VARIABILITY REGIONS FOR A FAMILY OF UNIVALENT MAPPINGS SATISFYING A CERTAIN INEQUALITY

WASIM UL-HAQ

Abstract

In this article, regions of variability for a family of analytic univalent mappings satisfying a certain differential inequality are explicitly determined. The geometric view of our main result is also shown by using Mathematica.

MSC 2010. 30C45, 30C10.
Key words. Analytic functions, convex, starlike, variability region.

1. INTRODUCTION

Let \mathcal{A} denote the class of functions f of the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1}
\end{equation*}
$$

which are analytic in the unit disc $E=\{z:|z|<1\}$ and consider \mathcal{A} as a topological vector space endowed with the topology of uniform convergence over compact subsets of E. Also, let \mathcal{B} denote the class of analytic functions w on E such that $|w(z)|<1$ and $w(0)=0$. A complex valued function f is said to be convex in E if it is univalent and if the image domain $D=f(E)$ is convex. That is $\omega_{1}, \omega_{2} \in D(0 \leq t \leq 1) \Longrightarrow(1-t) \omega_{1}+t \omega_{2} \in D$. Similarly, a complex valued function f is said to be starlike in E if it is univalent and if the image domain $D=f(E)$ is starshaped with respect to 0 . Let C and S^{*} denote the classes of functions $f \in \mathcal{A}$ which are convex and starlike, respectively. Now, let γ be a complex number with $\Re \gamma>-1(\gamma \neq-1)$ and μ be a non-negative real number and say that a function $f \in \mathcal{A}$ is in the class $R(\gamma, \mu)$ if the following inequality is satisfied

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)+\gamma\left(f^{\prime}(z)-1\right)\right| \leq \mu, \quad z \in E . \tag{2}
\end{equation*}
$$

It is known [1] that $R(\gamma, \mu) \varsubsetneqq S^{*}$, if $0 \leq \mu \leq \frac{1+\Re \gamma}{1+|\gamma|+\Re \gamma}$, and $R(\gamma, \mu) \varsubsetneqq C$, if $0 \leq 2 \mu \leq \frac{1+\Re \gamma}{1+|\gamma|+\Re \gamma}$. In a recent work, Ponnusamy et al. [2] studied the variability regions for a certain family of univalent mappings satisfying (2) with $\gamma=0$. For a related study, see [3].

[^0]DOI: 10.24193/mathcluj.2018.1.09

In this article, we are interested in determining the variability regions, when f ranges over a certain family of analytic and univalent mappings satisfying a certain inequality.

2. THE CLASS $R_{\mu}(\alpha, \beta, \gamma)$

Let $\alpha, \beta, \gamma \in \mathbb{C}$ be such that $\Re \gamma>-1,0<\mu \leq|\alpha|(\Re \gamma+1)$ and $|\beta| \leq 1$. Let $R_{\mu}(\alpha, \beta, \gamma)$ denote the family of functions f analytic and univalent in E, with $f(0)=0, f^{\prime}(0)=\alpha \neq 0$ and $f^{\prime \prime}(0)=\frac{\mu \beta}{\gamma+1}$ satisfying the inequality

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)+\gamma\left(f^{\prime}(z)-\alpha\right)\right| \leq \mu, \quad z \in E \tag{3}
\end{equation*}
$$

For $\gamma=0$, this class was introduced and discussed by Ponnusamy et al. [2]. If $f \in R_{\mu}(\alpha, \beta, \gamma)$, then it may be written as

$$
z f^{\prime \prime}(z)+\gamma\left(f^{\prime}(z)-\alpha\right)=\mu w(z)
$$

for some $w \in B$. From this, we have the following integral representation

$$
\begin{equation*}
f^{\prime}(z)=\alpha+\mu \int_{0}^{1} t^{\gamma-1} w(t z) \mathrm{d} t \tag{4}
\end{equation*}
$$

From the Schwarz lemma, we have

$$
\left|f^{\prime}(z)-\alpha\right|<\frac{\mu}{\Re \gamma+1}
$$

This shows that the functions in $R_{\mu}(\alpha, \beta, \gamma)$ are univalent in E, if $\mu \leq|\alpha|(\Re \gamma+$ 1).

Since $f \in R_{\mu}(\alpha, \beta, \gamma)$, the function

$$
\begin{equation*}
w_{f}(z)=\frac{z\left(f^{\prime \prime}(z)-\mu \beta\right)+\gamma\left(f^{\prime}(z)-\alpha\right)}{z\left(\mu-\bar{\beta} f^{\prime \prime}(z)\right)-\bar{\beta} \gamma\left(f^{\prime}(z)-\alpha\right)}, z \in E \tag{5}
\end{equation*}
$$

is in the class \mathcal{B}. Applying the Schwarz lemma, it can be shown that $f \in$ $R_{\mu}(\alpha, \beta, \gamma)$ implies a restriction on $f^{\prime \prime \prime}(0)$. In particular,

$$
\left|f^{\prime \prime \prime}(0)\right|=\frac{2 \mu\left(1-|\beta|^{2}\right)}{\gamma+2}\left|w_{f}^{\prime}(0)\right| \leq \frac{2 \mu\left(1-|\beta|^{2}\right)}{|\gamma+2|}
$$

For $\lambda \in \bar{E}=\{z \in \mathbb{C}:|z| \leq 1\}$ and $z_{0} \in E$, set

$$
\begin{gathered}
R_{\lambda, \mu}(\alpha, \beta, \gamma)=\left\{f \in R_{\mu}(\alpha, \beta, \gamma): f^{\prime \prime \prime}(0)=\frac{2 \mu\left(1-|\beta|^{2}\right)}{(\gamma+2)} \lambda\right\}, \\
V\left(z_{0}, \lambda\right)=\left\{f^{\prime}\left(z_{0}\right): f \in R_{\lambda, \mu}(\alpha, \beta, \gamma)\right\}
\end{gathered}
$$

The aim of this paper is to investigate explicitly the region of variability $V\left(z_{0}, \lambda\right)$ for the class $R_{\lambda, \mu}(\alpha, \beta, \gamma)$. Some general properties of the set $V\left(z_{0}, \lambda\right)$ are given in the following proposition.

Proposition 2.1. We have:
(i) $V\left(z_{0}, \lambda\right)$ is a compact set.
(ii) $V\left(z_{0}, \lambda\right)$ is convex.
(iii) If $|\lambda|=1$ or $z_{0}=0$, then

$$
V\left(z_{0}, \lambda\right)= \begin{cases}\alpha+\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}-\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}\left(1-|\beta|^{2}\right)_{2} F_{1}\left(1, \gamma+1, \gamma+2,-\bar{\beta} \lambda z_{0}\right), & \beta \neq 0 \\ \alpha+\frac{\mu \lambda}{\gamma+2} z_{0}^{2}, & \beta=0\end{cases}
$$

and if $|\lambda|<1$ and $z_{0} \neq 0$, then $\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{\lambda \zeta+\beta}{1+\bar{\beta} \lambda \zeta} \mathrm{d} \zeta$ is an interior point of the set $V\left(z_{0}, \lambda\right)$, where ${ }_{2} F_{1}(a, b, c ; z)$ is the well known Gauss Hypergeometric function.
Proof. The proof of (i) and (ii) follow immediately from the compactness and convexity of the class $R_{\lambda, \mu}(\alpha, \beta, \gamma)$.

Now we prove (iii). Since $|\lambda|=\left|w_{f}^{\prime}(0)\right|=1$, from the Schwarz lemma, we obtain $w_{f}(z)=\lambda z$, which yields

$$
\frac{z f^{\prime \prime}(z)+\gamma\left(f^{\prime}(z)-\alpha\right)}{\mu}=\frac{[\lambda z+\beta] z}{1++\bar{\beta} \lambda z} .
$$

Integrating the above expression from 0 to z_{0}, we have

$$
\begin{aligned}
f^{\prime}\left(z_{0}\right) & =\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{\lambda \zeta+\beta}{1+\bar{\beta} \lambda \zeta} \mathrm{d} \zeta \\
& =\alpha+\frac{\mu}{\beta z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma}\left[\left(1-\frac{1}{1+\bar{\beta} \lambda \zeta}\right)+\frac{\beta}{\lambda}\left(\frac{\lambda \bar{\beta}}{1+\bar{\beta} \lambda \zeta}\right)\right] \mathrm{d} \zeta,
\end{aligned}
$$

and simple computations yield, for $\beta \neq 0$,

$$
f^{\prime}\left(z_{0}\right)=\alpha+\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}-\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}\left(1-|\beta|^{2}\right){ }_{2} F_{1}\left(1, \gamma+1, \gamma+2,-\bar{\beta} \lambda z_{0}\right)
$$

and, for $\beta=0$,

$$
f^{\prime}\left(z_{0}\right)=\alpha+\frac{\mu \lambda}{\gamma+2} z_{0}^{2}
$$

So, for $\beta \neq 0$,

$$
V\left(z_{0}, \lambda\right)=\left\{\alpha+\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}\left(1-\left(1-|\beta|^{2}\right){ }_{2} F_{1}\left(1, \gamma+1, \gamma+2,-\bar{\beta} \lambda z_{0}\right)\right)\right\}
$$

and, for $\beta=0$,

$$
V\left(z_{0}, \lambda\right)=\alpha+\frac{\mu \lambda}{\gamma+2} z_{0}^{2}
$$

This is trivially true when $z_{0}=0$.
For $\lambda \in E$ and $a \in \bar{E}$, set

$$
\begin{gathered}
\delta(z, \lambda)=\frac{z+\lambda}{1+\bar{\lambda} z} \\
H_{a, \lambda}(z)=\alpha z+\int_{0}^{z}\left[\int_{0}^{\zeta_{2}} \frac{\mu \zeta_{1}^{\gamma}}{\zeta_{2}^{\gamma}} \frac{\left[\delta\left(a \zeta_{1}, \lambda\right) \zeta_{1}+\beta\right]}{1+\bar{\beta} \delta\left(a \zeta_{1}, \lambda\right) \zeta_{1}} \mathrm{~d} \zeta_{1}\right] \mathrm{d} \zeta_{2}, z \in E .
\end{gathered}
$$

Then $H_{a, \lambda} \in R_{\lambda, \mu}(\alpha, \beta, \gamma)$ and $w_{H_{a, \lambda}}(z)=z \delta(a z, \lambda)$. For fixed $\lambda \in E$ and $z_{0} \in E \backslash\{0\}$, the function

$$
E \ni a \mapsto H_{a, \lambda}^{\prime}\left(z_{0}\right)=\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{[\delta(a \zeta, \lambda) \zeta+\beta]}{1+\bar{\beta} \delta(a \zeta, \lambda) \zeta} \mathrm{d} \zeta
$$

is a non-constant analytic function of $a \in E$ and therefore is an open mapping. Hence $H_{0, \lambda}^{\prime}\left(z_{0}\right)=\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{[\lambda \zeta+\beta]}{1+\bar{\beta} \backslash \zeta} \mathrm{d} \zeta$ is an interior point of

$$
\left\{H_{a, \lambda}^{\prime}\left(z_{0}\right): a \in E\right\} \subset V\left(z_{0}, \lambda\right) .
$$

Keeping in view the above proposition, it is sufficient to find $V\left(z_{0}, \lambda\right)$ for $0 \leq \lambda<1$ and $z_{0} \in E \backslash\{0\}$. For this we need the following lemma, stated below.

Lemma 2.2 ([5]). For $\theta \in \mathbb{R}$ and $|\lambda|<1$, the function

$$
G(z)=\int_{0}^{z} \frac{\mathrm{e}^{\mathrm{i} \theta} \zeta^{2}}{\left(1+\left(\mathrm{e}^{\mathrm{i} \theta} \bar{\lambda}+\bar{\beta} \lambda\right) \zeta+\mathrm{e}^{\mathrm{i} \theta} \bar{\beta} \zeta^{2}\right)^{2}} \mathrm{~d} \zeta, \quad z \in E,
$$

has a zero of order three at the origin and no zero elsewhere in E. Moreover, there exists a starlike normalized univalent function s in E such that $G(z)=$ $3^{-1} \mathrm{e}^{\mathrm{i} \theta} s^{3}(z)$.

3. SOME USEFUL RESULTS

In this section, we state and prove some results which are needed in the proof of our main theorems.

Proposition 3.1. For $f \in R_{\lambda, \mu}(\alpha, \beta, \gamma)$, we have

$$
\begin{equation*}
\left|f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-q(z, \lambda)\right| \leq r(z, \lambda), \quad z \in E, \lambda \in \bar{E}, \tag{6}
\end{equation*}
$$

where

$$
\begin{aligned}
q(z, \lambda) & =\frac{\mu\left(1-|z|^{2}\right)\left[\beta\left(1+|z|^{2}\right)+\beta^{2} \bar{\lambda} \bar{z}+\lambda z\right]}{1-|\beta|^{2}|z|^{4}-\left(1-|\beta|^{2}\right)|\lambda|^{2}|z|^{2}+2\left(1-|z|^{2}\right) \Re(\bar{\beta} \lambda z)}, \\
r(z, \lambda) & =\frac{\left(1-|\lambda|^{2}\right)\left(1-|\beta|^{2}\right)|z|^{2}}{1-|\beta|^{2}|z|^{4}-\left(1-|\beta|^{2}\right)|\lambda|^{2}|z|^{2}+2 \mu\left(1-|z|^{2}\right) \Re(\bar{\beta} \lambda z)} .
\end{aligned}
$$

The inequality is sharp for $z_{0} \in E \backslash\{0\}$ if and only if $f(z)=H_{\mathrm{e}^{i} \theta, \lambda}(z)$ for some $\theta \in \mathbb{R}$.

Proof. Since, for $w_{f} \in \mathcal{B}, w_{f}^{\prime}(0)=\lambda$, from the Schwarz lemma, it follows that

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-\frac{\mu[\lambda z+\beta]}{1+\bar{\beta} \lambda z}}{f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-\frac{\mu(z+\bar{\lambda} \beta)}{\bar{\beta} z+\bar{\lambda}}}\right| \leq|z|\left|\frac{\bar{\beta} z+\bar{\lambda}}{1+\bar{\beta} \lambda z}\right| . \tag{7}
\end{equation*}
$$

From (5) this can be written equivalently as

$$
\begin{equation*}
\left|\frac{f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-b(z, \lambda)}{z f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)+c(z, \lambda)}\right| \leq|z||\tau(z, \lambda)|, \tag{8}
\end{equation*}
$$

where

$$
\left\{\begin{array}{c}
b(z, \lambda)=\frac{\mu[\lambda z+\beta]}{1+\bar{\beta} \lambda z}, \quad c(z, \lambda)=-\frac{\mu(z+\bar{\lambda} \beta)}{\bar{\beta} z+\bar{\lambda}} \tag{9}\\
\tau(z, \lambda)=\frac{\bar{\beta} z+\bar{\lambda}}{1+\bar{\beta} \lambda z}
\end{array}\right.
$$

Simple computations show that the inequality (8) can be written as

$$
\begin{align*}
\left\lvert\, f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)\right. & \left.-\frac{b(z, \lambda)+|z|^{2}|\tau(z, \lambda)|^{2} c(z, \lambda)}{1-|z|^{2}|\tau(z, \lambda)|^{2}} \right\rvert\, \tag{10}\\
& \leq \frac{|z||\tau(z, \lambda)||b(z, \lambda)+c(z, \lambda)|}{1-|z|^{2}|\tau(z, \lambda)|^{2}}
\end{align*}
$$

Now, we have

$$
\begin{aligned}
& 1-|z|^{2}|\tau(z, \lambda)|^{2}=\frac{1-|\beta|^{2}|z|^{4}-\left(1-|\beta|^{2}\right)|\lambda|^{2}|z|^{2}+2\left(1-|z|^{2}\right) \Re(\bar{\beta} \lambda z)}{|1+\bar{\beta} \lambda z|^{2}}, \\
& b(z, \lambda)+c(z, \lambda)=\frac{\mu\left(1-|\lambda|^{2}\right)\left(1-|\beta|^{2}\right) z}{(1+\bar{\beta} \lambda z)(\bar{\beta} z+\bar{\lambda})} \\
& b(z, \lambda)+|z|^{2}|\tau(z, \lambda)|^{2} c(z, \lambda)=\frac{\mu[\lambda z+\beta]}{1+\bar{\beta} \lambda z}-|z|^{2}\left|\frac{\bar{\beta} z+\bar{\lambda}}{1+\bar{\beta} \lambda z}\right|^{2} \frac{\mu(z+\bar{\lambda} \beta)}{\bar{\beta} z+\bar{\lambda}} \\
& \\
& =\frac{\mu\left(1-|z|^{2}\right)\left[\beta\left(1+|z|^{2}\right)+\beta^{2} \bar{\lambda} \bar{z}+\lambda z\right]}{|1+\bar{\beta} \lambda z|^{2}}
\end{aligned}
$$

Set

$$
\begin{aligned}
& \frac{b(z, \lambda)+|z|^{2}|\tau(z, \lambda)|^{2} c(z, \lambda)}{1-|z|^{2}|\tau(z, \lambda)|^{2}}=q(z, \lambda) \\
& \frac{|z||\tau(z, \lambda)||b(z, \lambda)+c(z, \lambda)|}{1-|z|^{2}|\tau(z, \lambda)|^{2}}=r(z, \lambda)
\end{aligned}
$$

All these relations together with (10) give (6). Equality in (6) occurs when $f(z)=F_{i \theta, \lambda}(z)$, for $z \in E$. Conversely, if equality in (6) occurs for some $z \in E \backslash\{0\}$, then equality must hold in (7). Thus, by the Schwarz lemma, there exists $\theta \in \mathbb{R}$ such that $w_{f}(z)=z \delta(a z, \lambda)$, for all $z \in E$. This implies $f(z)=F_{i \theta, \lambda}(z)$.

The case $\lambda=0$ leads us to the following result.

Corollary 3.2. Let $f \in R(0)$. Then

$$
\left|f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-\frac{\mu \beta\left(1-|z|^{4}\right)}{1-|\beta|^{2}|z|^{4}}\right| \leq \frac{\left(1-|\beta|^{2}\right)|z|^{2}}{1-|\beta|^{2}|z|^{4}} .
$$

The special case $\gamma=0$ in the above corollary gives us the known result [2]. For $|\beta|=1$, the above corollary gives us

$$
\left|f^{\prime \prime}(z)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)-\mu \beta\right|=0,
$$

which further yields

$$
f(z)=\alpha z+\mu \beta \frac{z^{2}}{\gamma+1} .
$$

Geometrically, Proposition 1 means that the functional

$$
z f^{\prime \prime}(z)+\gamma\left(f^{\prime}(z)-\alpha\right)
$$

lies in the closed disk centred at $q(z, \lambda)$ with radius $r(z, \lambda)$. From this fact we have the below corollary.

Corollary 3.3. Let $\gamma: z(t), 0 \leq t \leq 1$ be a C^{1}-curve in E with $z(0)=0$ and $z(1)=z_{0}$. Then we have

$$
V\left(z_{0}, \lambda\right) \subset \overline{\mathbb{D}}(Q(\lambda, \gamma), W(\lambda, \gamma))=\{w \in C:|w-Q(\lambda, \gamma)| \leq W(\lambda, \gamma)\},
$$

where

$$
\begin{array}{r}
Q(\lambda, \gamma)=\alpha+\frac{1}{z_{0}^{\gamma}} \int_{0}^{1} z^{\gamma}(t) q(z(t), \lambda) z^{\prime}(t) \mathrm{d} t, \\
W(\lambda, \gamma)=\int_{0}^{1} r(z(t), \lambda) \frac{z(t)}{z_{0}}\left|z^{\prime}(t)\right| \mathrm{d} t .
\end{array}
$$

Proof. Since f is in $R_{\lambda, \mu}(\alpha, \beta, \gamma)$,

$$
\frac{1}{z_{0}^{\gamma}} \int_{0}^{1}\left[z^{\gamma}(t)\left(f^{\prime}(z(t)-\alpha)\right]^{\prime} z^{\prime}(t) \mathrm{d} t=f^{\prime}(z(1))-\alpha=f^{\prime}\left(z_{0}\right)-\alpha .\right.
$$

Now, from Proposition 2, it follows that

$$
\begin{array}{r}
\quad\left|f^{\prime}\left(z_{0}\right)-Q(\lambda, \gamma)\right|=\left|f^{\prime}\left(z_{0}\right)-\alpha-\frac{1}{z_{0}^{\gamma}} \int_{0}^{1} z^{\gamma}(t) q(z(t), \lambda) z^{\prime}(t) \mathrm{d} t\right| \mathrm{d} t \\
=\left\lvert\, \int_{0}^{1}\left[\left.f^{\prime \prime}\left(z(t)+\gamma\left(\frac{f^{\prime}(z(t))-\alpha}{z(t)}\right)-q(z(t), \lambda)\right]\left(\frac{z(t)}{z_{0}}\right)^{\gamma}\left(z^{\prime}(t)\right)^{2} \mathrm{~d} t \right\rvert\,\right.\right. \\
\leq \int_{0}^{1} r(z(t), \lambda)\left|\left(\frac{z(t)}{z_{0}}\right)^{\gamma} z^{\prime}(t)\right|\left|z^{\prime}(t)\right| \mathrm{d} t=W(\lambda, \gamma) .
\end{array}
$$

This implies the required result.

Proposition 3.4. Let $\theta \in(-\pi, \pi]$ and $z_{0} \in E \backslash\{0\}$. Then $H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right) \in$ $\partial V\left(z_{0}, \lambda\right)$. Moreover, for some $\theta \in(-\pi, \pi]$ and $f \in R_{\lambda, \mu}(\alpha, \beta, \gamma)$,

$$
f^{\prime}\left(z_{0}\right)=H_{\mathrm{e}^{i} \theta, \lambda}^{\prime}\left(z_{0}\right) \Longrightarrow f(z)=H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}(z) .
$$

Proof. We have for $z \in E$

$$
\begin{aligned}
H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right) & =\frac{\mu[\delta(a z, \lambda) z+\beta]}{1+\bar{\beta} \delta(a z, \lambda) z} \\
& =\frac{\mu[(a z+\lambda) z+\beta(1+a \bar{\lambda} z)]}{1+(a \bar{\lambda}+\bar{\beta} \lambda) z+a \bar{\beta} z^{2}}
\end{aligned}
$$

Thus, from (9), it follows that

$$
\begin{aligned}
& H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right)-b(z, \lambda)=\frac{\mu\left(1-|\lambda|^{2}\right)\left(1-|\beta|^{2}\right) a z^{2}}{\left[1+(a \bar{\lambda}+\bar{\beta} \lambda) z+a \bar{\beta} z^{2}\right][1+\bar{\beta} \lambda z]} \\
& H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right)+c(z, \lambda)=\frac{-\mu\left(1-|\lambda|^{2}\right)\left(1-|\beta|^{2}\right) z}{\left[1+(a \bar{\lambda}+\bar{\beta} \lambda) z+a \bar{\beta} z^{2}\right][\bar{\beta} z+\bar{\lambda}]}
\end{aligned}
$$

and hence we have

$$
\begin{array}{r}
H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right)-q(z, \lambda)=H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right) \\
-\frac{b(z, \lambda)+|z|^{2}|\tau(z, \lambda)|^{2} c(z, \lambda)}{1-|z|^{2}|\tau(z, \lambda)|^{2}} \\
=\frac{1}{1-|z|^{2}|\tau(z, \lambda)|^{2}}\left[\begin{array}{c}
H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right)-b(z, \lambda) \\
-|z|^{2}|\tau(z, \lambda)|^{2}\left(H_{a, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{a, \lambda}^{\prime}(z)-\alpha}{z}\right)+c(z, \lambda)\right)
\end{array}\right] \\
=\frac{\mu\left(1-|\lambda|^{2}\right)\left(1-|\beta|^{2}\right) z^{2}}{1-|\beta|^{2}|z|^{4}-\left(1-|\beta|^{2}\right)|\lambda|^{2}|z|^{2}+2\left(1-|z|^{2}\right) \Re(\bar{\beta} \lambda z)} \frac{\overline{J(a, z)}}{J(a, z)},
\end{array}
$$

where

$$
J(a, z)=1+(a \bar{\lambda}+\bar{\beta} \lambda) z+a \bar{\beta} z^{2}
$$

Putting $a=\mathrm{e}^{\mathrm{i} \theta}$, we obtain

$$
H_{\mathrm{e}^{i} \theta, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}(z)-\alpha}{z}\right)-q(z, \lambda)=r(z, \lambda) \frac{\left|J\left(\mathrm{e}^{\mathrm{i} \theta}, z\right)\right|^{2}}{|z|^{2}} \frac{\mathrm{e}^{\mathrm{i} \theta} z^{2}}{\left(J\left(\mathrm{e}^{\mathrm{i} \theta}, z\right)\right)^{2}} .
$$

From this we note that

$$
\begin{equation*}
H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}(z)-\alpha}{z}\right)-q(z, \lambda)=r(z, \lambda) \frac{G^{\prime}(z)}{\left|G^{\prime}(z)\right|} \tag{11}
\end{equation*}
$$

Since the function s is starlike in E, for any $z_{0} \in E \backslash\{0\}$, the linear segment joining 0 and $s\left(z_{0}\right)$ lies entirely in $s(E)$. Let Γ_{0} be the curve defined by

$$
\Gamma_{0}: z(t)=s^{-1}\left(t s\left(z_{0}\right)\right), t \in[0,1]
$$

This relation, together with (11), leads to

$$
\begin{equation*}
G^{\prime}(z(t)) z^{\prime}(t)=3 t^{2} G\left(z_{0}\right), \quad t \in[0,1] \tag{12}
\end{equation*}
$$

This relation, together with (11), leads to

$$
\begin{aligned}
& H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)-Q\left(\lambda, \gamma_{0}\right) \\
= & \int_{0}^{1}\left(H_{\mathrm{e}^{i \theta}, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}(z)-\alpha}{z}\right)-q(z(t), \lambda)\right)\left(\frac{z(t)}{z_{0}}\right)^{\gamma}\left(z^{\prime}(t)\right)^{2} \mathrm{~d} t \\
= & \int_{0}^{1} r(z(t), \lambda) \frac{G^{\prime}(z(t)) z^{\prime}(t)}{\left|G^{\prime}(z(t)) z^{\prime}(t)\right|}\left(\frac{z(t)}{z_{0}}\right)^{\gamma} z^{\prime}(t)\left|z^{\prime}(t)\right| \mathrm{d} t \\
= & \frac{z_{0}}{\gamma+1} \frac{G\left(z_{0}\right)}{\left|G\left(z_{0}\right)\right|} \int_{0}^{1} r(z(t), \lambda)\left|z^{\prime}(t)\right| \mathrm{d} t \\
= & \frac{G\left(z_{0}\right)}{\left|G\left(z_{0}\right)\right|} W\left(\lambda, \gamma_{0}\right) .
\end{aligned}
$$

That is

$$
\begin{equation*}
H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)-Q\left(\lambda, \gamma_{0}\right)=\frac{G\left(z_{0}\right)}{\left|G\left(z_{0}\right)\right|} W\left(\lambda, \gamma_{0}\right) \tag{13}
\end{equation*}
$$

This implies that $H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right) \in \partial \overline{\mathbb{D}}\left(Q\left(\lambda, \gamma_{0}\right), W\left(\lambda, \gamma_{0}\right)\right)$. Hence, from Corollary 1, we have $H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right) \in \partial V\left(\lambda, z_{0}\right)$.

Now, we prove the uniqueness part. Suppose that $f^{\prime}\left(z_{0}\right)=H_{\mathrm{e}^{i \theta}, \lambda}^{\prime}\left(z_{0}\right)$ for some $\theta \in(-\pi, \pi]$ and $f \in R_{\lambda, \mu}(\alpha, \beta, \gamma)$. Let

$$
g(t)=\frac{\overline{G\left(z_{0}\right)}}{\left|G\left(z_{0}\right)\right|}\left(f^{\prime \prime}\left(z(t)+\gamma\left(\frac{f^{\prime}(z(t))-\alpha}{z(t)}\right)-q(z(t), \lambda)\right)\left(\frac{z(t)}{z_{0}}\right)^{\gamma}\left(z^{\prime}(t)\right)^{2}\right.
$$

where $\gamma_{0}(t)=z(t), \quad t \in[0,1]$. Then the function g is continuous and satisfies $|g(t)| \leq r(z(t), \lambda)\left|z^{\prime}(t)\right|$. Further, from (13), we have

$$
\begin{aligned}
\int_{0}^{1} \Re g(t) \mathrm{d} t=\int_{0}^{1} \Re\left[\frac{\overline{G\left(z_{0}\right)}}{\left|G\left(z_{0}\right)\right|}\right. & \left(f ^ { \prime \prime } \left(z(t)+\gamma\left(\frac{f^{\prime}(z(t))-\alpha}{z(t)}\right)\right.\right. \\
& \left.-q(z(t), \lambda))\left(\frac{z(t)}{z_{0}}\right)^{\gamma}\left(z^{\prime}(t)\right)^{2}\right] \mathrm{d} t
\end{aligned}
$$

$$
\begin{aligned}
& =\Re\left[\frac{\overline{G\left(z_{0}\right)}}{\left|G\left(z_{0}\right)\right|}\left(f^{\prime}\left(z_{0}\right)-Q\left(z(t), \gamma_{0}\right)\right)\right] \\
& =\Re\left[\frac{\overline{G\left(z_{0}\right)}}{\left|G\left(z_{0}\right)\right|}\left(H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)-Q\left(z(t), \gamma_{0}\right)\right)\right] \\
& =\int_{0}^{1} \Re r(z(t), \lambda)\left|z^{\prime}(t)\right| \mathrm{d} t
\end{aligned}
$$

Thus $g(t)=r(z(t), \lambda)\left|z^{\prime}(t)\right|$, for all $t \in[0,1]$. From (11) and (12), this implies that $f^{\prime \prime}\left(z(t)+\gamma\left(\frac{f^{\prime}(z)-\alpha}{z}\right)=H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime \prime}(z)+\gamma\left(\frac{H_{\mathrm{e}^{\mathrm{i} \theta, \lambda}}^{\prime}(z)-\alpha}{z}\right)\right.$ on γ_{0}. The identity theorem for analytic functions yields us $f(z)=H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}(z), z \in E$.

4. MAIN THEOREM

Theorem 4.1. Let $|\lambda|<1, z_{0} \in E \backslash\{0\}$. Then boundary $\partial V\left(\lambda, z_{0}\right)$ is the Jordan curve given by

$$
\begin{aligned}
(-\pi, \pi] \ni \theta \mapsto H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)=\alpha+ & \frac{\mu z_{0}}{\bar{\beta}(\gamma+1)} \\
& +\frac{\mu}{\beta \mathrm{e}^{\mathrm{i} \theta} z_{0}^{\gamma}} \log \frac{\left(1-\frac{z_{0}}{\zeta_{2}}\right)^{\frac{\zeta_{2}^{\gamma}\left(|\beta|^{2}-1\right)\left(\overline{\left.\lambda e^{\mathrm{i} \theta} \zeta_{2}+1\right)}\right.}{\bar{\beta}\left(\zeta_{1}-\zeta_{2}\right)}}}{\left(1-\frac{z_{0}}{\zeta_{1}}\right)^{\frac{\zeta_{1}^{\gamma}\left(|\beta|^{2}-1^{2}\right)\left(\bar{\lambda} \mathrm{e}^{\mathrm{i} \theta} \zeta_{1}+1\right)}{\bar{\beta}\left(\zeta_{1}-\zeta_{2}\right)}},}
\end{aligned}
$$

where ζ_{1}, ζ_{2} are the zeros of the equation

$$
1+\left(\mathrm{e}^{\mathrm{i} \theta} \bar{\lambda}+\bar{\beta} \lambda\right) x+\bar{\beta} \mathrm{e}^{\mathrm{i} \theta} x^{2}=0
$$

If $f^{\prime}\left(z_{0}\right)=H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)$ for some f in $R_{\lambda, \mu}(\alpha, \beta, \gamma)$ and $\theta \in(-\pi, \pi]$, then $f\left(z_{0}\right)=F_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}\left(z_{0}\right)$.

Proof. We will show that the curve $(-\pi, \pi] \ni \theta \rightarrow F_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)$ is simple. Let us assume that $H_{\mathrm{e}^{\mathrm{i} \theta_{1}, \lambda}}^{\prime}\left(z_{0}\right)=H_{\mathrm{e}^{\mathrm{i} \theta_{2}, \lambda}}^{\prime}\left(z_{0}\right)$ for some $\theta_{1,}, \theta_{2} \in(-\pi, \pi]$ with $\theta_{1} \neq \theta_{2}$. Then the use of Proposition 3 yield us that $H_{\mathrm{e}^{\mathrm{i} \theta_{1}, \lambda}}\left(z_{0}\right)=H_{\mathrm{e}^{\mathrm{i} \theta_{2}, \lambda}}\left(z_{0}\right)$, which further gives the following relation

$$
\tau\left(\frac{w_{H_{\mathrm{e}^{\mathrm{i} \theta_{1, \lambda}}}^{\prime}}(z)}{z}, \lambda\right)=\tau\left(\frac{w_{H_{\mathrm{e}^{\mathrm{i} \theta_{2}, \lambda}}^{\prime}}(z)}{z}, \lambda\right)
$$

This implies that

$$
\frac{\left(\bar{\lambda}^{2}+\bar{\beta}\right) \mathrm{e}^{\mathrm{i} \theta_{1}} z+\bar{\lambda}+\bar{\beta} \lambda}{(\bar{\lambda}+\bar{\beta} \lambda) \mathrm{e}^{\mathrm{i} \theta_{1}} z+1+\bar{\beta} \lambda^{2}}=\frac{\left(\bar{\lambda}^{2}+\bar{\beta}\right) \mathrm{e}^{\mathrm{i} \theta_{2}} z+\bar{\lambda}+\bar{\beta} \lambda}{(\bar{\lambda}+\bar{\beta} \lambda) \mathrm{e}^{\mathrm{i} \theta_{2}} z+1+\bar{\beta} \lambda^{2}}
$$

After some simplifications, we obtain $z \mathrm{e}^{\mathrm{i} \theta_{1}}=z \mathrm{e}^{\mathrm{i} \theta_{2}}$, which leads us to a contradiction. Therefore the curve is simple.

As $V\left(\lambda, z_{0}\right)$ is a compact convex subset of \mathbb{C} and has non-empty interior, the boundary $\partial V\left(\lambda, z_{0}\right)$ is a simple closed curve. From Proposition 3, the curve $\partial V\left(\lambda, z_{0}\right)$ contains the curve $(-\pi, \pi] \ni \theta \mapsto H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)$. Since a simple closed curve cannot contain any simple closed curve other than itself, $\partial V\left(\lambda, z_{0}\right)$ is given by $(-\pi, \pi] \ni \theta \mapsto H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right)$.

Now, we calculate

$$
\begin{aligned}
H_{\mathrm{e}^{\mathrm{i} \theta}, \lambda}^{\prime}\left(z_{0}\right) & =\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{\left[\delta\left(\mathrm{e}^{\mathrm{i} \theta} \zeta, \lambda\right) \zeta+\beta\right]}{1+\bar{\beta} \delta\left(\mathrm{e}^{\mathrm{i} \theta} \zeta, \lambda\right) \zeta} \mathrm{d} \zeta \\
& =\alpha+\frac{\mu}{z_{0}^{\gamma}} \int_{0}^{z_{0}} \zeta^{\gamma} \frac{\left.\mathrm{e}^{\mathrm{i} \theta} \zeta^{2}+\left[\lambda+\beta \bar{\lambda} \mathrm{e}^{\mathrm{i} \theta}\right] \zeta+\beta\right]}{1+\left(\mathrm{e}^{\mathrm{i} \theta} \bar{\lambda}+\bar{\beta} \lambda\right) \zeta+\bar{\beta} \mathrm{e}^{\mathrm{i} \theta} \zeta^{2}} \mathrm{~d} \zeta \\
& =\alpha+\frac{\mu z_{0}}{\bar{\beta}(\gamma+1)}+\frac{\mu}{\beta \mathrm{e}^{\mathrm{i} \theta} z_{0}^{\gamma}} \log \frac{\left(1-\frac{z_{0}}{\zeta_{2}}\right)^{\frac{\zeta_{2}^{\gamma}\left(|\beta|^{2}-1\right)\left(\bar{\lambda} \mathrm{e}^{\mathrm{i} \theta} \zeta_{2}+1\right)}{\bar{\beta}\left(\zeta_{1}-\zeta_{2}\right)}}}{\left(1-\frac{z_{0}}{\zeta_{1}}\right)^{\left.\frac{\zeta_{1}^{\gamma}\left(\mid \beta \beta^{2}-1^{2}\right)(\overline{\mathrm{e}}}{} \overline{\mathrm{e}}^{\mathrm{i} \theta} \zeta_{1}+1\right)}} .
\end{aligned}
$$

For $\gamma=0$, we obtain the variability regions shown by Ponnusamy et al. [2].

5. GEOMETRIC VIEW OF THEOREM 1

In the below figures, the geometric view of Theorem 1 is given by assigning different values to the involved parameters. All the values except those of γ are taken from the article [2], for comparison purposes. It can also be seen that, when $\gamma=0$, we obtain the geometric view of $[2$, Theorem 2.4].

| Values of parameters [2] | Theorem 1
 $\gamma=10+1.0 i$ | Theorem 2.4 of [2]
 $\gamma=0$ |
| :--- | :--- | :--- | :--- | :--- |

| Values of parameters [2] | Theorem 1
 $\gamma=-0.5-0.9 i$ | Theorem 2.4 of [2]
 $\gamma=0$ |
| :--- | :--- | :--- | :--- |

Values of parameters [2]	$\begin{aligned} & \text { Theorem 1 } \\ & \gamma=10+1.0 i \end{aligned}$	$\begin{aligned} & \text { Theorem } 2.4 \text { of }[2] \\ & \gamma=0 \end{aligned}$
$\begin{aligned} & z_{0}=-0.605185+0.789592 i \\ & \alpha=-100.796+233.556 i \\ & \lambda=0.0523661+0.167249 i \\ & \mu=164.079 \\ & \beta=0.00810121-0.00819085 \end{aligned}$		

REFERENCES

[1] S. Ponnusamy and V. Singh, Criteria for univalent, starlike and convex functions, Bull. Belg. Math. Soc. Simon Stevin, 9 (2002), 511-531.
[2] S. Ponnusamy, A. Vasudevarao, and H. Yanagihara, Region of variability for certain classes of univalent functions satisfying differential inequalities, Complex Var. Elliptic Equ., 54 (2009), 899-922.
[3] S. Ponnusamy and A. Vasudevarao, Region of variability of two subclasses of univalent functions, J. Math. Anal. Appl., 332 (2007), 1323-1334.
[4] S. Ponnusamy, A. Vasudevarao, and H. Yanagihara, Region of variability of univalent functions $f(z)$ for which $z f^{\prime}(z)$ is spirallike, Houston J. Math., 34 (2008), 1037-1048.
[5] S. Ponnusamy, A. Vasudevarao, and H. Yanagihara, Region of variability for close-toconvex functions, Complex Var. Elliptic Equ., 53 (2008), 709-716.
[6] W. Ul-Haq, Variability regions for Janowski convex functions, Complex Var. Elliptic Equ., 59 (2014), 355-361.
[7] H. Yanagihara, Regions of variability for functions of bounded derivatives, Kodai Math. J., 28 (2005), 452-462.
[8] H. Yanagihara, Regions of variability for convex function, Math. Nachr., 279 (2006), 1723-1730.

Received May 11, 2017
Accepted December 19, 2017

Majmaah Univeristy
College of Science Al-Zulfi
Department of Mathematics
Al-Zulfi, Saudi Arabia
E-mail: w.ulhaq@mu.edu.sa
University of Islamabad
Department of Mathematics
Bahria Golf City, Islamabad, Pakistan
E-mail: wasim474@hotmail.com

[^0]: The author would like to thank the worthy anonymous referee of this article for his/her valuable comments on the earlier version of this paper.

