

2
− β

2
√

1− d

)
‖ut‖22

− µ1(t)

(
ξ(1− τ ′(t))

2
− β
√

1− d
2

)∫
Ω
z2(x, 1, t) dx

≤ 0.

(23)

This completes the proof of the lemma. �

3. GLOBAL EXISTENCE

We are now ready to prove Theorem 2.2 in the next two sections.
Throughout this section we assume u0 ∈ H2(Ω) ∩H1

0 (Ω), u1 ∈ H1
0 (Ω) and

f0 ∈ L1
0(Ω;H1(0, 1)).

We employ the Galerkin method to construct a global solution. Let T > 0
be fixed and denote by Vk the space generated by {w1, w2, . . . , wk}, where the
set {wk, k ∈ N} is a basis of H2(Ω) ∩H1

0 (Ω).
Now, we define, for 1 ≤ j ≤ k, the sequence φj(x, ρ) as follows:

φj(x, 0) = wj .

Then, we may extend φj(x, 0) by φj(x, ρ) over L2(Ω × (0, 1)) such that (φj)j
form a basis of L2(Ω;H1(0, 1)) and denote by Zk the space generated by
{φ1, φ2, . . . , φk}.

We construct approximate solutions (uk, zk), k = 1, 2, 3, . . ., in the form

uk(t) =

k∑
j=1

gjk(t)wj , zk(t) =

k∑
j=1

hjk(t)φj ,

where gik and hik, j = 1, 2, . . . , k, are determined by the following ordinary
differential equations:
(24)
(
u′′k(t), wj) + (∇xuk(t),∇xwj) + µ1(t)(u′k(t), wj) + µ2(t)(zk(·, 1), wj

)
= 0,

1 ≤ j ≤ k,
zk(x, 0, t) = u′k(x, t),

(25) uk(0) = u0k =
k∑
j=1

(u0, wj)wj → u0 in H2(Ω) ∩H1
0 (Ω) as k → +∞,

(26) u′k(0) = u1k =
k∑
j=1

(u1, wj)wj → u1 in H1
0 (Ω) as k → +∞,
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and

(27)

{ (
τ(t)zkt + (1− ρτ ′(t))zkρ, φj

)
= 0,

1 ≤ j ≤ k,

(28) zk(ρ, 0) = z0k =

k∑
j=1

(f0, φj)φj → f0 in H1
0 (Ω;H1(0, 1)) as k → +∞.

By virtue of the theory of ordinary differential equations the system (24)-(28)
has a unique local solution which is extended to a maximal interval [0, Tk[
(with 0 < Tk ≤ +∞) by Zorn lemma. Note that uk(t) is from the class C2.

In the next step we obtain a priori estimates for the solution, such that it
can be extended beyond [0, Tk[ to obtain a single solution defined for all t > 0.

In order to use a standard compactness argument for the limiting procedure,
we will derive some a priori estimates for (uk, zk).

The first estimate. Since the sequences (u0k), (u1k) and (z0k) converge,
then standard calculations, using (24)-(28), similar to those used to derive
(17), yield

(29) Ek(t) +

∫ t

0
a1(s)‖u′k(x, s)‖22ds+

∫ t

0
a2(s)‖zk(x, 1, s)‖22ds ≤ Ek(0) ≤ C,

where

Ek(t) =
1

2
‖u′k(t)‖22 +

1

2
‖∇xuk(t)‖22 +

ξ(t)τ(t)

2

∫
Ω

∫ 1

0
z2
k(x, ρ, t)) dρdx,

a1(t) = µ1(t)

(
1− ξ

2
− β

2
√

1− d

)
and a2(t) = µ1(t)

(
ξ(1− d)

2
− β
√

1− d
2

)
for some C independent of k.

Estimate (29) yields

(30) (uk) is bounded in L∞loc(0,∞;H1
0 (Ω)),

(31) (u′k) is bounded in L∞loc(0,∞;L2(Ω)),

(32) (µ1(t)u′
2
k(t)) is bounded in L1(Ω× (0, T )),

(33) (µ1(t)z2
k(x, ρ, t)) is bounded in L∞loc(0,∞;L1(Ω× (0, 1))),

(34) (µ1(t)z2
k(x, 1, t)) is bounded in L1(Ω× (0, T )).

The second estimate. First, we estimate u′′k(0). Testing (24) by g′′jk(t)
and choosing t = 0 we obtain

‖u′′k(0)‖2 ≤ ‖∆xu0k‖2 + µ1(0)‖u1k‖2 + |µ2(0)|‖z0k‖2.
Since (u0k), (z1k) are bounded in L2(Ω), (25), (26) and (28) yield

‖u′′k(0)‖2 ≤ C.
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Differentiating (24) with respect to t we get(
u′′′k (t)−∆xu

′
k(t)+µ1(t)u′′k(t)+µ′1(t)u′k(t)+µ2(t)z′k(1, t)+µ′2(t)zk(1, t), wj

)
= 0.

Multiplying by g′′jk(t) and summing over j from 1 to k implies

1

2

d

dt

(
‖u′′k(t)‖22 + ‖∇xu′k(t)‖22

)
+ µ1(t)

∫
Ω
u′′

2
k(t) dx

+ µ′1(t)

∫
Ω
u′′k(t)u

′
k(t) dx+ µ2(t)

∫
Ω
u′′k(t)z

′
k(x, 1, t) dx

+ µ′2(t)

∫
Ω
u′′k(t)zk(x, 1, t) dx = 0.

(35)

Differentiating (27) with respect to t gives((
τ(t)

1− ρτ ′(t)

)′
z′k(t) +

τ(t)

1− ρτ ′(t)
z′′k(t) +

∂

∂ρ
z′k(t), φj

)
= 0.

Multiplying by h′jk(t) and summing over j from 1 to k leads to

(36)

(
τ(t)

1− ρτ ′(t)

)′
‖z′k(t)‖22 +

1

2

τ(t)

1− ρτ ′(t)
d

dt
‖z′k(t)‖22 +

1

2

d

dρ
‖z′k(t)‖22 = 0.

Then, we have

(37)
1

2

(
τ(t)

1− ρτ ′(t)

)′
‖z′k(t)‖22+

1

2

d

dt

(
τ(t)

1− ρτ ′(t)
‖z′k(t)‖22

)
+

1

2

d

dρ
‖z′k(t)‖22 = 0.

Consequently, we have

1

2

d

dt

∫ 1

0

(
τ(t)

1− ρτ ′(t)
‖z′k(t)‖22

)
dρ+

1

2

∫ 1

0

(
τ(t)

1− ρτ ′(t)

)′
‖z′k(t)‖22 dρ

+
1

2
‖z′k(x, 1, t)‖22 −

1

2
‖u′′k(t)‖22 = 0.

(38)

Taking the sum of (35) and (38), we obtain

1

2

d

dt

(
‖u′′k(t)‖22 + ‖∇xu′k(t)‖22 +

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω)dρ

)
+ µ1(t)

∫
Ω
u′′

2
k(t) dx+

1

2

∫
Ω
|z′k(x, 1, t)|2 dx

= −1

2

∫ 1

0

(
τ(t)

1− ρτ ′(t)

)′
‖z′k(x, ρ, t)‖22dρ− µ2(t)

∫
Ω
u′′k(t)z

′
k(x, 1, t) dx

− µ′1(t)

∫
Ω
u′′k(t)u

′
k(t) dx− µ′2(t)

∫
Ω
u′′k(t)zk(x, 1, t) dx+

1

2
‖u′′k(t)‖22.

Using (H1)-(H3), Cauchy-Schwarz and Young’s inequalities, we conclude

1

2

d

dt

(
‖u′′k(t)‖22 + ‖∇xu′k(t)‖22 +

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ

)
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+ µ1(t)

∫
Ω
u′′

2
k(t) dx+

1

2

∫
Ω
|z′k(x, 1, t)|2 dx

≤ −1

2

∫ 1

0

(
τ(t)

1− ρτ ′(t)

)′
‖z′k(x, ρ, t)‖22dρ+ |µ2(t)|‖u′′k(t)‖2‖z′k(x, 1, t)‖2

+ |µ′1(t)|‖u′′k(t)‖2‖u′k(t)‖2 + |µ′2(t)|‖u′′k(t)‖2‖zk(x, 1, t)‖2 +
1

2
‖u′′k(t)‖22

≤ c
∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ+

|µ2(t)|2

2
‖u′′k(t)‖22 +

1

2
‖z′k(x, 1, t)‖22

+
|µ′1(t)|2

4
‖u′′k(t)‖22 + |µ′1(t)|‖u′k(t)‖22 +

|µ′2(t)|
4
‖u′′k(t)‖22

+ |µ′2(t)|‖zk(x, 1, t)‖22 +
1

2
‖u′′k(t)‖22

≤ c′‖u′′k(t)‖22 + |µ′1(t)|‖u′k(t)‖22 + c

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ

+
1

2
‖z′k(x, 1, t)‖22 + |µ′2(t)|‖zk(x, 1, t)‖22

≤ c′‖u′′k(t)‖22 +Mµ1(t)‖u′k(t)‖22 + c

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ

+
1

2
‖z′k(x, 1, t)‖22 + M̃µ1(t)‖zk(x, 1, t)‖22.

Integrating the last inequality over (0, t) and using (29), we get(
‖u′′k(t)‖22 + ‖∇xu′k(t)‖22 +

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ

)
≤
(
‖u′′k(0)‖22 + ‖∇xu′k(0)‖22 +

∫ 1

0

τ(0)

1− ρτ ′(0)
‖z′k(x, ρ, 0)‖2L2(Ω) dρ

)
+2c′

∫ t

0
|u′′k(s)‖22ds+ 2M

∫ t

0
µ1(s)‖u′k(s)‖22ds+ 2M̃

∫ t

0
µ1(s)‖zk(x, 1, s)‖22ds

2c

∫ t

0

∫ 1

0

τ(s)

1− ρτ ′(s)
‖z′k(x, ρ, s)‖2L2(Ω) dρdt+

∫ t

0
‖z′k(x, 1, s)‖22ds

≤
(
‖u′′k(0)‖22 + ‖∇xu′k(0)‖22 +

∫ 1

0

τ(0)

1− ρτ ′(0)
‖z′k(x, ρ, 0)‖2L2(Ω) dρ+ C

)
+ C ′

∫ t

0

(
‖u′′k(s)‖22 + ‖∇u′k(s)‖22 +

∫ 1

0

τ(s)

1− ρτ ′(s)
‖z′k(x, ρ, s)‖2L2(Ω) dρ

)
ds.

Using Gronwall’s lemma, we deduce that

‖u′′k(t)‖22 + ‖∇xu′k(t)‖22 +

∫ 1

0

τ(t)

1− ρτ ′(t)
‖z′k(x, ρ, t)‖2L2(Ω) dρ

≤ eC
′T

(
‖u′′k(0)‖22 + ‖∇xu′k(0)‖22 +

∫ 1

0

τ(0)

1− ρτ ′(0)
‖z′k(x, ρ, 0)‖2L2(Ω) dρ+ C

)
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for all t ∈ R+, therefore, we conclude that

(39) (u′′k) is bounded in L∞loc(0,+∞;L2(Ω)),

(40) (u′k) is bounded in L∞loc(0,+∞;H1
0 (Ω)),

(41) (τ(t)z′k) is bounded in L∞loc(0,+∞;L2(Ω× (0, 1))).

Applying Dunford-Petti’s theorem we conclude from (30), (31), (32), (33),
(34),(39), (40) and (41), after replacing the sequences (uk) and (zk) by subse-
quence if necessary, that

(42) uk → u weak-star in L∞loc(0,+∞;H2(Ω) ∩H1
0 (Ω)),

u′k → u′ weak-star in L∞loc(0,+∞;H1
0 (Ω)),

(43) u′′k → u′′ weak-star in L∞loc(0,+∞;L2(Ω)),

u′k → χ weak in L2(Ω× (0, T );µ1(t)),

zk → z weak-star in L∞loc(0,+∞;H1
0 (Ω;L2(0, 1)),

(44) z′k → z′ weak-star in L∞loc(0,+∞;L2(Ω× (0, 1))),

zk(x, 1, t)→ ψ weak in L2(Ω× (0, T );µ1(t))

for suitable functions u ∈ L∞(0, T ;H2(Ω) ∩ H1
0 (Ω)), z ∈ L∞(0, T ;L2(Ω ×

(0, 1))), χ ∈ L2(Ω× (0, T );µ1(t)), ψ ∈ L2(Ω× (0, T );µ1(t)) for all T ≥ 0.
We have to show that (u, z) is a solution of (P ).
From (30) and (31), we have that (u′k) is bounded in L∞(0, T ;H1

0 (Ω)). Then
(u′k) is bounded in L2(0, T ;H1

0 (Ω)). Since (u′′k) is bounded in L∞(0, T ;L2(Ω)),
then (u′′k) is bounded in L2(0, T ;L2(Ω)). Consequently, (u′k) is bounded in
H1(Q).

Since the embedding H1(Q) ↪→ L2(Q) is compact, using Aubin-Lions theo-
rem [11], we can extract a subsequence (uν) of (uk) such that

(45) u′ν → u′ strongly in L2(Q).

Therefore,

(46) u′ν → u′ strongly and a.e in Q.

Similarly we obtain

(47) zν → z strongly in L2(Ω× (0, 1)× (0, T ))

and

(48) zν → z strongly and a.e in Ω× (0, 1)× (0, T ).
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It follows directly from (42), (43), (44), (45) and (47) that for each fixed
v ∈ L2(0, T ;L2(Ω)) and w ∈ L2(0, T ;L2(Ω× (0, 1)))∫ T

0

∫
Ω

(
u′′ν −∆xuν + µ1(t)u′ν + µ2(t)zν

)
v dx dt

→
∫ T

0

∫
Ω

(
u′′ −∆xu+ µ1(t)u′ + µ2(t)z

)
v dx dt,∫ T

0

∫ 1

0

∫
Ω

(
τ(t)z′ν + (1− ρτ ′(t)) ∂

∂ρ
zν

)
w dx dρ dt

→
∫ T

0

∫ 1

0

∫
Ω

(
τ(t)z′ + (1− ρτ ′(t)) ∂

∂ρ
z
)
w dx dρ dt

as k → +∞. Hence, for all v ∈ L2(0, T ;L2(Ω)),∫ T

0

∫
Ω

(
u′′ + ∆xu+ µ1(t)u′ + µ2(t)z

)
v dx dt = 0

and for all w ∈ L2(0, T ;L2(Ω× (0, 1))),∫ T

0

∫ 1

0

∫
Ω

(
τ(t)z′ + (1− ρτ ′(t)) ∂

∂ρ
z
)
w dx dρ dt = 0.

Thus, the problem (P ) admits a global weak solution u.

4. ASYMPTOTIC BEHAVIOR

From now on, we denote by c various positive constants which may be
different at different occurrences. We multiply the first equation of (13) by
φ′Equ, where φ is a bounded function satisfying all the hypotheses of Lemma
2.1. We obtain

0 =

∫ T

S
Eqφ′

∫
Ω
u

(
u′′ −∆u+ µ1(t)u′ + µ2(t)z(x, 1, t)

)
dx dt

=

[
Eqφ′

∫
Ω
uu′ dx

]T
S

−
∫ T

S
(qE′Eq−1φ′ + Eqφ′′)

∫
Ω
uu′ dx dt

−2

∫ T

S
Eqφ′

∫
Ω
u′2 dx dt+

∫ T

S
Eqφ′

∫
Ω

(
u′2 + |∇u|2

)
dx dt

+

∫ T

S
Eqφ′µ1(t)

∫
Ω
uu′ dx dt+

∫ T

S
Eqφ′µ2(t)

∫
Ω
uz(x, 1, t) dx dt.

Similarly, we multiply the second equation of (13) by Eqφ′ξ(t)e−2ρτ(t)z(x, ρ, t)
and get

0 =

∫ T

S
Eqφ′

∫
Ω

∫ 1

0
e−2ρτ(t)ξ(t)z

(
τ(t)zt +

(
1− ρτ ′(t)

)
zρ

)
dρdx dt
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=

[
1

2
Eqφ′ξ(t)τ(t)

∫
Ω

∫ 1

0
τ(t)e−2ρτ(t)z2 dx dρ

]T
S

−1

2

∫ T

S

∫
Ω

∫ 1

0

(
Eqφ′ξ(t)τ(t)e−2ρτ(t)

)′
z2 dρdx dt

+

∫ T

S
Eqφ′

∫
Ω

∫ 1

0
ξ(t)

(
1

2

∂

∂ρ

(
e−2ρτ(t)

(
1− ρτ ′(t)

)
z2
)

+ τ(t)
(
1− ρτ ′(t)

)
e−2ρτ(t)z2 +

1

2
τ ′(t)e−2ρτ(t)z2

)
dρdx dt

=

[
1

2
Eqφ′ξ(t)τ(t)

∫
Ω

∫ 1

0
τ(t)e−2ρτ(t)z2 dρdx

]T
S

−1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫
Ω

∫ 1

0
e−2ρτ(t)z2 dρdx dt

+
1

2

∫ T

S
Eqφ′ξ(t)

∫
Ω

(
e−2τ(t)(1− τ ′(t))z2(x, 1, t)− z2(x, 0, t)

)
dx dt

+

∫ T

S
Eqφ′ξ(t)τ(t)

∫ 1

0

∫
Ω

e−2ρτ(t)z2 dx dρ dt.

Taking their sum, we obtain

A

∫ T

S
Eq+1φ′ dt

≤ −
[
Eqφ′

∫
Ω
uu′ dx

]T
S

+

∫ T

S
(qE′Eq−1φ′ + Eqφ′′)

∫
Ω
uu′ dx dt

+ 2

∫ T

S
Eqφ′

∫
Ω
u′2 dx dt−

∫ T

S
µ1(t)Eqφ′

∫
Ω
uu′ dx dt

−
∫ T

S
µ2(t)Eqφ′

∫
Ω
uz(x, 1, t) dx dt

−
[

1

2
Eqφ′ξ(t)τ(t)

∫
Ω

∫ 1

0
e−2ρτ(t)z2 dρ dx

]T
S

+
1

2

∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫
Ω

∫ 1

0
e−2ρτ(t)z2 dρdx dt

− 1

2

∫ T

S
Eqφ′ξ(t)

∫
Ω

(
e−2τ(t)(1− τ ′(t))z2(x, 1, t)− z2(x, 0, t)

)
dx dt,

(49)

where A = 2 min{1, e−2τ1}. Using the Cauchy-Schwarz and Poincaré’s inequal-
ities and the definition of E and assuming that φ′ is a bounded non-negative
function on R+, we get∣∣∣∣Eq(t)φ′ ∫

Ω
uu′ dx

∣∣∣∣ ≤ cE(t)q+1.
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By recalling (17), we have∫ T

S

∣∣∣∣qE′Eq−1φ′
∫

Ω
uu′ dx

∣∣∣∣ dt ≤ c
∫ T

S
Eq(t)|E′(t)| dt

≤ c
∫ T

S
Eq(t)(−E′(t)) dt ≤ cEq+1(S),

∫ T

S
Eqφ′′

∫
Ω
uu′ dx dt ≤ c

∫ T

S
Eq+1(t)(−φ′′)dt

≤ cEq+1(S)

∫ T

S
(−φ′′) dt ≤ cEq+1(S),

and ∫ T

S
Eqφ′

∫
Ω
u′2 dx dt ≤ c

∫ T

S
Eqφ′

1

µ1(t)

∫
Ω
µ1(t)u′2 dx dt

≤
∫ T

S
Eq

φ′

µ1(t)

(
−E′

)
dt.

(50)

Define

(51) φ(t) =

∫ t

0
µ1(s) ds.

It is clear that φ is a non-decreasing function of class C1 on R+, φ′ is bounded
and

(52) φ(t)→ +∞ as t→ +∞.
So, we deduce, from (50), that

(53)

∫ T

S
Eqφ′

∫
Ω
u′2 dx dt ≤ c

∫ T

S
Eq(−E′) dt ≤ cEq+1(S).

By the hypothesis (H1), Young’s and Poincaré’s inequality and (17), we have∣∣∣∣∫ T

S
Eqφ′

∫
Ω
uu′ dx dt

∣∣∣∣ ≤ c

∫ T

S
Eqφ′‖u‖2‖u′‖2 dt

≤ cε′
∫ T

S
Eqφ′‖u‖22 dt+ c(ε′)

∫ T

S
Eqφ′‖u′‖22 dt

≤ ε′c∗

∫ T

S
Eqφ′‖∇xu‖22 dt+ c(ε′)

∫ T

S
Eqφ′‖u′‖22 dt

≤ ε′c∗

∫ T

S
Eq+1φ′ dt+ cEq+1(S).

Recalling that ξ′ ≤ 0 and the definition of E, we have∫ T

S

(
Eqφ′ξ(t)

)′
τ(t)

∫
Ω

∫ 1

0
e−2ρτ(t)z2 dρdx dt
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≤
∫ T

S

(
Eqφ′

)′
ξ(t)τ(t)

∫
Ω

∫ 1

0
e−2ρτ(t)z2 dρdx dt

≤ c

∫ T

S
Eq|E′|φ′ dt

≤ c

∫ T

S
Eqφ′(−E′(t)) dt

≤ cEq+1(S),∫ T

S
Eqφ′ξ(t)

∫
Ω

e−2τ(t)(1− τ ′(t))z2(x, 1, t) dx dt

≤ c

∫ T

S
Eqφ′ξ(t)

∫
Ω
z2(x, 1, t) dx dt

≤ c

∫ T

S
Eqφ′

(
−E′

)
dt

≤ cEq+1(S),∫ T

S
Eqφ′ξ(t)

∫
Ω
z2(x, 0, t) dx dt =

∫ T

S
Eqφ′ξ(t)

∫
Ω
u′2(x, t) dx dt

≤ cEq+1(S),

where we also have used Cauchy-Schwarz inequality. Combining these esti-
mates and choosing ε′ sufficiently small, we conclude from (49) that∫ T

S
Eq+1φ′ dt ≤ cEq+1(S) ≤ cE(S).

Hence, we deduce from Lemma 2.1.

E(t) ≤ cE(0)e−ω
∫ t
0 µ1(s) ds, ∀ t ≥ 0.

This ends the proof of Theorem 2.2.
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