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EXISTENCE OF SOLUTIONS FOR SOME DEGENERATE
SEMILINEAR ELLIPTIC EQUATIONS WITH MEASURE DATA

ARUN KUMAR BADAJENA and SHESADEV PRADHAN

Abstract. We study the existence of a weak solution for the degenerate semi-
linear elliptic problem

−
n∑

i,j=1

Dj(aij(x)Diu(x)) − λg(x)u(x) = −f(x, u(x)) + µ in Ω

u = 0 on ∂Ω,

where Ω is a bounded open subset of RN , N ≥ 2 and λ is a real parameter.
Here g : Ω → R and f : Ω × R → R are functions satisfying suitable
hypotheses and µ is a Radon measure.
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1. INTRODUCTION

In this work we study the existence of (weak) solutions in the weighted

Sobolev spaces W 1,2
0 (Ω, ω) for the Dirichlet problem

Lu(x)− λg(x)u(x) = −f(x, u(x)) + µ in Ω

u = 0 on ∂Ω,
(1)

where L is the partial differential operator Lu(x) = −
∑n

i,j=1 Dj(aij(x)Diu(x))

with Dj = ∂
∂xj

(j = 1; · · · ;n), λ ∈ R, µ is a Radon measure, Ω is a bounded

open subset of RN . The coefficients aij are measurable, real-valued functions
and the coefficient matrix A = (aij) is symmetric and satisfies the degenerate
elliptic condition

(2) α|ξ|2ω(x) ≤
n∑

i,j=1

aij(x)ξiξj ≤ β|ξ|2ω(x).

for all ξ ∈ RN and for almost every x ∈ Ω, ω is a weight function (i.e., a locally
integrable function on RN ) and α, β are positive constants.
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In general, the Sobolev spaces W k,p(Ω) without weights occur as spaces of
solutions for elliptic and parabolic partial differential equations. For degener-
ate partial differential equations, i.e., equations with various kinds of singu-
larities in the coefficients, it is natural to look for solutions in the weighted
Sobolev spaces (see [2–5]). A class of weights which is well understood is the
class of Ap weights (Muckenhoupt class) introduced by B. Muckenhoupt (see
[10]). For more interesting examples of weights (p-admissible weights) we refer
to [8].

The problem (1) with µ = 0 is studied by Cavalheiro in [2]. In this work, we
extend this result when µ 6= 0 is a Radon measure. We note that the idea of
the proof when µ is a compactly supported smooth function is same as in [2].
To study the existence of solutions for (1), the main tool we used is a compact
embedding theorem obtained in [1]. The study is inspired by a problem in
bounded domain given in the book by Zeidler [14].

This paper is organized as follows. Section 2 deals with preliminaries and
weak formulation of the problem. Section 3 concerns with the main result,
namely the existence of a weak solution of (1).

2. PRELIMINARIES

Let ω be a locally integrable nonnegative function on RN and assume that
0 < ω < ∞ almost everywhere. We say that ω belongs to the Muckenhoupt
class Ap, 1 < p <∞, or that ω is an Ap weight, if there is a constant C = Cp,ω
such that (

1

|B|

∫
B
ω(x) dx

)(
1

|B|

∫
B
ω

1
1−p (x) dx

)p−1

≤ C

for all ball B ⊂ RN , where | · | denotes the n-dimensional Lebesgue measure in
RN . If 1 < q ≤ p, then Aq ⊂ Ap (we refer to [7, 8] or [11] for more information
about Ap weights).

As an example of Ap weight, the function ω(x) = |x|δ, x ∈ RN , is in Ap
if and only if −N < δ < N(p − 1) (see Corollary 4.4, Chapter IX in [11]).
Any weight function ω(x) defines a measure on the measurable subsets of RN
denoted by ω. Let A ⊂ RN be any measurable set. Then ω(A) =

∫
A ω(x) dx.

We denote by M(Ω) the set of all Radon measures on Ω.

Definition 2.1. Let ω be a weight, and let Ω ⊂ RN be open. For 0 < p < 1
we define Lp(Ω, ω) as the set of measurable functions f on Ω such that

‖f‖Lp(Ω,ω) =

(∫
Ω
|f(x)|pω(x) dx

)1/p

<∞.

If ω ∈ Ap, 1 < p < ∞, then ω−1/(p−1) is locally integrable and we have
Lp(Ω, ω) ⊂ L1

loc for every open set Ω (see Remark 1.2.4 in [12]). It thus makes
sense to talk about weak derivatives of functions in Lp(Ω, ω).
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Definition 2.2. Let ω ∈ Ap, Ω ⊂ RN be open and k be a nonnegative inte-

ger. We define the weighted Sobolev space W k,p(Ω, ω) as the set of functions
u ∈ Lp(Ω, ω) such that its weak derivatives Dαu ∈ Lp(Ω, ω), 1 ≤ |α| ≤ k. The
norm in W k,p(Ω, ω) is defined as

(3) ‖u‖Wk,p(Ω,ω) =
(∫

Ω
|u(x)|pω(x) dx+

∑
1≤|α|≤k

∫
Ω
|Dαu(x)|pω(x) dx

)1/p
.

We also define W k,p
0 (Ω, ω) as the closure of C∞0 (Ω) with respect to the norm

‖u‖
Wk,p

0 (Ω,ω)
=
( ∑

1≤|α|≤k

∫
Ω
|Dαu(x)|pω(x) dx

)1/p
.

In the sequel, we denote by H = W 1,2
0 (Ω, ω) and the norm in H by

‖u‖H = ‖u‖
W 1,2

0 (Ω,ω)
.

If ω ∈ Ap, then W k,p(Ω, ω) is the closure of C∞(Ω) with respect to the norm

in (3). The spaces W 1,2(Ω, ω) and W 1,2
0 (Ω, ω) are Hilbert spaces and hence

reflexive. For more information about weighted Sobolev spaces W k,p(Ω, ω)
with ω ∈ Ap (we refer to [8, 11, 12]). For information about weighted Sobolev
spaces with other weights (we refer to [14]).

We need the following two results in the proof of the theorem.

Theorem 2.3. Let Ω ⊂ RN be open bounded and let ω ∈ Ap, 1 < p < ∞.
Let un → u in Lp(Ω, ω) then there exists a subsequence {unk

} and a function
Φ(x) ∈ Lp(Ω, ω) such that

(1) unk
(x)→ u(x) ω- a.e in Ω as nk →∞.

(2) unk
(x) ≤ Φ(x) ω- a.e in Ω.

Theorem 2.4. Let Ω ⊂ RN be open bounded and let ω ∈ Ap, 1 < p < ∞.
There exists constants c and η such that for all u ∈ C∞0 (Ω) and all k satisfying
1 ≤ k ≤ n/(n− 1) + η, we have

‖u‖Lkp(Ω,ω) ≤ c‖∇u‖Lp(Ω,ω)

The proof of Theorem 2.3 follows the same lines as in [14] and for the proof
of Theorem 2.4 we refer to [5].

Remark 2.5. Let ω ∈ A2. Then

(4) ‖u‖L2(Ω,ω) ≤ C‖∇u‖L2(Ω,ω) = C‖u‖H ,

that is, the embedding H ↪→ L2(Ω, ω) is continuous.

We next define the weak solution of the problem (1).
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Definition 2.6. A function u ∈ H is said to be the weak solution of the
problem (1) if u satisfies∫

Ω
aij(x)Diu(x)Djφ(x) dx−λ

∫
Ω
g(x)u(x)φ(x) dx

= −
∫

Ω
f(x, u(x))φ(x) dx+

∫
Ω
φ(x) dµ,

(5)

for all φ ∈ H.

Let Y ∗ denote the dual of the real Banach space Y and let ‖.‖ denote the
norm on real Banach space Y . Let x ∈ Y , f ∈ Y ∗ and 〈f |x〉Y denotes the
evaluation of linear functional f at x. From [14], we quote :

Definition 2.7. Let A:Y → Y ∗ be an operator on a real Banach space Y .

(i) A is monotone if and only if 〈Au−Av|u− v〉Y ≥ 0 for all u, v ∈ Y.
(ii) A is hemi-continuous if and only if t 7→ 〈A(u+ tv), w〉Y is continuous

on [0, 1] for all u, v, w ∈ Y.
(iii) A is angle-bounded if and only if A is linear, monotone and there exists

a constant C ≥ 0 such that

|〈Au, v〉Y − 〈Av, u〉Y |2 ≤ C〈Au, u〉Y 〈Av, v〉Y
for all u, v ∈ Y .

In Section 3, we need the following result.

Theorem 2.8. Let K : X → X∗ and F : X∗ → Xbe operators on the real
separable Banach space X. Assume that

(i) the operator K : X → X∗ is linear, monotone and angle-bounded;
(ii) the operator F : X∗ → X is monotone and hemicontinuous.

Then the operator equation u+ KFu = 0 has exactly one solution u ∈ X∗.
The proof of the Theorem 2.8 is found in [14, Theorem 28.A]. We need the

following hypotheses for further study.

(F1) Let the weight function ω ∈ Ap ∩ C1(Ω) and suppose that ω can
be expressed as ω(x) = f(r(x)), where r(x) is the distance r(x) =
dist(x, ∂Ω) and f ∈ C1(Ω) is positive, non-decreasing, has bounded
derivative f ′ and satisfies limr→0+ f(r) = 0.

(F2) Suppose that f : Ω×R→ R satisfies the Carathéodory condition, that
is x 7→ f(x, t) is measurable on Ω for all t in R and t 7→ f(x, t) is
continuous on R for almost all x in Ω;

(F3) There exists two nonnegative functions g1 and g2 with g1 ∈ L2(Ω, ω)∩
L2(Ω, ω−1), g2 ∈ L∞(Ω) and g2/ω ∈ L∞(Ω) such that

|f(x, t)| ≤ g1(x) + g2(x)|t|;
(F4) The map t 7→ f(x, t) is monotonically increasing on R for almost all x

in Ω;
(F5) The function g/ω ∈ L∞(Ω).
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3. THE MAIN RESULT

In this section, we establish the existence of a weak solution of (1).

Theorem 3.1. Assume that the hypotheses (F1)–(F5) hold. Suppose that
λC‖g/ω‖∞ < α, λ > 0, where the constants C and α arise in the inequalities
(4) and (2), respectively. Then the problem (1) has a unique weak solution
u ∈ H for every Radon measure µ. Moreover, if

C(λ‖g/ω‖∞ + ‖g2/ω‖∞) < α,

then

(6) ‖u‖H ≤ C2.

Proof. The basic idea is to transform the problem (1) into an operator
equation u + KFu = 0 and then to use Theorem 2.8. We first prove the
conclusion of Theorem 3.1 for µ a compactly supported smooth function and
then we prove for any Radon measure µ.

Case I: µ ∈ C∞c (Ω).
We define the operator B : H ×H → R by

B(u, φ) =

∫
Ω
aij(x)Diu(x)Djφ(x) dx− λ

∫
Ω
g(x)u(x)φ(x) dx

for all u, φ ∈ H. A function u ∈ H is a weak solution of (1) if and only if

(7) B(u, φ) = −
∫

Ω
f(x, u(x))φ(x) dx, for all φ ∈ H.

For convenience, we divide the proof into four steps.

Step 1: We define the operator F : L2(Ω, ω)→ L2(Ω, ω) by

(Fu)(x) = f(x, u(x))− µ(x).

By [2] the operator F is bounded, continuous and monotone.
Claim: B is bilinear, bounded and strongly positive. By Remark 2.5 and

(F5), we have

|B(u, φ)| ≤
∫

Ω
|aij(x)Diu(x)Djφ(x)|dx+ λ

∫
Ω
|g(x)||u(x)||φ(x)|dx

≤
∫

Ω
β|Diu(x)| |Djφ(x)|ω dx+ λ‖g/ω‖∞

∫
Ω
|u(x)||φ(x)|ω dx

≤β
(∫

Ω
|Diu(x)|2ω dx

)1/2(∫
Ω
|Djφ(x)|2ω dx

)1/2

+ λ‖g/ω‖∞
(∫

Ω
|u(x)|2ω dx

)1/2(∫
Ω
|φ(x)|2ω dx

)1/2

≤ (β + λC‖g/ω‖∞)‖u‖H‖φ‖H ,

for all u, φ ∈ H. Hence, the bilinear form B is bounded.
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Since λC‖g/ω‖∞ < α, by Remark 2.5, and (F5), we have

B(u, u) =

∫
Ω
aij(x)Diu(x)Dju(x) dx− λ

∫
Ω
gu2 dx

≥ α
∫

Ω
|Diu(x)|2 ω dx− λ‖g/ω‖∞

∫
Ω
u2ω dx

≥ (α− λC‖g/ω‖∞)‖u‖2H
for all u ∈ H. Consequently, B is strongly positive.

Step 2: We consider the following linear boundary value problem

−Lu(x)− λg(x)u(x) = h(x) in Ω

u = 0 on ∂Ω,
(8)

where h : Ω → R be defined by h(x) := −f(x, v(x)) + µ(x), v ∈ H. Then, by
[14, Theorem 22.C] there exists an unique u ∈ H ⊂ L2(Ω, ω) such that

B(u, φ) =

∫
Ω
h(x)φ(x) dx.

We set u = Kh. By [14, Corollary 22.20] the solution operator K : L2(Ω, ω)→
L2(Ω, ω) is linear, monotone, compact and angle-bounded. Thus the problem
(1) is equivalent to the operator equation

(9) u+ KFu = 0, u ∈ L2(Ω, ω).

Hence, by Theorem 2.8 there exists a unique solution to (9).

Step 3: In particular, taking φ = u ∈ W 1,2
0 (Ω, ω), we have B(u, u) =

−
∫

Ω f(x, u)udx +
∫

Ω µ(x)u(x) dx. From Step 1, we obtain B(u, u) ≥ (α −
λC‖g/ω‖∞)‖u‖2H . Also, by (F3) and Remark 2.5, we note that,∣∣∣∣−∫

Ω
f(x, u)udx+

∫
Ω
µ(x)u(x) dx

∣∣∣∣
≤
∫

Ω
|f(x, u)| |u| dx+

∫
Ω
|µ(x)| |u(x)|ω−1/2ω1/2 dx

≤
∫

Ω
(g1 + g2|u|)|u|dx+

(∫
Ω
|µ(x)|2 |u(x)|2ω dx

)1/2(∫
Ω

(ω−1/2)2 dx
)1/2

≤ ‖g1/ω‖2
(∫

Ω
|u(x)|2ω dx

)1/2
+ ‖g2/ω‖∞

∫
Ω
|u(x)|2ω dx

+ ‖µ‖∞
(∫

Ω
|u(x)|2ω dx

)1/2(∫
A

1

ω
dx
)1/2

≤ C(‖g1/ω‖2 + ‖µ‖∞‖ω−1‖1/21 )‖u‖H + C‖g2/ω‖∞‖u‖2H ,

where A = supp(µ), is compact. Hence,

(α− λC‖g/ω‖∞) ‖u‖2H ≤ C(‖g1/ω‖2+‖µ‖∞‖ω−1‖1/21 )‖u‖H+C‖g2/ω‖∞‖u‖2H
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or,

‖u‖H ≤ C(‖g1/ω‖2 + ‖µ‖∞‖ω−1‖1/21 )/ (1− C(λ‖g/ω‖∞ + ‖g2/ω‖∞)) = C2,

if
0 < λ < (α− C‖g2/ω‖∞)/C‖g/ω‖∞.

Case II: µ ∈M(Ω).
For µ ∈M(Ω), we can find a sequence {µn} ⊂ C∞c (Ω) such that∫

Ω
µn(x)φ(x) dx→

∫
Ω
φ(x) dµ, for all φ ∈ C∞0 (Ω̄).

By the density of C∞0 (Ω̄) in H we also have

(10)

∫
Ω
µn(x)φ(x) dx→

∫
Ω
φ(x) dµ, for all φ ∈ H.

Now, from Case I we know that for each µn there exists a un ∈ H such that
un satisfies (1) with µ = µn and

‖un‖H ≤ C.
Thus, the sequence {un} is bounded in H and since H is reflexive there exists
a subsequence, again denoted by, {un} which converges weakly to some u in
H.

We wish to show that u satisfies (1). Since ω satisfies (F1), by [1, Lemma
5.2] the embedding

H ↪→ L2(Ω, ω)

is compact. Thus, un → u in L2(Ω, ω). Hence, by Theorem 3.2 there exists a
subsequence, again denoted by, {un} and a function Φ ∈ L2(Ω, ω) such that
un → u, ω−a.e. in Ω and |un(x)| ≤ Φ(x), ω−a.e. in Ω. Hence by (F2)

f(x, un(x))→ f(x, u(x)), ω − a.e. in Ω.

And so,

f(x, un(x))φ(x)→ f(x, u(x))φ(x), ω − a.e. in Ω, ∀φ ∈ H.
Now, by (H3) we have∫

Ω
|f(x, un(x))φ(x)|dx ≤

∫
Ω

(g1 + g2|un|)|φ| dx

≤ ‖g1/ω‖2‖φ‖L2(Ω,ω) + ‖g2‖∞
∫

Ω
Φ(x)|φ(x) dx <∞,

since Φ ∈ L2(Ω, ω) and φ ∈ H. Thus, by Dominated convergence theorem,

(11)

∫
Ω
f(x, un(x))φ(x) dx→

∫
Ω
f(x, u(x))φ(x) dx.

Similarly, since g/ω ∈ L∞ by (F2), we have

(12)

∫
Ω
g(x)un(x)φ(x) dx→

∫
Ω
g(x)u(x)φ(x) dx.
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Next, we need to show that

(13)

∫
Ω
aij(x)Diun(x)Djφ(x) dx→

∫
Ω
aij(x)Diu(x)Djφ(x) dx, ∀φ ∈ H.

Now, for each φ ∈ H, since the map u 7→
∫

Ω aijDiuDjφ is a continuous
linear map on H and since un ⇀ u in H, we have
(14)∫

Ω
aij(x)Diun(x)Djφ(x) dx→

∫
Ω
aij(x)Diu(x)Djφ(x) dx, for each φ ∈ H.

That is, (13) holds. Now, combining (10), (11), (12) and (13) we have that
u satisfies (5) that is, u is a weak solution of (1). Since, for each n, un satisfies
(6), u also satisfies (6). This completes the proof of the theorem. �

In the following two results, we consider the cases λ < 0, λ > 0 and relax
the hypothesis λ‖g/ω‖∞C < α under the restriction that the function g does
not change sign. The proof is similar to the Theorem 3.1; we restrict ourselves
to sketch the deviations wherever needed.

Theorem 3.2. Assume that the hypotheses (F1)–(F5) hold. Suppose that
g ≥ 0, λ < 0. Then the BVP (1) has exactly one weak solution u ∈ H.

Proof. We present a brief sketch of the proof: we note that

|B(u, φ)| ≤
∫

Ω
|aij(x)| |Diu(x)| |Djφ(x)|dx+ |λ|

∫
Ω
|g(x)| |u(x)| |φ(x)| dx

≤
(
1 + C|λ|‖g‖∞

)
‖u‖H‖φ‖H .

Consequently, B is bounded. Since g ≥ 0, λ < 0, as in Step 2 of Theorem 3.1
we note that

〈Bu, u〉 =

∫
Ω
aij(x)Diu(x)Dju(x) dx− λ

∫
Ω
gu2 dx

≥
∫

Ω
aij(x)Diu(x)Dju(x) dx = ‖u‖2H

for all u ∈ H, which shows that, B is strongly positive. Since B is bilinear,
bounded and strongly positive, as in Step 2 of Theorem 3.1, equation (8) has a
weak solution, say u ∈ H. Also, the solution operator K is linear, monotone,
compact and angle-bounded. Hence, the operator equation (9) has exactly
one solution. �

Similarly, we have the following result.

Theorem 3.3. Assume the hypotheses (F1)–(F5). Suppose that g ≤ 0,
λ > 0. Then (1) has exactly one weak solution u ∈ H.
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