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EXISTENCE OF SOLUTIONS FOR SOME DEGENERATE
SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA

ARUN KUMAR BADAJENA and SHESADEV PRADHAN

Abstract. We study the existence of a weak solution for the degenerate semi-
linear elliptic problem

= > Djlai;(z)Diu(x)) — Ag(x)u(z) = — f(z,u(x)) + o in Q

i,j=1

u=0 on 09,

where Q is a bounded open subset of RN, N > 2 and ) is a real parameter.
Here g : & - R and f : Q@ x R — R are functions satisfying suitable
hypotheses and p is a Radon measure.
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1. INTRODUCTION

In this work we study the existence of (weak) solutions in the weighted
Sobolev spaces I/VO1 ’Q(Q, w) for the Dirichlet problem

Lu(z) — Ag(z)u(r) = —f(z,u(z)) + p in Q

1

(1) u=0 on 0,
where L is the partial differential operator Lu(z) = — 377", _; Dj(ai;(z)Diu(x))
with D; = 8%j(j =1;---;n),A € R, uis a Radon measure, € is a bounded

open subset of RV, The coefficients a;j are measurable, real-valued functions
and the coefficient matrix A = (a;;) is symmetric and satisfies the degenerate
elliptic condition

n

(2) aféPuw(@) < Y ai(@)éig; < BlEfw(@).

ij=1
for all ¢ € RY and for almost every x € €, w is a weight function (i.e., a locally
integrable function on RY) and «a, § are positive constants.
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In general, the Sobolev spaces W*P(Q) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degener-
ate partial differential equations, i.e., equations with various kinds of singu-
larities in the coefficients, it is natural to look for solutions in the weighted
Sobolev spaces (see [2-5]). A class of weights which is well understood is the
class of A, weights (Muckenhoupt class) introduced by B. Muckenhoupt (see
[10]). For more interesting examples of weights (p-admissible weights) we refer
to [8].

The problem (1) with p = 0 is studied by Cavalheiro in [2]. In this work, we
extend this result when p # 0 is a Radon measure. We note that the idea of
the proof when p is a compactly supported smooth function is same as in [2].
To study the existence of solutions for (1), the main tool we used is a compact
embedding theorem obtained in [1]. The study is inspired by a problem in
bounded domain given in the book by Zeidler [14].

This paper is organized as follows. Section 2 deals with preliminaries and
weak formulation of the problem. Section 3 concerns with the main result,
namely the existence of a weak solution of (1).

2. PRELIMINARIES

Let w be a locally integrable nonnegative function on RY and assume that
0 < w < oo almost everywhere. We say that w belongs to the Muckenhoupt
class A, 1 < p < oo, or that w is an A, weight, if there is a constant C' = Cp,

such that .
(‘;’/Bw(x)dx> (&/Bwllp(m)dao <c

for all ball B C RY, where |- | denotes the n-dimensional Lebesgue measure in
RN, If 1 < ¢ < p, then A, C A, (we refer to [7, 8] or [11] for more information
about A, weights).

As an example of A, weight, the function w(z) = |z|°, z € RN, is in A4,
if and only if —N < 6 < N(p — 1) (see Corollary 4.4, Chapter IX in [11]).
Any weight function w(x) defines a measure on the measurable subsets of RV
denoted by w. Let A C RY be any measurable set. Then w(A) = [, w(z)dz.
We denote by M(€2) the set of all Radon measures on 2.

DEFINITION 2.1. Let w be a weight, and let Q € RY be open. For 0 < p < 1
we define LP(Q2,w) as the set of measurable functions f on {2 such that

1/p
1 fllzr(w) = </Q |f(z)[Pw(z) d:c) < 0.

Ifwe A, 1<p< oo, then w1 g locally integrable and we have
LP(Q,w) C L}, for every open set 2 (see Remark 1.2.4 in [12]). It thus makes
sense to talk about weak derivatives of functions in LP(,w).
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DEFINITION 2.2. Letw € A, 2 C RY be open and k be a nonnegative inte-
ger. We define the weighted Sobolev space W¥*P(Q,w) as the set of functions
u € LP(Q,w) such that its weak derivatives Du € LP(Q,w), 1 < |a] < k. The
norm in W*P(Q,w) is defined as

1/p

) lelwesaw = ([ m@le@ae+ 3 [ prupu() do)

1<|a|<k

We also define Wf P(Q,w) as the closure of C§°(2) with respect to the norm

1/p
— @ p
||u|\W0k,p(Q’w)—( > /Q|D u(z)| w(x)dx) .

1<|a|<k
In the sequel, we denote by H = WOI’2(Q, w) and the norm in H by
lllir = g2 g

If w € Ay, then WFP(Q, w) is the closure of C*°(£2) with respect to the norm
in (3). The spaces W12(Q,w) and W()I’Z(Q,w) are Hilbert spaces and hence
reflexive. For more information about weighted Sobolev spaces WHP(Q, w)
with w € A, (we refer to [8, 11, 12]). For information about weighted Sobolev
spaces with other weights (we refer to [14]).

We need the following two results in the proof of the theorem.

THEOREM 2.3. Let Q C RN be open bounded and let w € Ap, 1 <p < o0.

Let up, — w in LP(Q2,w) then there exists a subsequence {un, } and a function
O(x) € LP(Q,w) such that

(1) up, (z) = u(z) w- a.e in Q as n — .
(2) up, (z) < ®(x) w- a.e in Q.

THEOREM 2.4. Let Q C RN be open bounded and let w € Ap, 1 <p< o0
There exists constants ¢ and n such that for all u € C§°(Q) and all k satisfying
1<k<n/(n-1)+mn, we have

[ull Ler () < ellVullLr.w)

The proof of Theorem 2.3 follows the same lines as in [14] and for the proof
of Theorem 2.4 we refer to [5].

REMARK 2.5. Let w € Ay. Then
(4) [ull 20wy < ClIVullL2@uw) = Cllulla,
that is, the embedding H «— L?(Q,w) is continuous.

We next define the weak solution of the problem (1).
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DEFINITION 2.6. A function v € H is sald to be the weak solution of the
problem (1) if u satisfies

/aij(x)Diu(:U)DjMx) d:c—)\/g(x)u(x)qb(x) dz
Q

(5) N
= [ s utansw s+ [ o),
Q Q

for all p € H.

Let Y* denote the dual of the real Banach space Y and let ||.|| denote the
norm on real Banach space Y. Let x € YV, f € Y* and (f|z)y denotes the
evaluation of linear functional f at z. From [14], we quote :

DEFINITION 2.7. Let A:Y — Y™ be an operator on a real Banach space Y.
(i) A is monotone if and only if (Au — Av|u —v)y > 0 for all u,v € Y.
(ii) A is hemi-continuous if and only if ¢t — (A(u + tv), w)y is continuous

on [0,1] for all u,v,w €Y.

(iii) A is angle-bounded if and only if A is linear, monotone and there exists

a constant C > 0 such that

’<Au> U>Y - <A’U, ’U')Y‘z < C(AU, u>Y<AUa U)Y
for all u,v €Y.
In Section 3, we need the following result.

THEOREM 2.8. Let K: X — X* and F : X* — Xbe operators on the real
separable Banach space X . Assume that
(i) the operator K : X — X* is linear, monotone and angle-bounded;
(ii) the operator F : X* — X is monotone and hemicontinuous.

Then the operator equation u + KFu = 0 has ezactly one solution u € X*.

The proof of the Theorem 2.8 is found in [14, Theorem 28.A]. We need the
following hypotheses for further study.

(F1) Let the weight function w € A, N CY(Q) and suppose that w can
be expressed as w(z) = f(r(z)), where r(z) is the distance r(z) =
dist(z,0Q) and f € C1() is positive, non-decreasing, has bounded
derivative f’ and satisfies lim,_,o+ f(r) = 0.

(F») Suppose that f: QxR — R satisfies the Carathéodory condition, that
is  — f(x,t) is measurable on 2 for all ¢ in R and ¢t — f(z,t) is
continuous on R for almost all = in €;

(F3) There exists two nonnegative functions g; and go with g1 € L? (Q,w)N
L2(Q,w™Y), go € L®(Q) and go/w € L>(Q) such that

[f(z, )] < g1(2) + g2 (@) t];
(F4) The map t — f(z,t) is monotonically increasing on R for almost all =
in Q;
(F5) The function g/w € L®(Q).
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3. THE MAIN RESULT
In this section, we establish the existence of a weak solution of (1).

THEOREM 3.1. Assume that the hypotheses (F1)—(Fs) hold. Suppose that
AC||g/wlleo < &, A >0, where the constants C' and o arise in the inequalities
(4) and (2), respectively. Then the problem (1) has a unique weak solution
u € H for every Radon measure . Moreover, if

CAllg/wlloo + lg2/wllo0) < e,
then
(6) |ul|lg < Co.

Proof. The basic idea is to transform the problem (1) into an operator
equation u + KFu = 0 and then to use Theorem 2.8. We first prove the
conclusion of Theorem 3.1 for u a compactly supported smooth function and
then we prove for any Radon measure p.

Case I: € C(Q).
We define the operator B: H x H — R by

B(u,$) = /Q i3 ()Dyu()D; () d — A / g(2)u()p(z) da

Q
for all u,¢ € H. A function u € H is a weak solution of (1) if and only if

(7) B(u,¢) = —/ f(z,u(x))p(x)de, forall ¢ € H.
Q
For convenience, we divide the proof into four steps.
Step 1: We define the operator F : L?(Q,w) — L?*(Q,w) by
(Fu)(z) = f(z, u(@)) — p(=).

By [2] the operator F is bounded, continuous and monotone.
Claim: B is bilinear, bounded and strongly positive. By Remark 2.5 and
(F5), we have

B(u. )| < /Q 035 (2)Dsu()D; () | da + A /Q l9(@)][u()|6(x)] da
< / BIDu(x)] [Dyé(@)w dz + Alg/w]l / ()] |¢(2) | dz
<5( [ Do) fwas) ([ Do) fws)

+)\Hg/w||oo(/ﬂ’u(gj)Pwdﬂb‘)l/Q(/Q|¢(m)|2wdx)1/2

<(B+ ACllg/wlloo)ull | ¢la,
for all u, ¢ € H. Hence, the bilinear form B is bounded.
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Since AC|g/w|lo < «, by Remark 2.5, and (F5), we have
B(u,u) = / aij(x)Diu(z)Dju(x) do — /\/ gu® dz
Q Q

> a/ ID;u(x)|? wde — )\||g/w|]oo/ wiwdz
Q Q

> (= AC|lg/wlloo)lullF

for all uw € H. Consequently, B is strongly positive.
Step 2: We consider the following linear boundary value problem

. —Lu(z) — Ag(z)u(x) = h(z) in Q
(8) u=0 on 0,
where h : Q — R be defined by h(z) := —f(z,v(z)) + p(z),v € H. Then, by
[14, Theorem 22.C] there exists an unique v € H C L?(£2,w) such that

Bu.0) = [ hw)ola)do.

We set u = Kh. By [14, Corollary 22.20] the solution operator K : L?(Q,w) —
L?(2,w) is linear, monotone, compact and angle-bounded. Thus the problem
(1) is equivalent to the operator equation

(9) u+ KFu =0, ue L*(Q,w).
Hence, by Theorem 2.8 there exists a unique solution to (9).

Step 3: In particular, taking ¢ = u € W01’2(Q,w), we have B(u,u) =
— Jo f@,w)udz + [ p(x)u(z)de. From Step 1, we obtain B(u,u) > (a —
AC|lg/wlloo) lull?;- Also, by (F3) and Remark 2.5, we note that,

‘—/f(:c,u)udx—{—/,u(m)u(x) dx
Q Q

< [i@ululde+ [ p) o) 20 2

< [+ glublulas + ( [ )P uo)Pwar) ([ @ an)”

< Hgl/c«JH2</Q\u(x)\%zdx)lﬂ+ HQQ/WHOO/Q|u(x)|2wdx

e [ luto)Pwar) ([ Lac)”

—1111/2
< C(lgrfwllz + llloollw™ ) lull iz + Cllga /e oo,

where A = supp(u), is compact. Hence,

—1¢1/2
(= ACllg/wlloo) [ullFr < Clllgr/ewlla+Ilpalloollw™ 1) a2+ Clga /e oo lullF
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or,
lullir < Clllgr/wllz + Iloollw™ 1)/ (1 = Cllg/wlloo + l92/wlloo)) = Ca,
if

0 <A< (a—Cllg2/wllec)/Cllg/wlloo-

Case II: € M(Q).
For u € M(Q), we can find a sequence {yu,} C C°(92) such that

/ pn(2)o(x) de — / é(x)dp, for all ¢ € C3°(Q).
Q Q
By the density of C§°(Q2) in H we also have

(10) / tn(z)o(z) de — / ¢(x)dp, for all ¢ € H.
Q Q
Now, from Case I we know that for each pu,, there exists a u,, € H such that
u, satisfies (1) with p = p, and
lun|la < C.

Thus, the sequence {uy} is bounded in H and since H is reflexive there exists
a subsequence, again denoted by, {u,} which converges weakly to some u in
H.

We wish to show that u satisfies (1). Since w satisfies (F7), by [1, Lemma
5.2] the embedding

H < L*(Qw)

is compact. Thus, u,, — u in L?(Q,w). Hence, by Theorem 3.2 there exists a
subsequence, again denoted by, {u,} and a function ® € L?(,w) such that
Uy, — u, w—a.e. in Q and |uy,(z)| < @(z), w—a.e. in Q. Hence by (F»)

f(x,up(z)) = f(z,u(x)), w—a.e. in Q.
And so,

flzyun(x)o(z) = flz,u(x))d(z), w—a.e. inQ, Vo € H.
Now, by (H3) we have

/Vmw@WMMS/@+meME
Q Q
QMMMWW@@WWMAQMW@M<m

since ® € L?(Q,w) and ¢ € H. Thus, by Dominated convergence theorem,

(11) /f x, up ( :c)dz:%/ﬂf(x,u(:c))gi)@)dx

Similarly, since g/w € L by (F3), we have

(12) Aawwmwuwx%[gmmwmex
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Next, we need to show that
(13) /aij(:ﬂ)Diun(x)ngb(x) dz — / a;j(x)Dsu(z)Djo(x) dx, Vo € H.
Q Q

Now, for each ¢ € H, since the map u > fQ a;;D;juD;¢ is a continuous
linear map on H and since u,, — u in H, we have

(14)
/ a;j(x)Diun(z)Djo(z) de — / a;j(x)Dsu(z)Djo(z) dz, for each ¢ € H.
Q Q
That is, (13) holds. Now, combining (10), (11), (12) and (13) we have that

u satisfies (5) that is, u is a weak solution of (1). Since, for each n, u,, satisfies
(6), u also satisfies (6). This completes the proof of the theorem. O

In the following two results, we consider the cases A < 0, A > 0 and relax
the hypothesis \||g/w||C < « under the restriction that the function g does
not change sign. The proof is similar to the Theorem 3.1; we restrict ourselves
to sketch the deviations wherever needed.

THEOREM 3.2. Assume that the hypotheses (F1)—(F5) hold. Suppose that
g>0, AX<0. Then the BVP (1) has exactly one weak solution uw € H.

Proof. We present a brief sketch of the proof: we note that

[B(u, ¢)| = / Iaij(x)I\Diu<x)|\Dj¢<x)\dx+w/ l9(2)| [u(z)] |¢(x)| dz
Q Q
< (L4 Clglloo) el -

Consequently, B is bounded. Since g > 0, A < 0, as in Step 2 of Theorem 3.1
we note that

(Bu, u) —/Qaij(x)Diu(x)Dju(x) dx—/\/ﬂqu dz
> / i3 (2)Dsu()Djul) da = [[ull%,
Q

for all w € H, which shows that, B is strongly positive. Since B is bilinear,
bounded and strongly positive, as in Step 2 of Theorem 3.1, equation (8) has a
weak solution, say u € H. Also, the solution operator K is linear, monotone,
compact and angle-bounded. Hence, the operator equation (9) has exactly
one solution. 0

Similarly, we have the following result.

THEOREM 3.3. Assume the hypotheses (F1)—(F5). Suppose that g < 0,
A > 0. Then (1) has exactly one weak solution u € H.
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