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VIETORIS TOPOLOGY ON HYPERSPACES
ASSOCIATED TO A NONCOMMUTATIVE COMPACT SPACE

MAYSAM MAYSAMI SADR

Abstract. We study some topological spaces that can be considered as hyper-
spaces associated to noncommutative spaces. More precisely, for a NC compact
space associated to a unital C∗-algebra, we consider the set of closed projections
of the second dual of the C∗-algebra as the hyperspace of closed subsets of the
NC space. We endow this hyperspace with an analog of Vietoris topology. In
the case that the NC space has a quantum metric space structure in the sense of
Rieffel we study the analogs of Hausdorff and infimum distances on the hyper-
space. We also formulate some problems about distances between sub-circles of
a quantum torus.
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1. INTRODUCTION

This note is a contribution to Noncommutative Topology. We introduce
and study some topological spaces that can be considered as the hyperspaces
associated to noncommutative spaces. More precisely, let qA denote the (imag-
inary) NC compact Hausdorff space associated to a unital C∗-algebra A. We
consider the set of nonzero closed projections of the second dual A∗∗ as the
hyperspace SclqA of nonempty closed subsets of qA. In the case that A is
commutative these closed projections are canonically identified with closed
subsets of the Gelfand space of A. (To the best of our knowledge the study
of closed projections as closed subsets of NC spaces goes back to Akemann
[1, 2, 3]. Closed projections have been considered also in some recent papers,
see [10, 11] and references therein.) There is a canonical bijection between
closed projections in A∗∗ and weak*-closed faces of the state space SA of A
(see Section 4). Thus we can identify the hyperspace SclcSA of such subsets
of SA with SclqA. We have a canonical Vietoris topology on SclcSA induced
from the weak*-topology of SA. In the case that A is commutative it is proved
in Section 2 that this Vietoris topology coincides with the vietoris topology
on the hyperspace of closed subsets of the Gelfand space of A. Suppose that
qA has a quantum metric space structure in the sense of Rieffel [23, 24, 25].
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2 Vietoris topologies associated to noncommutative spaces 73

This induces Hausdorff and infimum distances on SclqA. Again if A is com-
mutative it is proved that these distances coincide with the usual Hausdorff
and infimum distances (see the last paragraph of Section 4).

The notion of quantum (or NC) metric space have been considered by many
authors, see [25, 15, 14, 12, 16, 17, 29, 27] and references therein. The main
subjects studied in most of the mentioned papers are variations of the quantum
Gromov-Hausdorff distance and quantum metric spaces defined by Rieffel [25].
The notions introduced by Rieffel [25] are based on order unit spaces. Since
our attention here is to NC Topology we are more interested in order unit
spaces arising from C∗-algebras.

The plan of the paper is as follows. In Section 2 we consider some proper-
ties of hyperspaces associated to ordinary topological spaces. Also we consider
Hausdorff and infimum distances. In Section 3 we review the notion of quan-
tum metric space. In Section 4 we introduce our main object SclqA, the
hyperspace of closed subsets of a compact NC space. In Section 5 we study
the Vietoris topology on SclqA. In Section 6 using the infimum distance we
define an analog of Lipschitz seminorm for quantum metric spaces. At last in
Section 7 we consider some questions and problems on finite NC spaces and
quantum tori.

2. HYPERSPACE OF CLOSED SUBSETS OF AN ORDINARY TOPOLOGICAL SPACE

Let X be a compact Hausdorff space. We denote by SclX the set of all
nonempty closed subsets of X. For every open U ⊆ X, let U− := {K ∈ SclX :
K∩U 6= ∅} and U+ := {K ∈ SclX : K ⊆ U}. The smallest topology on SclX
containing all U±’s is called Vietoris topology. The space SclX together with
the Vietoris topology is called the hyperspace of closed sets in X. It is easy to
see ([13, Exercise 3.12]) that the hyperspace is compact and Hausdorff. Also
the subspace topology of X, where X is considered as a subspace of SclX
via the canonical embedding x 7→ {x}, coincides with the original topology of
X. Let CX denote the C∗-algebra of complex valued continuous functions on
X. We always endow the state space SCX of CX with weak* topology. We
also identify SCX with the space of Borel regular probability measures on X.
Then the map δ : x 7→ δx is a homeomorphism from X onto the space of pure
states of CX where δx denote the point mass measure concentrated at x. For
a nonempty closed subset K of X let FK denote the set of those measures µ
in SCX with Spt(µ) ⊆ K. Then FK is a weak*-closed face of SCX. Also note
that FK is the weak* closed convex hull of {δx : x ∈ K}.

Proposition 2.1. The map F : K 7→ FK is a homeomorphism from the
hyperspace SclX onto a closed subspace of the hyperspace SclSCX.

Proof. Since both of the hyperspaces are compact Hausdorff spaces and F is
injective it is enough to show that F is continuous. Let U, V be arbitrary open
subsets of SCX. We must show that F−1(U+) and F−1(V −) are open in SclX.
Suppose that K ∈ F−1(U+). Thus FK ⊆ U . Since FK is convex it follows
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from [26, Theorem 1.10] that there is a convex open subset U0 of SCX with
FK ⊆ U0 ⊆ U0 ⊆ U . We have K ∈ (δ−1(U0))+ ⊆ F−1(U+). Thus F−1(U+) is
open. Now suppose that K ∈ F−1(V −). Thus there are µ ∈ FK \V c and open
subset W of SCX such that µ ∈ W and W ∩ V C = ∅. It follows that there
exist x1, . . . , xn ∈ Sptµ ⊆ K, t1, . . . , tn > 0 with

∑n
i=1 ti = 1, and an open

subset W0 of SCX, such that
∑n

i=1 tiδxi ∈ W0 ⊆ W . Thus there are open
subsets O1, . . . , On of X with xi ∈ Oi, and with the property that if yi ∈ Oi
then

∑n
i=1 tiδyi ∈ W0. We have K ∈ ∩ni=1O

−
i ⊆ F−1(V −). Thus F−1(V −) is

open. This completes the proof. �

Now suppose that X is metrizable and let d be a compatible metric on X.
The Hausdorff distance Hd (associated to d) on SclX is defined by

Hd(K,K ′) = inf{r > 0 : K ⊆ Ball(K ′, r),K ′ ⊆ Ball(K, r)} (K,K ′ ∈ SclX),

where Ball(K, r) = {y ∈ X : d(x, y) < r,∃x ∈ K}. It is well known that Hd is
a metric and the topology induced by Hd coincides with the Vietoris topology
([13, Theorem 3.1]). Also the mapping x 7→ {x} is an isometric embedding of
X into SclX. The Lipschitz seminorm Ld for (self-adjoint) elements of CX is
defined by

Ld(f) := sup{|f(x)− f(y)|
d(x, y)

: x, y ∈ X,x 6= y} (f ∈ CXsa).(1)

This seminorm satisfies the Leibniz inequality:

Ld(fg) ≤ Ld(f)‖g‖∞ + ‖f‖∞Ld(g).

The Lipschitz algebra of (X, d) is defined by LipdX := {f ∈ CXsa : Ld(f) <
∞}. This is a real uniformly-dense subalgebra of CXsa. (For an extensive
account on Lipschitz algebras see [28].) The Monge-Kantorovich distance is
defined by

ρd(µ, ν) := sup{|µ(f)− ν(f)| : Ld(f) ≤ 1} (µ, ν ∈ SCX).(2)

It is well known that the topology of ρd coincides with weak* topology and
also the restriction of ρd to the space of pure states of CX is equal to d where
the pure state space is canonically identified with X. The metric version of
Proposition 2.1 is as follows.

Proposition 2.2. K 7→ FK is an isometric embedding from (SclX,Hd)
into (SclSCX,Hρd).

Proof. Let h denote the Hausdorff distance of FK and FK′ . Suppose that
Hd(K,K ′) < r. Then for every x ∈ K there is y ∈ K ′ such that d(x, y) < r.
Let t1, . . . , tn ≥ 0 with

∑n
i=1 ti = 1 and let x1, . . . , xn ∈ K. Then it is

easily verified that ρd(
∑n

i=1 tiδxi ,
∑n

i=1 tiδyi) < r where yi ∈ K ′ is such that
d(xi, yi) < r. This shows that FK ⊆ Ball(FK′ , r+ε) for every ε > 0. Similarly,
we have FK′ ⊆ Ball(FK , r + ε). Thus h ≤ r, and hence h ≤ Hd(K,K ′).
Now suppose that h < s. Let x ∈ K. Then there are z1, . . . , zn ∈ K ′ and
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t1, . . . , tn ≥ 0 with
∑n

i=1 ti = 1 and ρd(δx,
∑n

i=1 tiδzi) < s. Let f be the
function on X defined by y 7→ d(x, y). Then Ld(f) = 1 (if X at least has two
points). We have

n∑
i=1

tid(x, zi) = |δx(f)− (
n∑
i=1

tiδzi)(f)| < s.

Thus d(x, zi0) < s for some i0. This shows that K ⊆ Ball(K ′, s). Similarly we
have K ′ ⊆ Ball(K, s). Thus Hd(K,K ′) ≤ s, and hence Hd(K,K ′) ≤ h. The
proof is complete. �

For two subsets K,K ′ of X their infimum distance is defined by

Id(K,K ′) := inf{d(x, y) : x ∈ K, y ∈ K ′}.

In the case that K or K ′ is empty we let Id(K,K ′) = ∞. Note also that in
general Id is not a metric on SclX.

Proposition 2.3. Let K,K ′ ∈ SclX. Then Id(K,K ′) = Iρd(FK ,FK′).

Proof. Let I denote the infimum distance of FK and FK′ . For x ∈ K, y ∈ K ′
we have δx ∈ FK , δy ∈ FK′ and d(x, y) = ρd(δx, δy). Thus I ≤ Id(K,K ′). Let
I < r. There are µ :=

∑n
i=1 tiδxi ∈ FK and ν :=

∑m
j=1 sjδyj ∈ FK′ such that

ρd(µ, ν) < r. Let the function f on X be defined by x 7→ Id({x}, {y1, . . . , yn}).
Then Ld(f) = 1, and we have

n∑
i=1

tif(xi) = |µ(f)− ν(f)| < r.

Thus f(xi0) < r for some i0, and hence there is j0 such that d(xi0 , yj0) < r.
This shows that Id(K,K ′) < r. Since r > I is arbitrary we conclude that
Id(K,K ′) ≤ I. �

It is well known that

Ld(f) = sup{|µ(f)− ν(f)|
ρd(µ, ν)

: µ, ν ∈ SCX,µ 6= ν} (f ∈ CXsa).(3)

Also the following formula follows from (1) and Proposition 2.3.

Ld(f) = sup
λ<λ′∈R

λ′ − λ
Id(f−1λ′, f−1λ)

= sup
λ<λ′∈R

λ′ − λ
Iρd(Ff−1λ′ ,Ff−1λ)

(f ∈ CXsa).

(4)

3. COMPACT QUANTUM METRIC SPACES

For the theory of order unit spaces we refer the reader to [5]. We denote the
state space of an order unit space B by SB. This space is always considered
with the weak* topology. Let A be a unital C∗-algebra with the self-adjoint
part Asa and state space SA. Suppose that B is any real linear subspace
of Asa that contains 1A. Then B together with the usual partial ordering
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between self-adjoint elements and 1A as order unit becomes an order unit
space. Moreover if B is dense in Asa (with the norm topology) then the
mapping µ 7→ µ|B defines an affine homeomorphism from SA with the weak*
topology onto SB.

It is clear that the state space of an order unit space with weak* topology is
a compact convex subset of a locally convex Hausdorff space. The converse of
this fact is also well known (see the details after Corollary II.2.3 of [5]). Indeed,
let E be a compact convex subset of a locally convex Hausdorff space; if AE
denotes the order unit space of all continuous affine real valued functions on
E with the constant function 1E as order unit, then E and SAE are affinely
homeomorphic via the map x 7→ (f 7→ f(x)) (x ∈ E). Thus there is no
difference that we formulate our results in terms of order unit spaces or else
using compact convex sets.

Let B be an order unit space and L be a seminorm on B. By analogy with
Formula (2) we define a pseudo-metric on SB as follows.

ρL(µ, ν) := sup{|µ(b)− ν(b)| : L(b) ≤ 1} (µ, ν ∈ SB).(5)

Note that in general ρL does not separate the points and may take value +∞.

Definition 3.1 ([23, 24, 25]). Let B be an order unit space with order unit
e and let L be a seminorm on B satisfying the following two conditions:

i) L(b) = 0 if and only if b = λe for some λ ∈ R.
ii) The topology induced by ρL, given by Formula (5), coincides with the

weak*-topology on SB.

Then the pair (B,L) is called a compact quantum metric space. Also if a
unital C∗-algebra A is given such that B as an order unit space is a subspace
of Asa containing 1A, and B is dense in Asa w.r.t. the C∗-norm, then (A,B,L)
is called a C∗-algebraic compact quantum metric space. In the case that (B,L)
is understood we say that qA is a C∗-algebraic quantum metric space.

Let (X, d) be an ordinary compact metric space. Then (CX,LipdX,Ld)
is a C∗-algebraic compact quantum metric space. Also by (2) and (5) we
have ρLd = ρd. Thus the structure of (X, d) is completely recovered by
(CX,LipdX,Ld). We remark that there are examples of C∗-algebraic com-
pact quantum metric spaces (A,B,L) with A = CX for a compact space X
such that L does not arise from any ordinary metric d on X i.e. L 6= Ld,
see [23, Example 7.1 and Theorem 8.1]. For other examples of nonclassical
quantum metric spaces we refer the reader to the list of papers in Introduction.

4. HYPERSPACE OF CLOSED SETS IN AN NC SPACE

Let A be a unital C∗-algebra with the state space SA. Let A′′ denote
the second commutant of A in the universal representation of A. By the
Sherman Theorem the second dual A∗∗ is canonically isomorphic to the von
Neumann algebra A′′ where A∗∗ is considered as a C∗-algebra with the Arens
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product. A projection p ∈ A∗∗ is called closed [1] if there is a decreasing
net of positive elements of A that converges to p in the weak* topology. A
projection q is called open if 1− q is closed. For every projection p ∈ A∗∗ we
let Fp := {µ ∈ SA : 〈µ, p〉 = 1}. In the case that A = CX for a compact
Hausdorff space X, there is a bijection K 7→ pK between closed subsets K of
X and closed projections of A∗∗ such that FK = FpK with the notations of
Section 2.

Proposition 4.1. The assignment p 7→ Fp is a bijection between closed
projections of A∗∗ and weak*-closed faces of SA.

Proof. It follows by [21, Theorems 3.6.11 and 3.10.7] or [4, Theorem 2.5]. �

Let E be a compact convex subset of a locally convex Hausdorff space. We
denote by SclcE the set of nonempty closed convex subsets of E, and by SclfE
the set of all closed faces of E. Thus we have the chain SclfE ⊂ SclcE ⊂ SclE
of Hyperspaces. Throughout the paper these hyperspaces are endowed with
Vietoris topology.

Let B be an order unit space. In [25] (imaginary) closed subsets of the
quantum space qB are identified with elements of SclcSB. As we saw above
it is more natural to consider the closed subsets as elements of SclfSB. So by
analogy with the notations of Section 2 we would use the symbol SclqB instead
of SclfSB. Analogously, for a unital C∗-algebra A we let SclqA := SclfSA.
In the case that A = CX for a compact Hausdorff space X it follows from
Proposition 2.1 that SclqA is homeomorphic to SclX. Suppose that X has
a compatible metric d and consider the C∗-algebraic quantum metric space
(CX,LipdX,Ld). Let ρ := ρLd = ρd. It follows from Proposition 2.2 that the
metric spaces (SclqA,Hρ) and (SclX,Hd) are isometrically isomorphic. Also
it follows from Proposition 2.3 that the distance functions Iρ on SclqA and Id
on SclX coincide when the two spaces are considered canonically identical.

5. VIETORIS TOPOLOGY

Throughout this section E denotes a compact convex subset of a locally
convex Hausdorff space. The following result stated as Theorem 5.2 is very
well known, at least in the case that E is metrizable; but we did not find in
literatures any proof for the general case; however its proof is easy and based
on the following lemma. (Let Λ,Λ′ be directed sets and (xλ)λ∈Λ be a net in
X. Let f : Λ′ → Λ be an order preserving function such that ∀λ ∈ Λ,∃λ′ ∈
Λ′ : f(λ′) ≥ λ. Then the net (xf(λ′))λ′∈Λ′ is called a subnet of (xλ)λ∈Λ.)

Lemma 5.1. Let X be a compact Hausdorff space and (Kλ)λ a net in SclX
converging to K.

(i) If (xλ)λ is a net in X such that xλ → x and xλ ∈ Kλ, then x ∈ K.
(ii) If x ∈ K, then there are a subnet (Kλ′)λ′ of (Kλ)λ and a net (xλ′)λ′

such that xλ′ ∈ Kλ′ and xλ′ → x.
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Proof. Straightforward. �

Theorem 5.2. The hyperspace SclcE is a compact Hausdorff space.

Proof. It is enough to show that SclcE is a closed subset of SclE. Suppose
that (Kλ)λ is a net in SclcE converging to K ∈ SclE. We must show that K
is convex. Suppose that x, y ∈ K and 0 ≤ t ≤ 1. By Lemma 5.1(ii) there exist
a subnet (Kλ′)λ′ of (Kλ)λ and nets (xλ′)λ′ , (yλ′)λ′ such that xλ′ , yλ′ ∈ Kλ′ and
xλ′ → x, yλ′ → y. Thus (txλ′ + (1 − t)yλ′)λ′ is a net in Kλ′ converging to
tx+ (1− t)y. Now it follows from Lemma 5.1(i) that tx+ (1− t)y ∈ K. The
proof is complete. �

For metrizable E we have the following strong result of Nadler-Quinn-
Stavrakos:

Theorem 5.3. Suppose that E is metrizable and the real dimension of the
smallest real hyperplane containing E is ≥ 2. Then SclcE is homeomorphic
to Hilbert cube.

Proof. This is a restatement of [18, Theorem 2.2]. (Note that in the proof
of [18, Theorem 2.2] it is enough that K be metrizable.) �

For some results similar to Theorem 5.3 in the case that E is not metrizable
see [9]. A direct consequence of Theorem 5.3 is the following.

Corollary 5.4. Let (B,L) be a compact quantum metric space such that
the (real vector space) dimension of B is ≥ 2. Then SclcSB is homeomorphic
to Hilbert cube. In particular, if qA is a C∗-algebraic quantum metric space
such that A 6= 0,C then SclcSA is homeomorphic to Hilbert cube.

Let ∂eE denote the subspace of extreme points of E.

Theorem 5.5. If the hyperspace SclfE is compact then ∂eE is compact.

Proof. Suppose that SclfE is compact. We must show that ∂eE is a closed
subset of E. Let (eλ)λ be a net in ∂eE converging to x ∈ E. Since eλ is an
extreme point {eλ} is a closed face of E. Thus there is a subnet (eλ′)λ′ such
that {eλ′} → K in SclfE. Now it follows from Lemma 5.1 that K = {x} which
means that x ∈ ∂eE. Thus ∂eE is a closed subset of E. �

In general the converse of Theorem 5.5 is not satisfied even if E is finite
dimensional, see [22]. We say that E is stable [20] if for every 0 ≤ t ≤ 1 the
map (x, y) 7→ tx + (1 − t)y from E × E into E is open. Among examples
of stable compact convex sets are Bauer simplices [19, Theorem 1]. For a
complete account on Bauer simplices see [5]. It is well known that a unital
C∗-algebra is commutative if and only if its state space with weak*-topology is
a Bauer simplex [6, Remark in page 296],[8]. To our knowledge the following
result has not been mentioned before in the literatures.

Theorem 5.6. If E is stable then SclfE is compact.
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Proof. Suppose that E is stable. We must show that SclfE is a closed
subset of SclcE. Let (Kλ)λ be a net in SclfE converging to K ∈ SclcE. We
show that K is a face of E. Suppose that for some 0 ≤ t ≤ 1 and x, y ∈ E
we have z := tx + (1 − t)y ∈ K. By Lemma 5.1(ii) there exist a subnet
(Kλ′)λ′ of (Kλ)λ and a net (zλ′)λ′ such that zλ′ ∈ Kλ′ and zλ′ → z. Since
the map φ : (x′, y′) 7→ tx′ + (1 − t)y′ is open and continuous, for every open
U in E containing z there are opens V,W respectively containing x, y such
that φ(V ×W ) is an open in U . This property enables us to find a subnet
(zλ′′)λ′′ of (zλ′)λ′ and nets (xλ′′)λ′′ , (yλ′′)λ′′ such that xλ′′ → x, yλ′′ → y and
zλ′′ = txλ′′ + (1 − t)yλ′′ . Since Kλ′′ is a face we have xλ′′ , yλ′′ ∈ Kλ′′ . Now it
follows from Lemma 5.1(i) that x, y ∈ K. The proof is complete. �

A direct consequence of Theorems 5.5 and 5.6 is the following result.

Corollary 5.7. Let A be a unital C∗-algebra. If SclqA is compact then
the space of pure states of A is weak*-compact. If SA is stable then SclqA is
compact.

6. INFIMUM DISTANCE AND AN ANALOG OF LIPSCHITZ SEMINORM

Let A be a unital C∗-algebra and let ρ be a compatible metric on SA. Let
L1 : Asa → [0,∞] be a seminorm given by the analog of Formula (3):

L1(a) = sup

{
|µ(a)− ν(a)|

ρ(µ, ν)
: µ, ν ∈ SA,µ 6= ν

}
.

Let H denote the Hilbert space of the universal representation of A, and
BH be the algebra of bounded operators on H. Then by definition we have
A ⊂ A′′ ⊆ BH. For a ∈ Asa let Ea denotes the spectral measure of a defined
on the Borel subsets of R where a is considered as an element of BH. It
is well known that for every closed subset S of R the projection Ea(S) is a
closed projection in A′′. (The converse is also true [2, Theorem A1],[3], that
is if a ∈ A′′sa and Ea(S) is a closed projection for every closed subset S ⊆ R
then a ∈ A.) For a ∈ Asa and λ ∈ R let Fa,λ denote the weak*-closed face
of SA corresponding to the closed projection Ea({λ}) as in Proposition 4.1.
(In the case that Ea({λ}) = 0 we let Fa,λ = ∅.) In Section 2 we restated the
definition of Lipschitz seminorm for an ordinary metric space as Formula (4).
Now analogously we define a function L2 : Asa → [0,∞] by

L2(a) = sup
λ<λ′∈R

λ′ − λ
Iρ(Fa,λ′ ,Fa,λ)

.

We have L2 ≤ L1 but in general L2 is not a seminorm.

Question 6.1. Under which conditions is L2 a seminorm (with Leibniz
property) on any commutative subalgebra of A?

Suppose ρ is induced by a C∗-algebraic quantum metric structure (A,B,L)
i.e. ρ = ρL. Then we have L2(a) ≤ L1(a) ≤ L(a) for a ∈ B. As we saw
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in Section 2 in the classical case (A,B,L) = (CX,LipdX,Ld) we have L2 =
L1 = L. By Theorem 4.1 of [23] we know that if L is lower semicontinuous
(which means {a ∈ B : L(a) ≤ 1} is closed in B w.r.t. the C∗-norm) then
L1(a) = L(a) for every a ∈ B.

7. SOME QUESTIONS AND PROBLEMS

We saw that for a unital commutative C∗-algebra A, SclqA is compact.

Problem 7.1. Characterize those unital C∗-algebras A such that SclqA is
compact.

Question 7.2. For which C∗-algebras A, is SclqA (path or locally path)
connected? (See [7] in the classical case.)

Let Mn denote the C∗-algebra of n × n matrixes. In NC Geometry qMn

is usually considered as the finite NC space with n points. Since Mn =M∗∗
any projection in Mn is closed and open ([1, Proposition II.18]), and hence
SclqMn as a set is canonically identified with ∪ni=1Gr(i, n) where Gr(i, n)
denote the Grassmannian manifold of i-dimensional subspaces of Cn.

Question 7.3. Is the subspace of SclqMn containing projections of rank i
homeomorphic to Gr(i, n)?

Let X be a compact Hausdorff space and C be a C∗-subalgebra of CX con-
taining 1X . Let Z denote the pure state space of C with weak*-topology. We
have a canonical continuous surjective map Γ : X → Z defined by Γ(x)(c) =
c(x) (c ∈ C). It is easily checked that the topology of Z is the quotient topol-
ogy under Γ. Also Γ induces the family {Kz}z∈Z of nonempty disjoint closed
subsets of X parameterized by Z where Kz := Γ−1(z). A generalization of
this notion is as follows.

Definition 7.4. Let A be a unital C∗-algebra and C be a C∗-subalgebra of
A containing the unit. Let Z denote the pure state space of C. For every z ∈ Z
let Fz := {µ ∈ SA : µ(c) = z(c), c ∈ C}. Then Fz is a weak*-closed face of
SA. We say that {Fz}z∈Z is the family of closed subsets of qA parameterized
by qC.

Let 0 ≤ θ < 1. The quantum torus T2
θ := qCT2

θ is the NC space associated to
the universal C∗-algebra CT2

θ generated by two unitary elements u, v satisfying

uv = e2πiθvu. Let T := {z ∈ C : |z| = 1} denote the unit circle. We identify
the C∗-subalgebra generated by v with CT via the *-isomorphism given by the
assignment v 7→ idT where idT ∈ CT is the identity function. For every z ∈ T
let Tθ,z := {µ ∈ SCT2

θ : µ(f) = f(z), f ∈ CT}. Then we call {Tθ,z}z∈T the
family of v-sub-circles in T2

θ. The name is justified as follows. It is clear that
CT2

0 can be identified with CT2 via the *-isomorphism given by the assignments
u 7→ id1, v 7→ id2 where id1, id2 ∈ CT2 are respectively the projection functions
on the first and second components of T2 = T × T. Then T0,z is identified
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with the set of Borel probability measures µ on T2 such that the support of µ
is contained in the sub-circle {(w, z) ∈ T2 : w ∈ T}.

It is not hard to see that the map z 7→ {(w, z) ∈ T2 : w ∈ T} from T
into SclT2 is continuous with Vietoris topology. So it is natural to ask the
following questions.

Question 7.5. Is the map z 7→ Tθ,z (θ 6= 0) from T into SclT2
θ continuous?

Is the family of v-sub-circles in T2
θ compact or (path) connected?

If we have a (Riemannian) metric on T2 we can ask about the Hausdorff and
infimum distances of sub-circles. Analogously we have the following problem.

Problem 7.6. Consider T2
θ as a C∗-algebraic quantum metric space de-

scribed in [24, 25] and find the Hausdorff and infimum distances between two
arbitrary sub-circles Tθ,z and Tθ,z′.
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