GENERALIZATIONS OF REGULAR AND NORMAL SPACES II

AHMAD AL-OMARI and TAKASHI NOIRI

Abstract. A family m_X of subsets of a nonempty set X is called an *m*-structure. A set X with a topology τ and *m*-structure m_X is called a mixed-space and is denoted by (X, τ, m_X) . As a generalization of *g*-closed sets due to Levine, we introduce the notion of m_g -closed sets in (X, τ, m_X) . By using m_g -open sets, we define and investigate mixed-regularity and mixed-normality in (X, τ, m_X) . As special cases, we obtain \mathcal{I}_g -regular spaces and *s*-normal spaces.

MSC 2010. 54A05, 54C08, 54C10, 54D15.

Key words. Minimal structure, m_g -closed set, mixed-space, mixed-regular, mixed-normal.

1. INTRODUCTION

In 1970, Levine [10] introduced the notion of generalized closed (briefly g-closed) sets in a topological space. Since then, many modifications of g-closed sets have been defined and investigated in topological spaces and ideal topological spaces (see Definitions 2.1 and 2.2 of [18]). Popa and Noiri [17] introduced the notion of a minimal structure (briefly m-structure) m_X on a nonempty set X. A subfamily m_X of the power set of a nonempty set X is called an m-structure if $\emptyset, X \in m_X$.

In this paper, a nonempty set X equipped with a topology τ and an *m*structure m_X is called a mixed-space and is denoted by (X, τ, m_X) . We define m_g -closed sets and m_g -open sets in (X, τ, m_X) and, by using m_g -open sets, we define mixed-regularity and mixed-normality on (X, τ, m_X) . In Section 3, we obtain a sufficient condition for a mixed-regular space to be regular. As a special case of mixed-regular spaces, we obtain a characterization of \mathcal{I}_g -regular spaces [13]. In Section 4, we obtain several characterizations of mixed-normal spaces. We show that let m_X have property \mathcal{B} and $\tau \subseteq m_X \subseteq \tau^{\alpha}$, then mixed-normal and normal are equivalent. By setting $m_X = SO(X, \tau)$, we obtain characterizations of *s*-normal spaces [8]. Moreover, we obtain some preservation theorems of mixed-normal spaces. Recently, papers [1-7] have introduced some new classes of sets via *m*-structures.

The authors thank the referee for his helpful comments and suggestions.

DOI: 10.24193/mathcluj.2021.1.01

2. MINIMAL STRUCTURES

DEFINITION 2.1. A subfamily m of the power set $\mathcal{P}(X)$ of a nonempty set X is called a *minimal structure* (briefly *m*-structure) [17] on X if $\emptyset \in m$ and $X \in m$.

By (X, m) we denote a nonempty set X with a minimal structure m on X and call it an *m*-space. Each member of m is said to be *m*-open and the complement of an *m*-open set is said to be *m*-closed. For a point $x \in X$, the family $\{U : x \in U \text{ and } U \in m\}$ is denoted by m(x).

DEFINITION 2.2. Let (X, m) be an *m*-space and *A* a subset of *X*. The *m*closure mCl(A) and the *m*-interior mInt(A) of *A* [12] are defined as follows:

- $(1) \ mCl(A) = \cap \{F \subseteq X : A \subseteq F, X \setminus F \in m\},\$
- $(2) \ mInt(A) = \cup \{U \subseteq X : U \subseteq A, U \in m\}.$

LEMMA 2.3 ([12]). Let X be a nonempty set and m a minimal structure on X. For subsets A and B of X, the following properties hold:

- (1) $A \subset mCl(A)$ and mCl(A) = A if A is m-closed,
- (2) $mCl(\emptyset) = \emptyset, mCl(X) = X,$
- (3) If $A \subseteq B$, then $mCl(A) \subseteq mCl(B)$,
- (4) $mCl(A) \cup mCl(B) \subseteq mCl(A \cup B)$,
- (5) mCl(mCl(A)) = mCl(A),
- (6) mCl(X A) = X mInt(A).

DEFINITION 2.4. A minimal structure m of a set X is said to have property \mathcal{B} [12] if the union of any collection of elements of m is an element of m.

- LEMMA 2.5 ([17]). Let (X, m) be an m-space and A a subset of X.
- (1) $x \in mCl(A)$ if and only if $U \cap A \neq \emptyset$ for every $U \in m(x)$.
- (2) Let m have property \mathcal{B} . Then the following properties hold:
 - (i) A is m-closed (resp. m-open) if and only if mCl(A) = A (resp. mInt(A) = A)
 - (ii) mCl(A) is m-closed and mInt(A) is m-open.

3. GENERALIZATIONS OF REGULAR SPACES

By (X, τ, m_X) we denote a nonempty set X with a topology τ and an *m*-structure m_X on X and call it a mixed-space. In this section, we introduce and characterize the notion of mixed-regularity in a mixed space (X, τ, m_X) .

DEFINITION 3.1. Let (X, τ, m_X) be a mixed space. A subset A of X is said to be m_g -closed if $mCl(A) \subset U$ whenever $A \subset U$ and $U \in \tau$. A subset A of X is said to be m_g -open if the complement of A is m_g -closed.

In [16], m_g -closed (resp. m_g -open) sets are said to be gm-closed (resp. gm-open).

PROPOSITION 3.2 ([16]). A subset A of a a mixed space (X, τ, m_X) is m_g -open if and only if $F \subset mInt(A)$ whenever $F \subset A$ and F is closed.

DEFINITION 3.3. A mixed space (X, τ, m_X) is said to be mixed-regular if for each closed set A and each point $x \notin A$, there exist disjoint m_g -open sets U, V such that $x \in U$ and $A \subseteq V$.

THEOREM 3.4. For a mixed space (X, τ, m_X) such that m_X has property \mathcal{B} , the following properties are equivalent:

- (1) X is mixed-regular.
- (2) For any open set U containing $x \in X$, there exists an m_g -open set V such that $x \in V \subseteq mCl(V) \subseteq U$.
- (3) For any closed set A, the intersection of all m_g-closed neighborhoods of A is A.
- (4) For any set A and any open set B such that $A \cap B \neq \emptyset$, there exists an m_q -open set U such that $A \cap U \neq \emptyset$ and $mCl(U) \subseteq B$.
- (5) For any nonempty set A and any closed set B such that $A \cap B = \emptyset$, there exist disjoint m_g -open sets U, V such that $A \cap U \neq \emptyset$ and $B \subseteq V$.

Proof. (1) \Rightarrow (2): Let U be an open set such that $x \in U$. Then X - U is a closed set not containing x. By hypothesis, there exist disjoint m_g -open sets V, W such that $x \in V$ and $X - U \subseteq W$. By Proposition 3.2, $X - U \subseteq mInt(W)$ and so $X - mInt(W) \subseteq U$. Now $V \cap W = \emptyset$ implies that $V \cap mInt(W) = \emptyset$ and hence $mCl(V) \subseteq X - mInt(W)$. Thus, $x \in V \subseteq mCl(V) \subseteq U$.

 $(2) \Rightarrow (3)$: Let A be any closed set and $x \notin A$. Then X - A is an open set containing x. By hypothesis, there exists an m_g -open set V such that $x \in V \subseteq mCl(V) \subseteq X - A$. Thus, $A \subseteq X - mCl(V) \subseteq X - V$. Since X - mCl(V) is m-open, then X - V is an m_g -closed neighborhood of A and $x \notin X - V$. This shows that A is the intersection of all the m_g -closed neighborhoods of A.

 $(3) \Rightarrow (4)$: Let A be any set and B be any open set such that $A \cap B \neq \emptyset$. Let $x \in A \cap B$. Then, X - B is closed and $x \notin X - B$. By hypothesis, there exists an m_g -closed neighborhood V of X - B such that $x \notin V$. Let $X - B \subseteq G \subseteq V$, where G is m-open. Then U = X - V is an m_g -open set such that $x \in U$ and $A \cap U \neq \emptyset$. Furthermore X - G is m-closed and $mCl(U) = mCl(X - V) \subseteq mCl(X - G) \subseteq B$.

 $(4) \Rightarrow (5)$: Let A be any nonempty set and B any closed set such that $A \cap B = \emptyset$. Then X - B is an open set and $A \cap (X - B) \neq \emptyset$. By hypothesis, there exists an m_g -open set U such that $A \cap U \neq \emptyset$ and $U \subseteq mCl(U) \subseteq X - B$. Let V = X - mCl(U). Then U and V are disjoint m_g -open sets such that $B \subseteq X - mCl(U) = V$.

 $(5) \Rightarrow (1)$: Let B be a closed set and $x \notin B$. Put $A = \{x\}$. Then, there exist disjoint m_g -open sets U, V such that $A \cap U \neq \emptyset$ and $B \subseteq V$, hence $x \in U$. Thus X is mixed-regular.

An ideal topological space (X, τ, \mathcal{I}) is said to be \mathcal{I}_g -regular [13] if for each closed set A and each point $x \notin A$, there exist disjoint \mathcal{I}_g -open sets U, V such

that $x \in U$ and $A \subseteq V$. By Theorem 3.4, if $m_X = \tau^*$ we obtain the following corollary.

COROLLARY 3.5 ([13]). An ideal topological space (X, τ, \mathcal{I}) is \mathcal{I}_g -regular if and only if for any open set V containing any $x \in X$, there exists an \mathcal{I}_g -open set U such that $x \in U \subseteq \operatorname{Cl}^*(U) \subseteq V$.

DEFINITION 3.6. Let (X, m_X) be an *m*-space and A a subset of X.

(1) A is said to be *mg-closed* [15] if $mCl(A) \subseteq U$ whenever $A \subseteq U$ and $U \in m$. The complement of an *mg*-closed set is said to be *mg*-open.

(2) X is mg-regular if for each m-closed set A and each point $x \notin A$, there exist disjoint mg-open sets U, V such that $x \in U$ and $A \subseteq V$.

Similarly with Theorem 3.4 we obtain the following corollary.

COROLLARY 3.7. For an m-space (X, m), the following properties are equivalent:

- (1) X is mg-regular.
- (2) For any m-open set U containing $x \in X$, there exists an mg-open set V such that $x \in V \subseteq mCl(V) \subseteq U$.
- (3) For any m-closed set A, the intersection of all mg-closed neighborhoods of A is A.
- (4) For any set A and any m-open set B such that $A \cap B \neq \emptyset$, there exists an mg-open set U such that $A \cap U \neq \emptyset$ and $mCl(U) \subseteq B$.
- (5) For any nonempty set A and any m-closed set B such that $A \cap B = \emptyset$, there exist disjoint mg-open sets U, V such that $A \cap U \neq \emptyset$ and $B \subseteq V$.

A topological space (X, τ) is said to be *g*-regular if for each closed set A and each point $x \notin A$, there exist disjoint *g*-open sets U, V such that $x \in U$ and $A \subseteq V$. In Corollary 3.7, put $m_X = \tau$ (topology), then we obtain the following corollary.

COROLLARY 3.8. For a topological space (X, τ) , the following properties are equivalent:

- (1) X is g-regular.
- (2) For any open set U containing $x \in X$, there exists a g-open set V such that $x \in V \subseteq Cl(V) \subseteq U$.
- (3) For any closed set A, the intersection of all g-closed neighborhoods of A is A.
- (4) For any set A and any open set B such that $A \cap B \neq \emptyset$, there exists a g-open set U such that $A \cap U \neq \emptyset$ and $Cl(U) \subseteq B$.
- (5) For any nonempty set A and any closed set B such that $A \cap B = \emptyset$, there exist disjoint g-open sets U, V such that $A \cap U \neq \emptyset$ and $B \subseteq V$.

THEOREM 3.9. If a a mixed space (X, τ, m_X) is a mixed-regular, T_1 -space such that $m_X \subseteq \tau^{\alpha}$ and m_X has property \mathcal{B} . Then X is regular space. Proof. Let B be a closed set not containing $x \in X$. By Theorem 3.4, there exists an m_g -open set U of X such that $x \in U \subseteq mCl(U) \subseteq X - B$. Since X is a T_1 -space, $\{x\}$ is closed and so $\{x\} \subseteq mInt(U)$, by Proposition 3.2. Since $m_X \subseteq \tau^{\alpha}$ and m_X has property \mathcal{B} and so mInt(U) and X - mCl(U)are τ^{α} -open sets. Now $mInt(U) \subseteq Int(Cl(Int(mInt(U)))) = G$ and $B \subseteq X - mCl(U) \subseteq Int(Cl(Int(X - mCl(U)))) = H$. Then G and H are disjoint open sets containing x and B, respectively. Therefore, X is regular.

THEOREM 3.10. If every open subset of a mixed space (X, τ, m_X) is mclosed, then (X, τ, m_X) is mixed-regular.

Proof. Suppose every open subset of X is m-closed. Let $A \subseteq X$ and U be any open set containing A. Then U is m-closed and $mCl(A) \subseteq mCl(U) = U$. Hence every subset of X is m_g -closed and every subset of X is m_g -open. If B is a closed set not containing x, then $\{x\}$ and B are the required disjoint m_g -open sets containing x and B, respectively. Therefore, (X, τ, m_X) is mixedregular.

THEOREM 3.11. Let (X, τ, m_X) be a mixed space such that m_X has property \mathcal{B} and $\tau \subseteq m_X \subseteq \tau^{\alpha}$. Then the following properties are equivalent:

- (1) X is regular.
- (2) For every closed set A and each $x \notin A$, there exist disjoint m-open sets U and V such that $x \in U$ and $A \subseteq V$.
- (3) For every open set V of X and $x \in V$, there exists an m-open set U such that $x \in U \subseteq mCl(U) \subseteq V$.

Proof. $(1) \Rightarrow (2)$: Let A be a closed subset of X and let $x \in X - A$. Then there exist disjoint open sets U and V such that $x \in U$ and $A \subseteq V$. But every open set is *m*-open. Then there exist disjoint *m*-open sets U and V such that $x \in U$ and $A \subseteq V$.

 $(2) \Rightarrow (3)$: Let V be an open set containing $x \in X$. Then X - V is closed and $x \in V$. By hypothesis, there exist disjoint *m*-open sets U and W such that $x \in U$ and $X - V \subseteq W$. Since $U \cap W = \emptyset$, we have $U \subseteq X - W$ and X - W is *m*-closed. So $mCl(U) \subseteq X - W \subseteq V$. Therefore, U is the required *m*-open set such that $x \in U \subseteq mCl(U) \subseteq V$.

 $(3) \Rightarrow (1)$: Let A be a closed set and $x \notin A$. By (3), there exists an mopen set U such that $x \in U \subseteq mCl(U) \subseteq X - A$. Let V = X - mCl(U). Then $A \subseteq V$, and U and V are disjoint m-open sets. Since $m_X \subseteq \tau^{\alpha}$ and so U and V are τ^{α} -open sets. Therefore, $x \in U \subseteq Int(Cl(Int(U))) = G$ and $A \subseteq V \subseteq Int(Cl(Int(V))) = H$. Then G and H are disjoint open sets such that $x \in G$ and $A \subseteq H$. Hence X is regular. \Box

COROLLARY 3.12 ([14]). For a topological space (X, τ) , the following properties are equivalent:

(1) X is regular.

- (2) For every closed set A and each $x \notin A$, there exist disjoint α -open sets U and V such that $x \in U$ and $A \subseteq V$.
- (3) For every open set V of X and $x \in V$, there exists an α -open set U such that $x \in U \subseteq Cl_{\alpha}(U) \subseteq V$.

Proof. Let $m_X = \tau^{\alpha}$ in Theorem 3.11. Since $\tau \subseteq \tau^{\alpha}$, the corollary easily follows from Theorem 3.11.

DEFINITION 3.13. A function $f: (X, \tau, m_X) \to (Y, \sigma, n_Y)$ is said to be *mg*closed (resp. *mg*-open) if for every closed (resp. open) set *F* of *X*, f(F) is n_q -closed (resp. n_q -open) in *Y*.

THEOREM 3.14. Let $f: (X, \tau, m_X) \to (Y, \sigma, n_Y)$ be a continuous, mg-open and mg-closed surjection. If X is regular, then Y is mixed-regular.

Proof. Let $y \in Y$ and V be any open set containing y. Take a point $x \in f^{-1}(y)$. Then $x \in f^{-1}(V)$ and $f^{-1}(V)$ is open in X. By the regularity of X, there exists an open set U of X such that $x \in U \subseteq Cl(U) \subseteq f^{-1}(V)$. Then $y \in f(U) \subseteq f(Cl(U)) \subseteq V$ and f(U) is n_g -open and f(Cl(U)) is n_g -closed in Y. Therefore, we obtain $y \in f(U) \subseteq nCl(f(U)) \subseteq nCl(f(Cl(U))) \subseteq V$. It follows from Theorem 3.4 that Y is mixed-regular.

4. GENERALIZATIONS OF NORMAL SPACES

DEFINITION 4.1. A mixed space (X, τ, m_X) is said to be mixed-normal if for every pair of disjoint closed sets A and B, there exist disjoint m_g -open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

THEOREM 4.2. For a mixed space (X, τ, m_X) such that m_X has property \mathcal{B} , the following properties are equivalent:

- (1) X is mixed-normal.
- (2) For every pair of disjoint closed sets A and B, there exist disjoint momen sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3) For any closed set A and an open set V containing A, there exists an m-open set U such that $A \subseteq U \subseteq mCl(U) \subseteq V$.
- (4) For any closed set A and an open set V containing A, there exists an m_g -open set U such that $A \subseteq U \subseteq mCl(U) \subseteq V$.

Proof. (1) \Rightarrow (2): For every pair of disjoint closed sets A and B, there exist disjoint m_g -open sets U and V such that $A \subseteq U$ and $B \subseteq V$. By Proposition 3.2, $A \subseteq mInt(U)$ and $B \subseteq mInt(V)$. Since m_X has property \mathcal{B} , mInt(U) and mInt(V) are m-open and disjoint.

 $(2) \Rightarrow (3)$: Let A be a closed set and V be an open set containing A. Since A and X - V are disjoint closed sets, there exist disjoint m-open sets U and W such that $A \subseteq U$ and $X - V \subseteq W$. Again, $U \cap W = \emptyset$ implies that $mCl(U) \cap W = \emptyset$ and hence $mCl(U) \subseteq X - W$. Thus, we have $A \subseteq U \subseteq mCl(U) \subseteq X - W \subseteq V$.

 $(3) \Rightarrow (4)$: The proof is obvious.

8

 $(4) \Rightarrow (1)$: Let A and B be two disjoint closed subset of X. By hypothesis, there exists an m_g -open set U such that $A \subseteq U \subseteq mCl(U) \subseteq X - B$. Let W = X - mCl(U). Since every m-open set is m_g -open, U and W are the required disjoint m_g -open sets containing A and B, respectively. Therefore, (X, τ, m_X) is mixed-normal. \Box

A subset A of a topological space (X, τ) is said to be semi-open [9] if $A \subseteq Cl(Int(A))$. Let $SO(X, \tau)$ be the family of all semi-oppen sets of (X, τ) . Then $SO(X, \tau)$ is an *m*-structure with property \mathcal{B} and by setting $m_X = SO(X, \tau)$, we obtain the following characterizations due to Arya and Nour [8]. A topological space (X, τ) is said to be *s*-normal [11] if for any pair of disjoint closed sets A and B of X, there exist disjoint semi-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

COROLLARY 4.3 ([8]). For a topological space (X, τ) , the following properties are equivalent:

- (1) X is s-normal.
- (2) For every pair of disjoint closed sets A and B, there exist disjoint gsopen sets U and V such that $A \subseteq U$ and $B \subseteq V$.
- (3) For any closed set A and an open set V containing A, there exists an gs-open set U such that $A \subseteq U \subseteq sCl(U) \subseteq V$.
- (4) For any closed set A and a g-open set B containing A, there exists a semi-open set U such that $A \subseteq U \subseteq sCl(U) \subseteq Int(B)$.
- (5) For any g-closed set A and an open set B containing A, there exists a semi-open set U such that $A \subseteq sCl(A) \subseteq U \subseteq sCl(U) \subseteq B$.

Proof. Let $m_X = SO(X, \tau)$, then an m_g -closed set is gs-closed. Therefore, the proof follows from Proposition 3.2 and Theorem 4.2.

THEOREM 4.4. For a mixed space (X, τ, m_X) such that m_X has property \mathcal{B} and $\tau \subseteq m_X \subseteq \tau^{\alpha}$, the following properties are equivalent:

- (1) X is normal.
- (2) X is mixed-normal.

Proof. (1) \Rightarrow (2): Since $\tau \subseteq m_X$, the proof follows from Theorem 4.2.

 $(2) \Rightarrow (1)$: Let A and B be two disjoint closed subsets of X. By Theorem 4.2, there exist disjoint m-open sets U and V such that $A \subseteq U$ and $B \subseteq V$. Since $m_X \subseteq \tau^{\alpha}$, U and V are τ^{α} -open sets. Hence $A \subseteq U \subseteq Int(Cl(Int(U))) = G$ and $B \subseteq V \subseteq Int(Cl(Int(V))) = H$. Then G and H are the required disjoint open sets containing A and B, respectively. Hence X is normal. \Box

COROLLARY 4.5. For a topological space (X, τ) , the following properties are equivalent:

- (1) X is normal.
- (2) For any disjoint closed sets A and B, there exist disjoint g-open sets U and V such that $A \subseteq U$ and $B \subseteq V$.

(3) For any closed set A and an open set V containing A, there exist an g-open set U such that $A \subseteq U \subseteq Cl(U) \subseteq V$.

Proof. In Theorem 4.4, set $m_X = \tau$. Then the proof is obvious by Theorem 4.2.

COROLLARY 4.6. For a mixed space (X, τ, m_X) such that m_X has property \mathcal{B} , the following properties hold:

- (1) If $m_X \subseteq \tau^{\alpha}$, then every mixed-normal space is normal.
- (2) If $\tau \subseteq m_X$, then every normal space is mixed-normal.

THEOREM 4.7. Let a mixed space (X, τ, m_X) be mixed-normal. If F is closed and A is a g-closed set such that $A \cap F = \emptyset$, then there exist disjoint m_q -open sets U and V such that $A \subseteq U$ and $F \subseteq V$.

Proof. Since $A \cap F = \emptyset$, $A \subseteq X - F$ where X - F is open. Therefore, by hypothesis, $Cl(A) \subseteq X - F$. Since $Cl(A) \cap F = \emptyset$ and X is mixed-normal, there exist disjoint m_g -open sets U and V such that $A \subseteq Cl(A) \subseteq U$ and $F \subseteq V$.

THEOREM 4.8. For a mixed space (X, τ, m_X) , mixed-normality implies the following equivalent properties:

- (1) For every closed set A and every g-open set B containing A, there exists an m_q -open set U such that $A \subseteq mInt(U) \subseteq U \subseteq B$.
- (2) For every g-closed set A and every open set B containing A, there exists an m_g -closed set U such that $A \subseteq U \subseteq mCl(U) \subseteq B$.

Proof. First, we show that mixed-normality implies (1). Let A be a closed set and B be a g-open set containing A. Then $A \cap (X - B) = \emptyset$, where A is closed and X - B is g-closed. By Theorem 4.7, there exist disjoint m_g -open sets U and V such that $A \subseteq U$ and $X - B \subseteq V$. Since $U \cap V = \emptyset$, we have $U \subseteq X - V$. By Proposition 3.2, $A \subseteq mInt(U)$. Therefore, $A \subseteq mInt(U) \subseteq U \subseteq X - V \subseteq B$.

 $(1) \Rightarrow (2)$: Let A be a g-closed set and B be an open set containing A. Then X - B is a closed set contained in the g-open set X - A. By (1), there exists an m_g -open set V such that $X - B \subseteq mInt(V) \subseteq V \subseteq X - A$. Therefore, $A \subseteq X - V \subseteq mCl(X - V) \subseteq B$. Let U = X - V, then $A \subseteq U \subseteq mCl(U) \subseteq B$ and U is the required m_g -closed set.

 $(2) \Rightarrow (1)$: Let A be any closed set and B be any g-open set containing A. Then X - B is a g-closed set contained in the open set X - A. By (2), there exists an m_g -closed set V such that $X - B \subseteq V \subseteq mCl(V) \subseteq X - A$. Therefore, $A \subseteq X - mCl(V) \subseteq X - V \subseteq B$. Let U = X - V, then $A \subseteq mInt(U) \subseteq U \subseteq B$ and U is the required m_g -open set. \Box

DEFINITION 4.9. A function $f: (X, \tau, m_X) \to (Y, \sigma, n_Y)$ is said to be m_g -closed if for every m_g -closed set F of X, f(F) is closed in Y.

THEOREM 4.10. If a function $f : (X, \tau, m_X) \to (Y, \sigma, n_Y)$ is a continuous m_q -closed surjection and X is mixed-normal, then Y is normal.

Proof. Let A and B be any disjoint closed sets of Y. Since f is continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint closed sets of X. Since X is mixed-normal, there exist disjoint m_g -open sets U and V of X such that $f^{-1}(A) \subseteq U$ and $f^{-1}(B) \subseteq V$. Put H = Y - f(X - U) and G = Y - f(X - V), then H and G are open sets in Y, $A \subseteq H$ and $B \subseteq G$. Since $U \cap V = \emptyset$ and f is surjective, we have $H \cap G = \emptyset$. This shows that Y is normal.

DEFINITION 4.11. A function $f : (X, \tau, m_X) \to (Y, \sigma, n_Y)$ is said to be m_q -continuous if $f^{-1}(A)$ is m_q -open in X for every n_q -open in Y.

THEOREM 4.12. If a function $f : (X, \tau, m_X) \to (Y, \sigma, n_Y)$ is closed m_g continuous injection. If Y is mixed-normal, then X is mixed-normal.

Proof. Let A and B be any disjoint closed sets of X. Since f is a closed injection, f(A) and f(B) are disjoint closed sets of Y. By mixed-normality of Y, there exist disjoint n_g -open sets U and V of Y such that $f(A) \subseteq U$ and $f(B) \subseteq V$. Since f is m_g -continuous, $f^{-1}(U)$ and $f^{-1}(V)$ are disjoint m_g -open sets in X and $A \subseteq f^{-1}(U)$ and $B \subseteq f^{-1}(V)$. This shows that X is mixed-normal.

REFERENCES

- A. Al-Omari and T. Noiri, On operators in ideal minimal spaces, Mathematica, 58 (81) (2016), 3–13.
- [2] A. Al-Omari and H. Al-saadi, A topology via ω-local functions in ideal spaces, Mathematica, 60 (83) (2018), 103–110.
- [3] A. Al-Omari and T. Noiri, Generalizations of regular and normal spaces, Annales Univ. Sci. Budapest., 61 (2018), 121–135.
- [4] A. Al-Omari and T. Noiri, Operators in minimal spaces with hereditary classes, Mathematica, 61 (84) (2019), 101–110.
- [5] A. Al-Omari, H. Al-saadi and T. Noiri, On extremally disconnected spaces via mstructures, Commun. Korean Math. Soc., 34 (2019), 351–359.
- [6] H. Al-Saadi and A. Al-Omari, Some operators in ideal topological spaces, Missouri J. Math. Sci., 30 (2018), 59–71.
- [7] H. Al-saadi, A. Al-Omari and T. Noiri, On hyperconnected spaces via m-structures, Ital. J. Pure Appl. Math., 42, (2019), 290–300.
- [8] S.P. Arya and T.M. Nour, Characterizations of s-normal spaces, Indian J. Pure Appl. Math., 21 (1990), 717–719.
- [9] N. Levine, Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [10] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo (2), 19 (1970), 89–96.
- S.N. Maheshwari and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 20(70) (1978), 27–29.
- [12] H. Maki, K.C. Rao and A. Nagoor Gani, On generalizing semi-open and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.
- [13] M. Navaneethakrishnan, J. Paulraj Joseph and D. Sivaraj, I_g-normal and I_g-regular spaces, Acta Math. Hungar., **125** (2009), 327–340.

- [14] T. Noiri, Almost αg -closed functions and separation axioms, Acta Math. Hungar., 82 (1999), 193–205.
- [15] T. Noiri, A unified theory for modifications of g-closed sets, Rend. Circ. Mat. Palermo (2), 56 (2007), 171–184.
- [16] T. Noiri, A unified theory for certain modifications of generalized closed sets, Int. J. Gen. Top., 1 (2008), 87–99.
- [17] V. Popa and T. Noiri, On M-continuous functions, An. Univ. "Dunărea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor. (2), 43 (23) (2000), 31–41.
- [18] J. Sanabria, E. Rosas, C. Carpintero and M. Salas-Brown, On the further unified theory of ideal generalized closed sets, J. Adv. Math. Stud., 4 (2011), 83–96.

Received September 23, 2019 Accepted May 22, 2020 Al al-Bayt University Faculty of Sciences Department of Mathematics P.O. Box 130095, Mafraq 25113, Jordan E-mail: omarimutah1@yahoo.com https://orcid.org/0000-0002-6696-1301

2949-1 Shiokita-cho Hinagu, Yatsushiro-shi, Kumamoto-ken 869-5142 Japan E-mail: t.noiri@nifty.com https://orcid.org/0000-0002-0862-5297