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ON THE CONCEPT OF ϕ-ENTROPY

MEHDI RAHIMI

Abstract. In this paper, the concept of ϕ-entropy is defined and some of the
its properties are proved. It is a type of generalized entropy with generalized
properties. It is invariant under topological conjugacy and satisfies a generalized
version of Jaccob’s Theorem. Finally, we will extract the Kolmogorov entropy
as a special case, by setting ϕ to be the identity function.
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1. INTRODUCTION

The Rudolf Clausius’s study of the Carnot cycle [13] led to the concept of
entropy. The thermodynamic definition was developed in 1850s and describes
how to measure the entropy of an isolated system in thermodynamic equi-
librium. We mention that an extensive thermodynamic variable is useful in
characterizing the Carnot cycle.

A statistical equivalent definition of entropy was developed by Ludwig
Boltzmann in 1870s. It is interpreted in statistical mechanics as the mea-
sure of uncertainty or the degree to which the probability of the system is
spread out over different possible microstates. Mathematically, the entropy is
the expected value of the logarithm of the probability that a microstate will
be occupied, i.e. S = −kB

∑
i pi log pi, where kB is the Boltzmann constant

and the summation is over all possible microstates of the system and pi is the
probability that the system is in the i-th microstate.

A similar formulation was considered by Shannon in order to introduce the
concept of entropy in information theory [23]. Using this idea, Kolmogorov
[12] introduced the concept of entropy in ergodic theory. The definition of
entropy was improved by Sinai in 1959 [27]. The definition was given as

hµ(T ) = sup
ξ

lim
n→∞

1

n
H(

n−1∨
i=0

T−iξ),
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where the supremum is taken over all finite partitions ξ of X, and
∨n−1
i=0 T

−iξ
is the partition generated by events of n successive observations and

H(
n−1∨
i=0

T−iξ) = −
∑

A∈
∨n−1

i=0 T
−iξ

µ(A) logµ(A).

Adler, Konheim, and McAndrew [1] introduced the topological entropy as
an invariant of the topological conjugacy and also as an analogue of the mea-
sure theoretic entropy. The definition of the topological entropy for continuous
maps on compact spaces, using open covers of the phase space, is given by

htop(T ) = sup
α

lim
n→∞

1

n
logN(

n−1∨
i=0

T−iα),

where the supremum is taken over all open covers α of X and N(α) is the
number of sets in a finite subcover of α with the smallest cardinality.

Later, Dinaburg [7] and Bowen [4] gave a new, but equivalent, definition of
the topological entropy that led to the variational principle which connected
the topological entropy and the measure theoretic entropy as follows:

htop(T ) = sup
µ∈M(X,T )

hµ(T ).

Since then, the concepts of entropy and information have been studied exten-
sively from two main points of view, namely: generalization and localization.

The generalized forms of Shanon entropy have been extensively discussed,
see [2, 3, 8, 9, 10, 11, 19, 20, 22, 24, 25, 26, 28]. They usually have similar
properties to the Shannon entropy and they are given as a special case of the
last. In [17], the topological entropy of a continuous dynamical system is gen-
eralized, in the sense that, it is considered as a linear operator, called entropy
operator, with the norm equal to the topological entropy. A local study of the
entropy operator leads to the functional entropy [18], which generalizes the
Kolmogorov entropy.

On the other hand, the localization of the entropy of a dynamical system has
been studied by many authors. Shannon [23], McMillan [14] and Breiman [5]
considered local approaches to the entropy, based on the Theorem of Shannon-
McMillan-Breiman. Another interesting topological version of the theorem of
Shannon-McMillan-Breiman was given by Brin and Katok [6]. A delicate local
approach of entropy for smooth dynamics was considered by Ruelle [21] and
Pesin [15]. Later on, different versions of the entropy of a dynamical system
were defined.

The generalization of the concept of entropy, via a local approach, is consid-
ered in this paper. We define an entropy type quantity via a convex function
ϕ : [0,∞)→ [0,∞). It generalizes the Kolmogorov entropy, in the sense that,
it has similar properties to the Kolmogorov entropy and covers the Kolmogorov
entropy as a special case. It is also a local entity.
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2. BACKGROUNDS

In this section, we state some known results that will be used in the article.
Let T : X → X be a continuous map on the compact metric space X. M(X)
denotes the set of all probability measures on the Borel sets of X, equipped
with the weak∗ topology. The set of all probability measures on X preserving
T is denoted by M(X,T ). We also write E(X,T ) for the set of all ergodic
measures of T . In the following, we give a list of known theorems that will be
used in our discussion.

We start with the following theorem that takes the supremum in the defi-
nition of the Kolmogorov entropy over a countable family of partitions.

Theorem 2.1 ([28, Theorem 8.3]). Let T : X → X be a continuous map
on the compact metric space X. Let {ξn}n∈N be a sequence of finite Borel
partitions of X such that diam(ξn)→ 0, as n→∞. For every µ ∈ M(X,T ),
we have hµ(T ) = limn→∞ hµ(T, ξn).

In the following theorem, we summarize some facts that we need later on.
One may find them in [29].

Theorem 2.2. Suppose that T : X → X is a continuous map on a compact
metric space X. Then

(i) M(X,T ) is a compact subset of M(X);
(ii) M(X,T ) is a convex set;
(iii) E(X,T ) is the set of all extreme points of M(X,T ).

Theorem 2.3 (Choquet). Suppose that Y is a compact convex metrizable
subset of a locally convex space E and x0 ∈ Y . Then there exists a probability
measure τ on Y which represents x0 and is supported by the extreme points of
Y , i.e. Φ(x0) =

∫
Y Φdτ , for every continuous linear functional Φ on E, and

τ(ext(Y )) = 1.

See Phelps [16] for a proof of Choquet’s Theorem. Combining Theorems
2.2 and 2.3, we have the following corollary.

Corollary 2.4. Suppose that T : X → X is a continuous map on the
compact metric space X. Then, for each µ ∈ M(X,T ), there is a unique
measure τ on the Borel subsets of the compact metrizable space M(X,T ) such
that τ(E(X,T )) = 1 and∫

X
f(x)dµ(x) =

∫
E(X,T )

(∫
X
f(x)dm(x)

)
dτ(m),

for every bounded measurable function f : X → R.

If µ and τ are as in Corollary 2.4, then we write µ =
∫
E(X,T )mdτ(m) and

we call this the ergodic decomposition of µ.
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Theorem 2.5 (Jacob). Let T : X → X be a continuous map on a compact
metrizable space. If µ ∈ M(X,T ) and µ =

∫
E(X,T )mdτ(m) is the ergodic

decomposition of µ, then we have:

(i) If ξ is a finite Borel partition of X, then

hµ(T, ξ) =

∫
E(X,T )

hm(T, ξ)dτ(m).

(ii) hµ(T ) =
∫
E(X,T ) hm(T )dτ(m) (both sides could be ∞).

See [29, Theorem 8.4] for a proof of Jacob’s Theorem.

3. ϕ−ϕ−ϕ−ENTROPY

In this section, we introduce the concept of ϕ−entropy and will state some
of its properties. We will finally extract the entropy of a system as a special
case. In the following, ϕ : [0,∞)→ [0,∞) is an injective convex function.

Definition 3.1. Suppose that T : X → X is a continuous map on a
compact metric space X, x ∈ X and A is a Borel subset of X. Define

(1) ωT (x,A) := lim sup
n→∞

1

n
card({k ∈ {0, 1, ..., n− 1} : T k(x) ∈ A}).

Now, let x ∈ X and ξ = {A1, A2, ..., An} be a finite Borel partition of X.
Define

(2) ΩT (x, ξ) := −
n∑
j=1

ωT (x,Aj) logωT (x,Aj).

(We assume that log 0 = −∞ and 0 × ∞ = 0.) Finally, let U = {ξn}n∈N
be a sequence of finite Borel partitions of X such that diam(ξn) → 0 as
n → ∞. We may assume that ξn < ξn+1, since otherwise we may replace ξn
by ηn :=

∨n
k=0 ξk.

The map JT (·;U) : X → [0,∞] is defined as follows:

(3) JT (x;U) = lim
n→∞

lim sup
m→∞

1

m
ΩT (x,

m−1∨
i=0

T−iξn).

Note that the sequence an(x) = lim supm→∞
1
mΩT (x,

∨m−1
i=0 T−iξn) is increas-

ing with respect to n and so limn→∞ an(x) exists as a nonnegative extended
real number. We also write JT for JT (·;U), when there is no confusion.

Definition 3.2. Suppose that T : X → X is a continuous map on a
compact metric space X, µ ∈ M(X,T ) and U = {ξn}n∈N is a sequence of
finite Borel partitions of X such that diam(ξn) → 0. Let ϕ : [0,∞) → [0,∞)
be an injective convex function. The ϕ−entropy of T is defined as follows:

Γϕ(T ;µ;U) := ϕ−1
(∫

X
ϕ ◦ JT (x;U)dµ(x)

)
.
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The following theorem shows that the definition of the ϕ−entropy map is
independent of the selection of the sequence U = {ξn}n∈N.

Theorem 3.3. Suppose that T : X → X is a continuous map on a compact
metric space X. Let U = {ξn}n∈N and V = {ηn}n∈N be two sequences of
finite Borel partitions of X such that diam(ξn)→ 0 and diam(ηn)→ 0 and let
µ ∈M(X,T ). Then

Γϕ(T ;µ;U) = Γϕ(T ;µ;V).

Proof. First let µ ∈ E(X,T ). For any Borel set A ⊂ X, applying Birkhoff
ergodic Theorem we have ωT (x,A) = µ(A) for almost all x ∈ X. Hence, if ξ
is a finite Borel partition of X, then ΩT (x, ξ) = Hµ(ξ) for almost all x ∈ X.
Thus, for every n ∈ N,

lim sup
m→∞

1

m
ΩT (x,

m−1∨
i=0

T−iξn) = hµ(T, ξn)

for almost all x ∈ X. Hence, for n ≥ 1 there exists a Borel set Yn such that
µ(Yn) = 1 and lim supm→∞

1
mΩT (x,

∨m−1
i=0 T−iξn) = hµ(T, ξn), for all x ∈ Yn.

Put Y =
⋂∞
n=1 Yn. Then µ(Y ) = 1 and, for x ∈ Y , we have

lim sup
m→∞

1

m
ΩT (x,

m−1∨
i=0

T−iξn) = hµ(T, ξn),

for all n ≥ 1. Thus, using Theorem 2.1, we have

JT (x;U) = lim
n→∞

lim sup
m→∞

1

m
ΩT (x,

m−1∨
i=0

T−iξn) = lim
n→∞

hµ(T, ξn) = hµ(T )

for all x ∈ Y . By a similar method, one can find a Borel set Z with µ(Z) = 1
such that

JT (x;V) = hµ(T ),

for all x ∈ Z. Put X0 := Y ∩ Z. Then µ(X0) = 1 and

JT (x;U) = JT (x;V) = hµ(T ),

for all x ∈ X0. Therefore∫
X
ϕ ◦ JT (x;U)dµ(x) =

∫
X0

ϕ ◦ JT (x;U)dµ(x)

=

∫
X0

ϕ ◦ JT (x;V)dµ(x)

=

∫
X
ϕ ◦ JT (x;V)dµ(x).

(4)

The relation (4) holds for all µ ∈ E(X,T ).
For µ ∈ M(X,T ) let, in view of Corollary 2.4, µ =

∫
E(X,T )mdτ(m) be the

ergodic decomposition of µ.
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For n ≥ 1 put fn := min{ϕ ◦ JT (·;U), n} and gn := min{ϕ ◦ JT (·;V), n}.
Then:

(1) fn and gn are bounded, for all n ≥ 1.
(2) The sequences {fn}n≥1 and {gn}n≥1 are increasing.
(3) fn ↗ ϕ ◦ JT (·;U) and gn ↗ ϕ ◦ JT (·;V) on X.
(4) The sequences {φn}n≥1 and {ψn}n≥1 given by φn(m) :=

∫
X fndm(x)

and ψn(m) :=
∫
X gndm(x), respectively, are increasing.

Now, using Corollary 2.4, the Monotone Convergence Theorem and the equal-
ity in (4), we have

Γϕ(T ;µ;U) = ϕ−1
(∫

X
ϕ ◦ JT (x;U)dµ(x)

)
= ϕ−1

(∫
X

lim
n→∞

fn(x)dµ(x)

)
= ϕ−1

(
lim
n→∞

∫
X
fn(x)dµ(x)

)
= ϕ−1

(
lim
n→∞

∫
E(X,T )

(∫
X
fn(x)dm(x)

)
dτ(m)

)

= ϕ−1

(∫
E(X,T )

(∫
X
ϕ ◦ JT (x;U)dm(x)

)
dτ(m)

)

= ϕ−1

(∫
E(X,T )

(∫
X
ϕ ◦ JT (x;V)dm(x)

)
dτ(m)

)

= ϕ−1

(∫
E(X,T )

(∫
X

lim
n→∞

gn(x)dm(x)

)
dτ(m)

)

= ϕ−1

(
lim
n→∞

∫
E(X,T )

(∫
X
gn(x)dm(x)

)
dτ(m)

)

= ϕ−1
(

lim
n→∞

∫
X
gn(x)dµ(x)

)
= ϕ−1

(∫
X
ϕ ◦ JT (x;V)dµ(x)

)
= Γϕ(T ;µ;V).

The proof is complete. �

Remark 3.4. By Theorem 3.6, we conclude that the definition of ϕ−entropy
is independent of the selection of the sequence of finite Borel partitions. There-
fore, given any sequence of finite Borel partitions U = {ξn}n∈N with diam(ξn)→
0 we have the (unique) ϕ−entropy Γϕ(T ;µ). So we can write Γϕ(T ;µ) for
Γϕ(T ;µ;U) with no confusion.
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Theorem 3.5. Suppose that T : X → X is a continuous map on a compact
metric space X, µ ∈ M(X,T ), and ϕ : [0,∞)→ [0,∞) is an injective convex
function. Let µ =

∫
E(X,T )mdτ(m) be the ergodic decomposition of µ. Then:

(i) If ϕ is increasing, then

Γϕ(T ;µ) ≥
∫
E(X,T )

Γϕ(T ;m)dτ(m).

(ii) If ϕ is decreasing, then

Γϕ(T ;µ) ≤
∫
E(X,T )

Γϕ(T ;m)dτ(m).

Proof. Let JT be defined as in (3). For n ≥ 1, let fn := min{ϕ ◦ JT , n}.
Then {fn}n≥1 is an increasing sequence of bounded measurable maps such that
fn ↗ ϕ ◦ JT . Applying Corollary 2.4, the Monotone Convergence Theorem
and the Jensen inequality, we get

ϕ (Γϕ(T ;µ)) =

∫
X
ϕ ◦ JT (x)dµ(x)

= lim
n→∞

∫
X
fn(x)dµ(x)

= lim
n→∞

∫
E(X,T )

(∫
X
fn(x)dm(x)

)
dτ(m)

=

∫
E(X,T )

(∫
X
ϕ ◦ JT (x)dm(x)

)
dτ(m)

=

∫
E(X,T )

ϕ (Γϕ(T ;m)) dτ(m)

≥ϕ

(∫
E(X,T )

Γϕ(T ;m)dτ(m)

)
.

(5)

Finally, (i) and (ii) follow from (5). �

Theorem 3.6. Suppose that T : X → X is a continuous map on a compact
metric space X, µ1, ..., µn ∈ M(X,T ) and ϕ : [0,∞) → [0,∞) is an injective
convex function. Let λ1, ..., λn ∈ [0, 1] be such that

∑n
i=1 λi = 1. Then:

(i) If ϕ is increasing, then

Γϕ(T ;

n∑
i=1

λiµi) ≥ λiΓϕ(T ;µi).

(ii) If ϕ is decreasing, then

Γϕ(T ;

n∑
i=1

λiµi) ≤ λiΓϕ(T ;µi).
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Proof. Since ϕ is convex, then

ϕ

(
Γϕ(T ;

n∑
i=1

λiµi)

)
=

∫
X
ϕ ◦ JTd(

n∑
i=1

λiµi)

=

n∑
i=1

λi

∫
X
ϕ ◦ JTdµi

=
n∑
i=1

λiϕ (Γϕ(T ;µi))

≥ϕ

(
n∑
i=1

λiΓϕ(T ;µi)

)
.

(6)

Finally, (i) and (ii) follow from (6). �

We recall that two continuous maps T1 : X1 → X1 and T2 : X2 → X2 are
said to be topologically conjugate, if there is a homeomorphism h : X1 → X2

such that h ◦ T1 = T2 ◦ h.
The following theorem shows the invariance of ϕ−entropy under the topo-

logical conjugacy.

Theorem 3.7. Suppose that T1 : X1 → X1 and T2 : X2 → X2 are topo-
logically conjugate continuous maps via the homeomorphism h : X1 → X2.
Then

Γϕ(T1;µ) = Γϕ(T2;µh
−1),

for all µ ∈M(X1, T1).

Proof. For x ∈ X and for the Borel set A ⊆ X1, we have ωT1(x,A) =
ωT2(h(x), h(A)). Therefore, ΩT1(x, ξ) = ΩT2(h(x), h(ξ)), for any finite Borel
partition ξ. Now, for any sequence U = {ξn}n∈N of finite Borel partitions of
X with diam(ξn)→ 0, by the definitions of JT1(·;U) and JT2(·;h(U)), we have
JT1(·;U) = JT2(·;h(U)) ◦ h. Note that h(U) = {h(ξn)}n∈N and diam(h(ξn))→
0. Let µ ∈M(X1, T1). Then

Γϕ(T1;µ) = ϕ−1
(∫

X1

ϕ ◦ JT1(x;U)dµ(x)

)
= ϕ−1

(∫
X1

ϕ ◦ JT2(h(x);h(U))dµ(x)

)
= ϕ−1

(∫
X2

ϕ ◦ JT2(x;h(U))dµh−1(x)

)
= Γϕ(T2;µh

−1).

�



9 On the concept of ϕ-entropy 69

4. p-p-p-ENTROPY AS A SPECIAL CASE

In this section, we consider the ϕ-entropy for a special case ϕ(t) = ϕp(t) =
tp, for p ≥ 1. In this case, we write Γp(T ;µ), for Γϕp(T ;µ) and call it the
p-entropy of T with respect to µ. Indeed, we have

Γp(T ;µ) =

(∫
X
J pT dµ

) 1
p

.

The special case p = 1 is of great importance.

Theorem 4.1. Suppose that T : X → X is a continuous map on a compact
metric space X and let µ ∈M(X,T ). Then

Γ1(T ;µ) = hµ(T ),

where hµ(T ) is the Kolmogorov entropy of T .

Proof. Let U = {ξn}n∈N be a sequence of finite Borel partitions of X such
that diam(ξn) → 0 and JT = JT (·;U). Let m ∈ E(X,T ). As in the proof of
Theorem 3.3, we have JT (x) = hm(T ), for almost all x ∈ X. Therefore

Γ1(T ;m) =

∫
X
JT (x)dm(x) = hm(T ).

Now, let µ ∈ M(X,T ). As in Theorem 3.3, let, in view of Corollary 2.4,
µ =

∫
E(X,T )mdτ(m) be the ergodic decomposition of µ. For n ∈ N, let

gn := min{JT , n}. Then:

(1) gn is bounded, for all n ≥ 1;
(2) the sequence {gn}n≥1 is increasing;
(3) gn → JT on X;
(4) the sequence {ψn}n≥1 given by ψn(m) :=

∫
X gn(x)dm(x) is increasing.

Now, using Corollary 2.4, Theorem 2.5 (ii) and the Monotone Convergence
Theorem, we have

Γ1(T ;µ) =

∫
X
JT (x)dµ(x)

= lim
n→∞

∫
X
gn(x)dµ(x)

= lim
n→∞

∫
E(X,T )

(∫
X
gn(x)dm(x)

)
dτ(m)

=

∫
E(X,T )

(
lim
n→∞

∫
X
gn(x)dm(x)

)
dτ(m)
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=

∫
E(X,T )

(∫
X
JT (x)dm(x)

)
dτ(m)

=

∫
E(X,T )

hm(T )dτ(m)

= hµ(T ).

�

5. CONCLUDING REMARKS

In this paper, a generalized form of entropy of a dynamical system is pre-
sented. This quantity depends on a convex map ϕ : [0,∞) → [0,∞) and
is called the ϕ-entropy. Theorem 3.5 is, somehow, a generalized version of
Jacob’s Theorem. Theorem 3.7 states that the ϕ-entropy is invariant under
the topological conjugacy. By Theorem 4.1, the ϕ-entropy is equal to the
Kolmogorov entropy, for ϕ = idX . In this case, a local approach to the Kol-
mogorov is presented, in the sense that, integrating the map JT : X → [0,∞],
the result is the Kolmogorov entropy.
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