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Abstract. For some pure cubic field K, we compute the class number of K
based on the notion of reduced ideals and the notion of the minimum of an ideal.
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1. INTRODUCTION

The calculation of the class number of a number field has always been
an interesting problem. Several methods are known in this subject, namely
the method using analytic formulas, the method using modular forms and
others. The reduced ideals, too, play a very important role in some methods
of calculating the class number of quadratic fields and this has prompted us
to think of exploiting them again on the pure cubic fields whose purpose, in
the first place, is to provide a method of calculating the class number of an
order of a pure cubic field. On the imaginary quadratic field it is proved that
there are at most two reduced ideals in any class and, when two distinct such
ideals are in a class, they are conjugated. Thus, eliminating the conjugates in
question, the number of classes is exactly the number of reduced ideals. In the
case of a real quadratic field, examples show that one class can contain several
reduced ideals which are connected by a specific equivalence relation and form
a cycle, therefore, the idea is to represent each class of ideals by such a cycle.
In the quadratic case, different methods describe the construction steps of
these cycles: the method using the notion of continued fractions (see [5]), the
method using the notion of the root of an ideal (see [7]) and the method using
the quadratic forms (see [3]). In addition to these notions used on quadratic
fields, another very important notion is that of the convergent of an ideal (see
[1]) or its equivalent term which is the minimum of an ideal (see [2]).

Let K be a number field of degree n over Q and OK its ring of integers. Let
σ1, . . . , σn be the n embedding of K in C. For all units u of OK we have the
following property: OK does not contain any non-zero element α such that
∀i ∈ {1, . . . , n}, |σi(α)| < |σi(u)|, because |NK/Q(u)| = 1 and NK/Q(α) ∈ Z.
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On the other hand, if I is an ideal of OK , then for every element µ ∈ I of
minimal nonzero norm, there is no non-zero element α ∈ I such that ∀i ∈
{1, . . . , n}, |σi(α)| < |σi(µ)|. In general, this property does not characterize
only the units of OK and the elements of minimal nonzero norm of I, but
there are many more elements of OK checking this property, these elements
are called the minimums of an ideal. The connection between the notion of
reduced ideal and that of the minimum of an ideal is based on the fact that an
ideal I of OK is reduced if and only if the smallest positive integer belonging to
I is a minimum of I, this link can be better used, first, to show that each class
contains at least one reduced ideal and to identify the reduced ideals in each
class, which makes it possible to form a cycle of reduced ideals in each class.
Second, to prove that the set of reduced ideals of OK is finite and therefore
the class number of OK is equal to the number of cycles of reduced ideals.

In this paper we consider the pure cubic fields K = Q( 3
√
D), where D is

square-free integer and 6≡ ±1 (mod 9), in this case we have OK = Z( 3
√
D). As

in [4], we can determine all the reduced ideals of OK and we use the cycle of
minimums of an ideal, but not as it is considered in [2], to build a cycles of
reduced ideals of OK ; the number of this cycles is exactly the class number of
K. Note that the procedure and the calculations are the same for the general
case of a pure cubic field.

2. MINIMUM OF AN IDEAL

Let K = Q( 3
√
D) be a pure cubic number field, where D is square-free

integer and 6≡ ±1 (mod 9), if we put θ = 3
√
D, then we know that OK = Z[θ] =

[1, θ, θ2] is the ring of integers of K and ∆K = −27D2 its discriminant. The
embedding of K in C are the identity and the pairs of complex Q-isomorphisms
(σ, σ), with σ(θ) = ζθ and σ(θ) = ζ2θ, where ζ = e2iπ/3.

Definition 2.1. Let I be a fractional ideal of OK . We say that a non-zero
element µ ∈ I is a minimum of I, if I does not contain any non-zero element
α verifying |α| < |µ| and |σ(α)| < |σ(µ)|.

If µ is a minimum of I, then for all α ∈ I we have

|α| < |µ| and |σ(α)| < |σ(µ)| =⇒ α = 0.

Every element in I of minimal nonzero norm is a minimum of I.

Proposition 2.2. If µ is a minimum of I then αµ is a minimum of αI for
all α ∈ K∗. In particular, if u is a unit of OK , then uµ is a minimum of I.

Proof. Let β ∈ αI ( β = αλ with λ ∈ I) such that |β| < |αµ| and |σ(β)| <
|σ(αµ)|, hence |αλ)| < |αµ| and |σ(α)σ(λ)| < |σ(α)σ(µ)|, and, since α 6= 0,
it follow that |λ| < |µ| and |σ(λ)| < |σ(µ)|, consequently λ = 0, therefore
β = 0. �
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Let us denote byMI the set of minimums of I and by CI the set of minimums
of I not associated two by two and we call the latter a cycle of minimums of
I.

Proposition 2.3. Let I be an ideal of OK . Then CI is finite.

Proof. If µ is a minimum of the ideal I, then, by [6, Theorem 5.3, p. 32],

we have |µ||σ(µ)||σ(µ)| ≤ 2
π

√
|∆K |N(I) hence |N(µ)| ≤ 2

π

√
|∆K |N(I), up

to multiplication by units there are only finitely many elements in I whose
absolute norm is increased by the constant 2

π

√
|∆K |N(I), hence the result. �

If CI = {µ1, . . . , µm}, then we can find another set of minimums of I not
associated two by two, for example C ′I = {uµ1, . . . , uµm}, where u is in UK ,
the unit group of OK .

Theorem 2.4. Let I and J be two ideals of OK . Let µ be a minimum of I
and η be a minimum of J . Then the following conditions are equivalent:

(1) I and J are equivalent;
(2) there is a unique µ′ in CI such that µ′−1I = η−1J ;
(3) there is a unique η′ in CJ such that µ−1I = η′−1J .

Proof. We have (2) =⇒ (1) is clear. Conversely, if I and J are equivalent,
then there is γ ∈ K such that I = γJ and, since η is a minimum of J , γη
is a minimum of I, hence there is µ′ ∈ CI such that γη = µ′u with u ∈ UK ,
therefor we have (µ′u)−1I = (γη)−1I, hence µ′−1I = η−1J . If there is another
minimum µ′′ ∈ CI such that µ′′−1I = η−1J , then µ′′−1I = µ′−1I, so µ′ and
µ′′ are associated, hence the uniqueness of µ′ in CI holds and finally we have
(1) =⇒ (2). We show that (1)⇐⇒ (3) in the same way. �

Corollary 2.5. Let I and J be two ideals of OK . If I and J are equivalent,
then CI and CJ have the same cardinal.

3. REDUCED IDEALS AND MINIMUM

Definition 3.1. We say that an ideal I of OK is primitive, if I is without
rational factor. Otherwise, if there is no prime number p such that I ⊂ pO.

Definition 3.2. We will say that an ideal I of OK is reduced, if I is
primitive and `(I) is a minimum of I, where `(I) is the smallest positive non-
zero element in I ∩ Z, and called the length of I.

A fractional ideal I of OK is reduced if 1 is a minimum of I.

Proposition 3.3. Let I be an ideal of OK . If µ is a minimum of I, then
µ−1I is reduced.

Proof. If µ is a minimum of I then, by Proposition 2.2, we have 1 = µ−1µ
is a minimum of µ−1I, hence µ−1I is reduced. �
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Theorem 3.4. The number of reduced ideals of OK is finite. We note it by
rK .

Proof. See [4]. �

Theorem 3.5. Let I be an ideal of OK and let µ ∈ MI . Then there is a
non-zero positive integer d such that dµ−1I is a reduced ideal of OK .

Proof. The ideal µ−1I is fractional, so there is an integer d such that
dµ−1I ⊂ OK . The smallest positive d such that dµ−1I ⊂ OK is called the
denominator of µ−1I with respect to OK . since µ ∈ MI then 1 = µµ−1 is a
minimum of µ−1I and therefor d is a minimum of dµ−1I which is primitive,
in addition we have d = `(dµ−1I) hence dµ−1I is a reduced ideal of OK . �

The last proposition proves that every class of ideals contains a reduced
ideal and the last theorem proves that the number of reduced ideals in OK is
finite, and therefore we have hK 6 rK , where we have the idea of exploiting
reduced ideals which comes from the determination of the class number of K,
as already done on quadratic fields.

Remark 3.6. Let I be an ideal of OK . The number of reduced integral
ideals in the class of I is exactly the cardinal of CI .

Now, as in [4], we can find all the reduced ideals of OK . First of all, a
reduced ideal of OK is a sub-Z-module of OK , and hence it is of the form

I = [a, b+ cθ, d+ eθ + fθ2],

where a, b, c, d, e and f are integers such that 0 ≤ b, d < a, 0 ≤ e < c, 0 < f .
The norm of I is N(I) = [OK : I] = acf , and `(I) = a. A sub-Z-module
I = [a, b+ cθ, d+ eθ + fθ2] of OK is not always an ideal of OK , for it to be,
it is necessary and sufficient that we have the following conditions:

(1) f divides the integers a, b, c, d and e;
(2) c divides the integers a and b;
(3) cf divides the integers df − e2 and Df2 − de;
(4) acf divides the integers bce−b2f−c2d, Dc2f+b2e−bcd, Dcf2−bdf+

be2 − cde and Dcef −Dbf2 + bde− cd2.
The ideal I = [a, b+ cθ, d+ eθ + fθ2] is primitive if and only if f = 1.

To determine the list of all reduced ideals I = [a, b + cθ, d + eθ + θ2] in
OK we determine at first all the primitive ideals of OK whose length is such

that `(I) ≤ 6
√
3D
π , i.e for any integer a such that 1 ≤ `(I) = a ≤ 6

√
3D
π , we

determine the different possible positive values of b, such that 0 ≤ b < a. Next,
for each possible pair (a, b) we determine the possible values of the integer c
such that c | a and c | b and after we determine the possible values of integers
d and e such that 0 ≤ d < a and 0 ≤ e < c and according to the divisibility
conditions above after the substitution of f by 1 .

The Primitive ideals whose length is strictly less than θ = 3
√
D are therefore

included in the sought list, and those whose length is such that 3
√
D ≤ `(I) ≤
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6
√
3D
π , we apply to it the following theorem which is the equivalent of [4,

Theorem 2.8].

Theorem 3.7. Let K = Q(θ) with θ3 = D where D is a cube free integer,
and O = Z[θ]. Let I = [a, b+ cθ, d+ eθ + θ2] be a primitive ideal of O. Then
I is reduced if and only if the only triple of integers (x, y, z) satisfying :

• c | y − ze,
• ac | cx− by + (be− cd)z,
• | x+ yθ + zθ2 |< `(I),
• (x− y

2θ −
z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2,

is (0, 0, 0).

Proof. For any α ∈ K, let’s denoted by α′ and α′′ the conjugates of α, we
have θ′ = ζθ and θ′′ = ζ2θ, where ζ = e2iπ/3 is a primitive cube root of unity
and therefore |α′| = |α′′|.

Let’s suppose that ideal I = [a, b+cθ, d+eθ+θ2] is reduced. Let (x, y, z) be
a triple of integers such that c | y− ze and ac | cx− by+ (be− cd)z satisfying:{

|x+ yθ + zθ2| < `(I)

(x− y
2θ −

z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2.

Put X = cx−by+(be−cd)z
ac , Y = y−ze

c and Z = z, then we have x = aX+bY +dZ
and y = cY + eZ, therefore{

|aX + bY + dZ + (cY + eZ)θ + Zθ2| < `(I)

(aX + bY + dZ − cY+eZ
2 θ − Z

2 θ
2)2 + 3

4θ
2(cY + eZ − Zθ)2 < `(I)2,

still{
|aX + Y (b+ cθ) + Z(d+ eθ + θ2)| < `(I)

|(aX + bY + dZ − cY+eZ
2 θ − Z

2 θ
2) + i

√
3
2 θ(cY + eZ − Zθ)| < `(I),

therefore{
|aX + Y (b+ cθ) + Z(d+ eθ + θ2)| < `(I)

|(aX + Y (b− cθ
2 + i

√
3cθ
2 ) + Z(d− eθ

2 + i
√
3eθ
2 − 1+i

√
3

2 θ2)| < `(I),

hence {
|aX + Y (b+ cθ) + Z(d+ eθ + θ2)| < `(I)

|(aX + Y (b+ cζθ) + Z(d+ eζθ + ζ2θ2)| < `(I).

Let α = Xa+Y (b+cθ)+Z(d+eθ+θ2), then α ∈ I, |α| < `(I) and |α′| < `(I).
Since I is reduced, then α = Xa + Y (b + cθ) + Z(d + eθ + θ2) must be zero,
then X = Y = Z = 0, therefore x = y = z = 0.

Conversely, let I = [a, b + cθ, d + eθ + θ2] be a primitive ideal of O, and
let’s suppose that for any triples of integers (x, y, z) such that c | y − ze and
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ac | cx− by + (be− cd)z satisfying{
|x+ yθ + zθ2| < `(I)

(x− y
2θ −

z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2

is zero.
Given that α = Xa + Y (b + cθ) + Z(d + eθ + θ2) ∈ I such that |α| < `(I)

and |α′| < `(I), then{
|Xa+ Y (b+ cθ) + Z(d+ eθ + θ2)| < `(I)

|Xa+ Y (b+ cζθ) + Z(d+ eζθ + ζ2θ2)| < `(I),

still{
|aX + Y (b+ cθ) + Z(d+ eθ + θ2)| < `(I)

(aX + Y (b− cθ
2 ) + Z(d− eθ

2 −
θ2

2 ))2 + 3
4θ

2(cY + eZ − Zθ)2 < `(I)2,

hence{
|aX + bY + dZ + (cY + eZ)θ + Zθ2| < `(I)

(aX + bY + dZ − cY+eZ
2 θ − Z

2 θ
2)2 + 3

4θ
2(cY + eZ − Zθ)2 < `(I)2.

Put x = aX + bY + dZ, y = cY + eZ and z = Z, then c | y − ze, ac |
cx− by + (be− cd)z, and we will have{

|x+ yθ + zθ2| < `(I)

(x− y
2θ −

z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2.

By hypothesis we have x = y = z = 0, so X = Y = Z = 0, hence α = 0. �

This theorem can be represented in the python code as in the following:

def isReduced (a,b,c,d,e,m):

alpha=math.exp(math.log(m)/3)

reduced = 1

for x in range (-a+1,a):

for y in range (-int(a/alpha),1+int(a/alpha)):

for z in range (-int(a/alpha**2),1+int(a/alpha**2)):

if not ((x==0) and (y==0)and(z==0)):

if (y-z*e)%c==0:

N=a*c

if (c*x-b*y+(b*e-c*d)*z)%N==0:

if ((x+y*alpha+z*alpha**2)<a) and \

((x+y*alpha+z*alpha**2)>-a):

if (x-((y*alpha)/2)-((z*(alpha**2))/2))**2 \

+(3/4)*(y*alpha-z*alpha**2)**2<a**2:

reduced =0

return reduced

return reduced
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4. THE CYCLES OF REDUCED IDEALS OF OK
Let I be an ideal of OK and let CI = {µ1, µ2, . . . , µm} be a cycle of mini-

mums of I. By Theorem 3.5, for all i ∈ {1, . . . ,m}, we obtain a reduced ideal
Ii = diµ

−1
i I where di = `(diµ

−1
i I) = `(Ii). For i 6= j we can’t have Ii = Ij ,

if not, we will have µi = uµj , with u ∈ UK , which is not possible, hence, by
CI = {µ1, µ2, . . . , µm}, we can build a set of reduced ideals {I1, . . . , Im} in the
class of I - this set is called a cycle of reduced ideals in the class of I and we
denote it by Cr(I).

Theorem 4.1. Let J and J ′ be two reduced ideals of OK . The following
two assertions are equivalent:

(1) The ideals J and J ′ are equivalent.
(2) The ideals J and J ′ belong to the same cycle.

Proof. If the ideals J and J ′ belong to the same cycle then there is µ and
µ′ ∈ CI for some ideal I of OK such that J = dµ−1I and J ′ = d′µ′−1I hence
dµ−1J ′ = d′µ′−1J , so J and J ′ are equivalent. Conversely, if the ideals J and
J ′ are equivalent so they are in the same class of an ideal I, since J and J ′

are reduced then `(J) is a minimum of J and then `(J ′) is a minimum of J ′

and by Theorem 2.4 there is a unique µk in CI such that µ−1k I = `(J)−1J ,

so dkµ
−1
k I = dk`(J)−1J , and since dk = `(J) then we have J = dkµ

−1
k I.

Likewise, for J ′, there is a unique µt in CI such that µ−1t I = `(J ′)−1J ′, so
dtµ
−1
t I = dt`(J

′)−1J ′, and, since dt = `(J ′), we have J ′ = dkµ
−1
k I, therefore

J and J ′ belong to the same cycle formed by CI . �

Corollary 4.2. The set of reduced ideals of OK is partitioned into a cycle
of reduced ideals, the number of these cycles is equal to the class number of K.

Proof. Each class [I] corresponds to one and only one cycle Cr(I). �

Remember that the unit group of OK is of the form UK = {±εk0 | k ∈ Z},
where ε0 is the fundamental unit of OK and we have the following result.

Theorem 4.3. Let I be a reduced ideal of OK . Then there is one and only
one of the cycles of minimums of I in the interval [`(I), `(I)ε0[. It is called
the fundamental cycle of minimums of I. In particular, the fundamental cycle
of minimums of OK is in the interval [1, ε0[.

Proof. Let η ∈ MI with η > 0. If η ≥ `(I)ε0, let k the largest positive

integer such that η ≥ `(I)εk0, (it is clear that k ≥ 1), therefore η < `(I)εk+1
0 ,

and so we have `(I)εk0 ≤ η < `(I)εk+1
0 ⇒ `(I) ≤ ηε−k0 < `(I)ε0, and then we

impose µ = ηε−k0 .

If η < `(I), let k be the smallest positive integer such that `(I)ε−k0 ≤
η, therefore η < `(I)ε

−(k−1)
0 . Then we have `(I) ≤ ηεk0 < `(I)ε0, and we

impose µ = ηεk0. Consequently, each η ∈ MI is associated with a minimum
µ of I belonging to [`(I), `(I)ε0[, therefore, if C ′I = {η1, . . . , ηm} is a cycle of
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minimums of I, then, for all i ∈ {1, . . . ,m}, there is µi ∈ [`(I), `(I)ε0[ and
ui ∈ UK such that µi = uiηi, hence the searched cycle is CI = {µ1, . . . , µm}.

Suppose that there is an other cycle C ′I = {ν1, . . . , νm} of I in [`(I), `(I)ε0[,

then νj = µiε
k
0, and, if νj < µi, then we will have `(I) < µiε

k
0 < µi < `(I)ε0, so

by µiε
k
0 < µi we have k < 0, and, by `(I)ε−k0 < µi < `(I)ε0, we have −1 < k,

contradiction. The same reasoning works if νj > µi. �

Corollary 4.4. Let I be a reduced ideal of OK . If µ ∈ MI and µ ∈
[`(I), `(I)ε0[, then µ ∈ CI .

Remark 4.5. (1) The fundamental cycle of minimums of a reduced
ideal I is of the form CI = {µ1 = `(I), µ2, . . . , µm} and every min-
imum µ of I is of the form µ = ±µiεk0 with 1 ≤ i ≤ m and k ∈ Z.

(2) If µ ∈ CI and µ 6= `(I), then we have `(I) < µ < `(I)ε0 and therefore
|σ(µ)| ≤ `(I), if we represent µ by the point (x, y, z) ∈ Z3, then we
can search the elements of CI in the set S = {(x, y, z) ∈ Z3 | `(I) <
x+ yθ + zθ2 < `(I)ε0; (x− y

2θ −
z
2θ

2)2 + 3
4θ

2(y − zθ)2 < `(I)2}.

Theorem 4.6. The ring of integers OK is principal if and only if for every
reduced ideal I of OK there is µ ∈ COK

such that I = (`(I)µ−1).

Proof. Let I be any fractional ideal of OK . If η is a minimum of I, then
η−1I is reduced, therefore J = dη−1I is a reduced ideal of OK , where d is as
in the proof of Theorem 3.5, and, by hypothesis, there is µ ∈ COK

such that
J = (`(J)µ−1), it follow that dη−1I = (`(J)µ−1), hence I is principal.

Conversely, suppose that OK is principal. Let I be a reduced ideal of OK ,
therefore `(I) is a minimum of I, and, since I is principal, then it is equivalent
to OK and it follows, by Theorem 2.4, that there is µ ∈ COK

such that
I = (`(I)µ−1). �

We can interpret this as follows. The ring of integers OK is principal if and
only if every reduced ideal is principal if and only if the cardinal of COK

is
equal to rK .

5. NUMERICAL EXAMPLES

Example 5.1. Let D = 5, K = Q( 3
√

5), OK = Z[ 3
√

5], ε0 = 41 + 24 3
√

5 +

14 3
√

25 and 6
√
3D
π ≈ 16.539866862653763.

We have five reduced ideals (rK = 5) listed in the following table with their
norms.

a b c d e f Reduced ideals N

1 0 1 0 0 1 I1 = OK = [1, 3
√

5, 3
√

25] 1

2 1 1 1 0 1 I2 = [2, 1 + 3
√

5, 1 + 3
√

25] 2

2 0 2 1 1 1 I3 = [2, 2 3
√

5, 1 + 3
√

5 + 3
√

25] 4

3 0 3 1 2 1 I4 = [3, 3 3
√

5, 1 + 2 3
√

5 + 3
√

25] 9

4 0 4 1 1 1 I5 = [4, 4 3
√

5, 1 + 3
√

5 + 3
√

25] 16
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The ideal I1 = OK have five minimum listed in the following table, and
hence we have one cycle of reduced ideals in the second column.

CI1 = COK
N(µi) 1 Cycle: Cr(I1) = {I1, I2, I3, I4, I5}

µ1 = 1 1 OK
µ2 = 3 + 2 3

√
5 + 3
√

25 2 1
3+2 3√5+ 3√25

I1 = 1
2I3

µ3 = 9 + 5 3
√

5 + 3 3
√

25 4 1
9+5 3√5+3 3√25

I1 = 1
2I2

µ4 = 12 + 7 3
√

5 + 4 3
√

25 3 1
12+7 3√5+4 3√25

I1 = 1
3I4

µ5 = 29 + 17 3
√

5 + 10 3
√

25 4 1
29+17 3√5+10 3√25

I1 = 1
4I5

We find again hK = 1.

Example 5.2. Let D = 7, K = Q( 3
√

7), OK = Z[ 3
√

7], ε0 = 4 + 2 3
√

7 + 3
√

49

and 6
√
3D
π ≈ 23.155813607715267.

We obtain eight reduced ideals (rK = 8) listed in the following table with
their norms.

a b c d e f Reduced ideals N

1 0 1 0 0 1 I1 = OK = [1, 3
√

7, 3
√

49] 1

2 1 1 1 0 1 I2 = [2, 1 + 3
√

7, 1 + 3
√

49] 2

2 0 2 1 1 1 I3 = [2, 2 3
√

7, 1 + 3
√

7 + 3
√

49] 4

3 0 3 1 1 1 I4 = [3, 3 3
√

7, 1 + 3
√

7 + 3
√

49] 9

4 0 4 1 3 1 I5 = [4, 4 3
√

7, 1 + 3 3
√

7 + 3
√

49] 16

5 0 5 4 3 1 I6 = [5, 5 3
√

7, 4 + 3 3
√

7 + 3
√

49] 25

6 0 6 1 1 1 I7 = [6, 6 3
√

7, 1 + 3
√

7 + 3
√

49] 36

12 0 12 1 7 1 I8 = [12, 12 3
√

7, 1 + 7 3
√

7 + 3
√

49] 144

The ideal I1 has two minimums, I2 has three minimums and I3 has three
minimums as in the following table:

minimums norm of minimum

CI1 µ1 = 1 1

µ2 = 3 + 2 3
√

7 + 3
√

49 6

CI2 η1 = 2 8

η2 = 1 + 3
√

7 8

η3 = 3 + 2 3
√

7 + 3
√

49 6

CI3 ν1 = 2 8

ν2 = 3 + 3
√

7 + 3
√

49 20

ν3 = 6 + 4 3
√

7 + 2 3
√

49 48

hence we obtain three cycles of reduced ideals as in the following table:
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3 cycle of reduced ideals

{I1 = OK , I7} {I2, I5, I4} {I3, I6, I8}
1
µ2
I1 = 1

6I7
1
η2
I2 = 1

4I5
1
ν2
I3 = 1

5I6
1
η3
I2 = 1

3I4
1
ν3
I3 = 1

12I8

We find again hK = 3.
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