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VARIABILITY REGIONS FOR A FAMILY OF UNIVALENT
MAPPINGS SATISFYING A CERTAIN INEQUALITY

WASIM UL-HAQ

Abstract. In this article, regions of variability for a family of analytic univalent
mappings satisfying a certain differential inequality are explicitly determined.
The geometric view of our main result is also shown by using Mathematica.
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1. INTRODUCTION

Let A denote the class of functions f of the form

(1) f(z) = z +

∞∑
n=2

an z
n,

which are analytic in the unit disc E = {z : |z| < 1} and consider A as a
topological vector space endowed with the topology of uniform convergence
over compact subsets of E. Also, let B denote the class of analytic functions w
on E such that |w(z)| < 1 and w(0) = 0. A complex valued function f is said to
be convex in E if it is univalent and if the image domain D = f(E) is convex.
That is ω1, ω2 ∈ D (0 ≤ t ≤ 1) =⇒ (1− t)ω1 + tω2 ∈ D. Similarly, a complex
valued function f is said to be starlike in E if it is univalent and if the image
domain D = f(E) is starshaped with respect to 0. Let C and S∗ denote the
classes of functions f ∈ A which are convex and starlike, respectively. Now, let
γ be a complex number with <γ > −1 (γ 6= −1) and µ be a non-negative real
number and say that a function f ∈ A is in the class R(γ, µ) if the following
inequality is satisfied

(2)
∣∣zf ′′(z) + γ(f ′(z)− 1)

∣∣ ≤ µ, z ∈ E.

It is known [1] that R(γ, µ)  S∗, if 0 ≤ µ ≤ 1+<γ
1+|γ|+<γ , and R(γ, µ)  C,

if 0 ≤ 2µ ≤ 1+<γ
1+|γ|+<γ . In a recent work, Ponnusamy et al. [2] studied the

variability regions for a certain family of univalent mappings satisfying (2)
with γ = 0. For a related study, see [3].
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In this article, we are interested in determining the variability regions, when
f ranges over a certain family of analytic and univalent mappings satisfying a
certain inequality.

2. THE CLASS Rµ(α, β, γ)Rµ(α, β, γ)Rµ(α, β, γ)

Let α, β, γ ∈ C be such that <γ > −1, 0 < µ ≤ |α|(<γ + 1) and |β| ≤ 1.
Let Rµ(α, β, γ) denote the family of functions f analytic and univalent in E,

with f(0) = 0, f ′(0) = α 6= 0 and f ′′(0) = µβ
γ+1 satisfying the inequality

(3)
∣∣zf ′′(z) + γ(f ′(z)− α)

∣∣ ≤ µ, z ∈ E.

For γ = 0, this class was introduced and discussed by Ponnusamy et al. [2].
If f ∈ Rµ(α, β, γ), then it may be written as

zf ′′(z) + γ(f ′(z)− α) = µw(z),

for some w ∈ B. From this, we have the following integral representation

(4) f ′(z) = α+ µ

∫ 1

0
tγ−1w(tz)dt.

From the Schwarz lemma, we have∣∣f ′(z)− α∣∣ < µ

<γ + 1
.

This shows that the functions in Rµ(α, β, γ) are univalent in E, if µ ≤ |α|(<γ+
1).

Since f ∈ Rµ(α, β, γ), the function

(5) wf (z) =
z(f ′′(z)− µβ) + γ (f ′(z)− α)

z(µ− βf ′′(z))− βγ (f ′(z)− α)
, z ∈ E,

is in the class B. Applying the Schwarz lemma, it can be shown that f ∈
Rµ(α, β, γ) implies a restriction on f ′′′(0). In particular,

∣∣f ′′′(0)
∣∣ =

2µ
(

1− |β|2
)

γ + 2

∣∣w′f (0)
∣∣ ≤ 2µ

(
1− |β|2

)
|γ + 2|

.

For λ ∈ E = {z ∈ C : |z| ≤ 1} and z0 ∈ E, set

Rλ,µ(α, β, γ) =

f ∈ Rµ(α, β, γ) : f ′′′(0) =
2µ
(

1− |β|2
)

(γ + 2)
λ

 ,

V (z0, λ) =
{
f ′(z0) : f ∈ Rλ,µ(α, β, γ)

}
.

The aim of this paper is to investigate explicitly the region of variability
V (z0, λ) for the class Rλ,µ(α, β, γ). Some general properties of the set V (z0, λ)
are given in the following proposition.

Proposition 2.1. We have:

(i) V (z0, λ) is a compact set.
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(ii) V (z0, λ) is convex.
(iii) If |λ| = 1 or z0 = 0, then

V (z0, λ) =

{
α+ µz0

β(γ+1)
− µz0

β(γ+1)
(1− |β|2)2F1

(
1, γ + 1, γ + 2,−βλz0

)
, β 6= 0

α+ µλ
γ+2z

2
0 , β = 0

and if |λ| < 1 and z0 6= 0, then α + µ
zγ0

∫ z0
0 ζγ λζ+β

1+βλζ
dζ is an interior

point of the set V (z0, λ), where 2F1(a, b, c; z) is the well known Gauss
Hypergeometric function.

Proof. The proof of (i) and (ii) follow immediately from the compactness
and convexity of the class Rλ,µ(α, β, γ).

Now we prove (iii). Since |λ| = |w′f (0)| = 1, from the Schwarz lemma, we

obtain wf (z) = λz, which yields

zf ′′(z) + γ (f ′(z)− α)

µ
=

[λz + β] z

1 + +βλz
.

Integrating the above expression from 0 to z0 , we have

f ′(z0) = α+
µ

zγ0

∫ z0

0
ζγ

λζ + β

1 + βλζ
dζ

= α+ µ

βzγ0

∫ z0

0
ζγ
[(

1− 1
1+βλζ

)
+ β

λ

(
λβ

1+βλζ

)]
dζ,

and simple computations yield, for β 6= 0,

f ′(z0) = α+ µz0
β(γ+1)

− µz0
β(γ+1)

(1− |β|2) 2F1

(
1, γ + 1, γ + 2,−βλz0

)
and, for β = 0,

f ′(z0) = α+
µλ

γ + 2
z20 .

So, for β 6= 0,

V (z0, λ) =
{
α+ µz0

β(γ+1)

(
1− (1− |β|2) 2F1

(
1, γ + 1, γ + 2,−βλz0

))}
and, for β = 0,

V (z0, λ) = α+
µλ

γ + 2
z20 .

This is trivially true when z0 = 0.
For λ ∈ E and a ∈ E, set

δ(z, λ) =
z + λ

1 + λz
,

Ha,λ(z) = αz +

∫ z

0

[∫ ζ2

0

µζγ1
ζγ2

[δ(aζ1, λ)ζ1 + β]

1 + βδ(aζ1, λ)ζ1
dζ1

]
dζ2, z ∈ E.
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Then Ha,λ ∈ Rλ,µ(α, β, γ) and wHa,λ(z) = zδ(az, λ). For fixed λ ∈ E and
z0 ∈ E\{0}, the function

E 3 a 7→ H ′a,λ(z0) = α+
µ

zγ0

∫ z0

0
ζγ

[δ(aζ, λ)ζ + β]

1 + βδ(aζ, λ)ζ
dζ

is a non-constant analytic function of a ∈ E and therefore is an open mapping.

Hence H ′0,λ(z0) = α+ µ
zγ0

∫ z0
0 ζγ [λζ+β]

1+βλζ
dζ is an interior point of{

H ′a,λ(z0) : a ∈ E
}
⊂ V (z0, λ).

Keeping in view the above proposition, it is sufficient to find V (z0, λ) for
0 ≤ λ < 1 and z0 ∈ E\{0}. For this we need the following lemma, stated
below. �

Lemma 2.2 ([5]). For θ ∈ R and |λ| < 1, the function

G(z) =

∫ z

0

eiθζ2(
1 +

(
eiθλ+ βλ

)
ζ + eiθβζ2

)2dζ, z ∈ E,

has a zero of order three at the origin and no zero elsewhere in E. Moreover,
there exists a starlike normalized univalent function s in E such that G(z) =
3−1eiθs3(z).

3. SOME USEFUL RESULTS

In this section, we state and prove some results which are needed in the
proof of our main theorems.

Proposition 3.1. For f ∈ Rλ,µ(α, β, γ), we have

(6)

∣∣∣∣f ′′(z) + γ

(
f ′(z)− α

z

)
− q(z, λ)

∣∣∣∣ ≤ r(z, λ), z ∈ E, λ ∈ E,

where

q(z, λ) =
µ
(
1− |z|2

) [
β(1 + |z|2) + β2λz + λz

]
1− |β|2 |z|4 −

(
1− |β|2

)
|λ|2|z|2 + 2 (1− |z|2)<

(
βλz

) ,
r(z, λ) =

(
1− |λ|2

) (
1− |β|2

)
|z|2

1− |β|2 |z|4 −
(

1− |β|2
)
|λ|2|z|2 + 2µ (1− |z|2)<

(
βλz

) .
The inequality is sharp for z0 ∈ E\{0} if and only if f(z) = Heiθ,λ(z) for

some θ ∈ R.

Proof. Since, for wf ∈ B, w′f (0) = λ, from the Schwarz lemma, it follows
that

(7)

∣∣∣∣∣∣
f ′′(z) + γ

(
f ′(z)−α

z

)
− µ[λz+β]

1+βλz

f ′′(z) + γ
(
f ′(z)−α

z

)
− µ(z+λβ)

βz+λ

∣∣∣∣∣∣ ≤ |z|
∣∣∣∣ βz + λ

1 + βλz

∣∣∣∣ .
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From (5) this can be written equivalently as

(8)

∣∣∣∣∣∣
f ′′(z) + γ

(
f ′(z)−α

z

)
− b(z, λ)

zf ′′(z) + γ
(
f ′(z)−α

z

)
+ c(z, λ)

∣∣∣∣∣∣ ≤ |z| |τ(z, λ)| ,

where

(9)

 b(z, λ) = µ[λz+β]

1+βλz
, c(z, λ) = −µ(z+λβ)

βz+λ
,

τ(z, λ) = βz+λ

1+βλz
.

Simple computations show that the inequality (8) can be written as∣∣∣∣∣f ′′(z) + γ

(
f ′(z)− α

z

)
− b(z, λ) + |z|2 |τ(z, λ)|2 c(z, λ)

1− |z|2 |τ(z, λ)|2

∣∣∣∣∣
≤ |z| |τ(z, λ)| |b(z, λ) + c(z, λ)|

1− |z|2 |τ(z, λ)|2
.

(10)

Now, we have

1− |z|2 |τ(z, λ)|2 =
1− |β|2 |z|4 −

(
1− |β|2

)
|λ|2|z|2 + 2

(
1− |z|2

)
<
(
βλz

)
∣∣1 + βλz

∣∣2 ,

b(z, λ) + c(z, λ) =
µ
(
1− |λ|2

) (
1− |β|2

)
z(

1 + βλz
) (
βz + λ

) ,

b(z, λ) + |z|2 |τ(z, λ)|2 c(z, λ) =
µ [λz + β]

1 + βλz
− |z|2

∣∣∣∣ βz + λ

1 + βλz

∣∣∣∣2 µ(z + λβ)

βz + λ

=
µ
(
1− |z|2

) [
β
(
1 + |z|2

)
+ β2λz + λz

]∣∣1 + βλz
∣∣2 .

Set

b(z, λ) + |z|2 |τ(z, λ)|2 c(z, λ)

1− |z|2 |τ(z, λ)|2
= q(z, λ),

|z| |τ(z, λ)| |b(z, λ) + c(z, λ)|
1− |z|2 |τ(z, λ)|2

= r(z, λ).

All these relations together with (10) give (6). Equality in (6) occurs when
f(z) = Fiθ,λ(z), for z ∈ E. Conversely, if equality in (6) occurs for some
z ∈ E\{0} , then equality must hold in (7). Thus, by the Schwarz lemma,
there exists θ ∈ R such that wf (z) = zδ(az, λ), for all z ∈ E. This implies
f(z) = Fiθ,λ(z). �

The case λ = 0 leads us to the following result.
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Corollary 3.2. Let f ∈ R(0). Then∣∣∣∣∣f ′′(z) + γ

(
f ′(z)− α

z

)
−
µβ
(
1− |z|4

)
1− |β|2 |z|4

∣∣∣∣∣ ≤
(

1− |β|2
)
|z|2

1− |β|2 |z|4
.

The special case γ = 0 in the above corollary gives us the known result [2].
For |β| = 1, the above corollary gives us∣∣∣∣f ′′(z) + γ

(
f ′(z)− α

z

)
− µβ

∣∣∣∣ = 0,

which further yields

f(z) = αz + µβ
z2

γ + 1
.

Geometrically, Proposition 1 means that the functional

zf ′′(z) + γ
(
f ′(z)− α

)
lies in the closed disk centred at q(z, λ) with radius r(z, λ). From this fact we
have the below corollary.

Corollary 3.3. Let γ : z(t), 0 ≤ t ≤ 1 be a C1−curve in E with z(0) = 0
and z(1) = z0. Then we have

V (z0, λ) ⊂ D (Q(λ, γ),W (λ, γ)) = {w ∈ C : |w −Q(λ, γ)| ≤W (λ, γ)},

where

Q(λ, γ) = α+
1

zγ0

∫ 1

0
zγ(t)q(z(t), λ)z′(t)dt,

W (λ, γ) =

∫ 1

0
r(z(t), λ)

z(t)

z0
|z′(t)|dt.

Proof. Since f is in Rλ,µ(α, β, γ),

1

zγ0

∫ 1

0

[
zγ(t)(f ′(z(t)− α)

]′
z′(t)dt = f ′(z(1))− α = f ′(z0)− α.

Now, from Proposition 2, it follows that∣∣f ′(z0)−Q(λ, γ)
∣∣ =

∣∣∣∣f ′(z0)− α− 1

zγ0

∫ 1

0
zγ(t)q(z(t), λ)z′(t)dt

∣∣∣∣dt
=

∣∣∣∣∫ 1

0

[
f ′′(z(t) + γ

(
f ′(z(t))− α

z(t)

)
− q(z(t), λ)

](
z(t)

z0

)γ
(z′(t))2dt

∣∣∣∣
≤
∫ 1

0
r(z(t), λ)

∣∣∣∣(z(t)z0

)γ
z′(t)

∣∣∣∣ |z′(t)|dt = W (λ, γ).

This implies the required result. �
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Proposition 3.4. Let θ ∈ (−π, π] and z0 ∈ E\{0}. Then H ′
eiθ,λ

(z0) ∈
∂V (z0, λ). Moreover, for some θ ∈ (−π, π] and f ∈ Rλ,µ(α, β, γ),

f ′(z0) = H ′eiθ,λ(z0) =⇒ f(z) = Heiθ,λ(z).

Proof. We have for z ∈ E

H ′′a,λ(z) + γ

(
H ′a,λ(z)− α

z

)
=

µ [δ(az, λ)z + β]

1 + βδ(az, λ)z

=
µ
[
(az + λ)z + β(1 + aλz)

]
1 +

(
aλ+ βλ

)
z + aβz2

Thus, from (9), it follows that

H ′′a,λ(z) + γ

(
H ′a,λ(z)− α

z

)
− b(z, λ) =

µ
(

1− |λ|2
)(

1− |β|2
)
az2[

1 +
(
aλ+ βλ

)
z + aβz2

] [
1 + βλz

]
H ′′a,λ(z) + γ

(
H ′a,λ(z)− α

z

)
+ c(z, λ) =

−µ
(

1− |λ|2
)(

1− |β|2
)
z[

1 +
(
aλ+ βλ

)
z + aβz2

] [
βz + λ

] ,
and hence we have

H ′′a,λ(z) + γ

(
H ′a,λ(z)− α

z

)
− q(z, λ) = H ′′a,λ(z) + γ

(
H ′a,λ(z)− α

z

)

−b(z, λ) + |z|2 |τ(z, λ)|2 c(z, λ)

1− |z|2 |τ(z, λ)|2

=
1

1− |z|2 |τ(z, λ)|2

 H ′′a,λ(z) + γ
(
H′a,λ(z)−α

z

)
− b(z, λ)

−|z|2 |τ(z, λ)|2
(
H ′′a,λ(z) + γ

(
H′a,λ(z)−α

z

)
+ c(z, λ)

)


=
µ
(

1− |λ|2
)(

1− |β|2
)
z2

1− |β|2 |z|4 −
(

1− |β|2
)
|λ|2|z|2 + 2 (1− |z|2)<

(
βλz

) J(a, z)

J(a, z)
,

where

J(a, z) = 1 +
(
aλ+ βλ

)
z + aβz2

Putting a = eiθ, we obtain

H ′′eiθ,λ(z) + γ

(
H ′

eiθ,λ
(z)− α
z

)
− q(z, λ) = r(z, λ)

∣∣J(eiθ, z)
∣∣2

|z|2
eiθz2

(J(eiθ, z))
2 .
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From this we note that

(11) H ′′eiθ,λ(z) + γ

(
H ′

eiθ,λ
(z)− α
z

)
− q(z, λ) = r(z, λ)

G′(z)

|G′(z)|
.

Since the function s is starlike in E, for any z0 ∈ E\{0}, the linear segment
joining 0 and s(z0) lies entirely in s(E). Let Γ0 be the curve defined by

Γ0 : z(t) = s−1 (ts(z0)) , t ∈ [0, 1].

This relation, together with (11), leads to

(12) G′(z(t))z′(t) = 3t2G(z0), t ∈ [0, 1].

This relation, together with (11), leads to

H ′eiθ,λ(z0)−Q(λ, γ0)

=

∫ 1

0

(
H ′′eiθ,λ(z) + γ

(
H ′

eiθ,λ
(z)− α
z

)
− q(z(t), λ)

)(
z(t)

z0

)γ
(z′(t))2dt

=

∫ 1

0
r(z(t), λ)

G′(z(t))z′(t)

|G′(z(t))z′(t)|

(
z(t)

z0

)γ
z′(t)|z′(t)|dt

=
z0

γ + 1

G(z0)

|G(z0)|

∫ 1

0
r(z(t), λ)|z′(t)|dt

=
G(z0)

|G(z0)|
W (λ, γ0).

That is

(13) H ′eiθ,λ(z0)−Q(λ, γ0) =
G(z0)

|G(z0)|
W (λ, γ0).

This implies that H ′
eiθ,λ

(z0) ∈ ∂D (Q(λ, γ0),W (λ, γ0)) . Hence, from Corollary

1, we have H ′
eiθ,λ

(z0) ∈ ∂V (λ, z0).

Now, we prove the uniqueness part. Suppose that f ′(z0) = H ′
eiθ,λ

(z0) for

some θ ∈ (−π, π] and f ∈ Rλ,µ(α, β, γ). Let

g(t) =
G(z0)

|G(z0)|

(
f ′′(z(t) + γ

(
f ′(z(t))− α

z(t)

)
− q(z(t), λ)

)(
z(t)

z0

)γ
(z′(t))2,

where γ0(t) = z(t), t ∈ [0, 1]. Then the function g is continuous and satisfies
|g(t)| ≤ r(z(t), λ)|z′(t)|. Further, from (13), we have∫ 1

0
<g(t)dt =

∫ 1

0
<
[
G(z0)

|G(z0)|

(
f ′′(z(t) + γ

(
f ′(z(t))− α

z(t)

)
−q(z(t), λ)

)(z(t)
z0

)γ
(z′(t))2

]
dt
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= <

[
G(z0)

|G(z0)|
(
f ′(z0)−Q(z(t), γ0)

)]

= <

[
G(z0)

|G(z0)|

(
H ′eiθ,λ(z0)−Q(z(t), γ0)

)]

=

∫ 1

0
<r(z(t), λ)|z′(t)|dt.

Thus g(t) = r(z(t), λ)|z′(t)|, for all t ∈ [0, 1]. From (11) and (12), this implies

that f ′′(z(t) + γ
(
f ′(z)−α

z

)
= H ′′

eiθ,λ
(z) + γ

(
H′

eiθ,λ
(z)−α
z

)
on γ0. The identity

theorem for analytic functions yields us f(z) = Heiθ,λ(z), z ∈ E. �

4. MAIN THEOREM

Theorem 4.1. Let |λ| < 1, z0 ∈ E\{0}. Then boundary ∂V (λ, z0) is the
Jordan curve given by

(−π, π] 3 θ 7→ H ′eiθ,λ(z0) = α+
µz0

β(γ + 1)

+
µ

βeiθzγ0
log

(
1− z0

ζ2

) ζγ2 (|β|2−1)(λeiθζ2+1)
β(ζ1−ζ2)

(
1− z0

ζ1

) ζγ1 (|β|2−12)(λeiθζ1+1)
β(ζ1−ζ2)

,

where ζ1, ζ2 are the zeros of the equation

1 +
(

eiθλ+ βλ
)
x+ βeiθx2 = 0.

If f ′(z0) = H ′
eiθ,λ

(z0) for some f in Rλ,µ(α, β, γ) and θ ∈ (−π, π], then

f(z0) = Feiθ,λ(z0).

Proof. We will show that the curve (−π, π] 3 θ → F ′
eiθ,λ

(z0) is simple. Let

us assume that H ′
eiθ1 ,λ

(z0) = H ′
eiθ2 ,λ

(z0) for some θ1,θ2 ∈ (−π, π] with θ1 6= θ2.

Then the use of Proposition 3 yield us that Heiθ1 ,λ(z0) = Heiθ2 ,λ(z0), which
further gives the following relation

τ

wH′eiθ1 ,λ(z)

z
, λ

 = τ

wH′eiθ2 ,λ(z)

z
, λ

 .

This implies that(
λ
2

+ β
)

eiθ1z + λ+ βλ(
λ+ βλ

)
eiθ1z + 1 + βλ2

=

(
λ
2

+ β
)

eiθ2z + λ+ βλ(
λ+ βλ

)
eiθ2z + 1 + βλ2

.
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After some simplifications, we obtain zeiθ1 = zeiθ2 , which leads us to a
contradiction. Therefore the curve is simple.

As V (λ, z0) is a compact convex subset of C and has non-empty interior, the
boundary ∂V (λ, z0) is a simple closed curve. From Proposition 3, the curve
∂V (λ, z0) contains the curve (−π, π] 3 θ 7→ H ′

eiθ,λ
(z0). Since a simple closed

curve cannot contain any simple closed curve other than itself, ∂V (λ, z0) is
given by (−π, π] 3 θ 7→ H ′

eiθ,λ
(z0).

Now, we calculate

H ′eiθ,λ(z0) = α+
µ

zγ0

∫ z0

0
ζγ
[
δ(eiθζ, λ)ζ + β

]
1 + βδ(eiθζ, λ)ζ

dζ

= α+
µ

zγ0

∫ z0

0
ζγ
[
eiθζ2 +

[
λ+ βλeiθ

]
ζ + β

]
1 +

(
eiθλ+ βλ

)
ζ + βeiθζ2

dζ

= α+
µz0

β(γ + 1)
+

µ

βeiθzγ0
log

(
1− z0

ζ2

) ζγ2 (|β|2−1)(λeiθζ2+1)
β(ζ1−ζ2)

(
1− z0

ζ1

) ζγ1 (|β|2−12)(λeiθζ1+1)
β(ζ1−ζ2)

.

�

For γ = 0, we obtain the variability regions shown by Ponnusamy et al. [2].

5. GEOMETRIC VIEW OF THEOREM 1

In the below figures, the geometric view of Theorem 1 is given by assigning
different values to the involved parameters. All the values except those of γ
are taken from the article [2], for comparison purposes. It can also be seen
that, when γ = 0, we obtain the geometric view of [2, Theorem 2.4].
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