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A BRIEF REMARK ON BALANCING-WIEFERICH PRIMES

UTKAL KESHARI DUTTA, BIJAN KUMAR PATEL, and PRASANTA KUMAR RAY

Abstract. A prime p is said to be a balancing-Wieferich prime if it satisfies the
congruence Bp−( 8

p
) ≡ 0 (mod p2), equivalently π(p) = π(p2). Here Bn denotes

the n-th balancing number and π(m) is the period of balancing numbers modulo
any positive integer m. In this note, we establish some conditions related to the
balancing-Wieferich primes.
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1. INTRODUCTION

It is well known that, if p is a prime and a is any integer such that p - a, then

p divides ap−1 − 1 and the quotient ap−1−1
p is the Fermat quotient with base

a. It is also known that a prime p is a Wieferich prime, if it satisfies 2p−1 ≡
1 (mod p2). The primes 1093 and 3511 are the only two known Wieferich
primes to date. Sun and Sun [16] proved that, if p - xyz and xp + yp =
zp, then p2 divides Fp−( 5

p
), where {Fn} is the well-known Fibonacci sequence

and (mn ) denotes the Legendre symbol of m and n. In [4], Elsenhans and

Jahnel showed that p2 divides Fp−( 5
p
) if and only if the period of the Fibonacci

sequence modulo prime p equals the period of the Fibonacci sequence modulo
the square of that prime. The primes satisfying Fp−( 5

p
) ≡ 0 (mod p2) are called

Fibonacci-Wieferich primes or Sun-Sun primes [2]. According to Mcintosh and
Roettger [10], there are no Fibonacci-Wieferich primes less than p < 2× 1014.
Later the bound was improved to 9.7× 1014 in [3].

The modular representation of Fibonacci sequence modulo any positive in-
teger was studied by Wall [17] in the year 1960. Many important and inter-
esting properties concerning the periodicity of the Fibonacci numbers were
established by Marques in [6, 7, 8, 9]. Recently, Panda and Rout [12] consid-
ered the periods of the balancing numbers modulo any positive integer that
involved some divisibility properties regarding these numbers. They defined
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the period of the balancing sequence modulo m, π(m), as the least positive
integer t satisfying (Bt, Bt+1) ≡ (0, 1) (mod m). In [12], they also conjectured
that 13, 31 and 1546463 are the only three primes satisfying π(p) = π(p2),
which is analogous to the congruence

Bp−( 8
p
) ≡ 0 (mod p2).

Rout [15] later called those primes as balancing Wieferich primes. Analogously,
the primes satisfying Bp−( 8

p
) 6≡ 0 (mod p2) are called balancing non-Wieferich

primes. In [15], he also proved that there are infinitely many balancing non-
Wieferich primes under the assumption of the abc conjecture.

It is now worthy to define the balancing numbers. A balancing number n
and its balancer r are the solutions of the Diophantine equation 1 + 2 + · · ·+
(n − 1) = (n + 1) + (n + 2) + · · · + (n + r) (see [1]). A balancing sequence
{Bn} satisfies the recurrence relation Bn+1 = 6Bn − Bn−1, n ≥ 1, starting

with B0 = 0 and B1 = 1 , whose Binet formula is given by Bn =
λn1−λn2
4
√
2
, where

λ1 = 3 + 2
√

2 and λ2 = (λ1)
−1 are the roots of the balancing characteristic

polynomial g(x) = x2 − 6x + 1 (see [1, 11]). Balancing numbers can be also
generated through matrices, which are studied extensively in [14]. A balancing
matrix denoted by QB is a second order matrix whose entries are the first three
balancing numbers 0, 1 and 6, that is

QB =

(
0 1
−1 6

)
and its n-th power is

QnB =

(
−Bn−1 Bn
−Bn Bn+1

)
for any positive integer n (see [14]). In [13], Patel and Ray redefined the
period of the balancing numbers, by using the matrix concept. They defined
π(p) as the smallest positive integer k satisfying QkB ≡ I (mod p), where I
is the identity matrix of the same order as QB. It follows that π(p2) is the
smallest positive integer s for which QsB ≡ I (mod p2).

In order to prove the results of the present work, we consider a matrix Tp

defined by Tp = 1
p(Q

π(p)
B − I) = [bij ] for any prime p. Consequently,

Tp =

(
−b11 b21
−b21 6b21 − b11

)
.

The proofs of our results closely follow the work of Klaška [5].

2. PRELIMINARIES

In this section, we need some results which are useful to prove our main
theorems.

The following lemma directly follows from the definition of Tp.
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Lemma 2.1. For any prime p, π(p) 6= π(p2) if and only if Tp 6≡ 0 (mod p).

Lemma 2.2. For p 6= 2, Tp ≡ 0 (mod p) if and only if detTp ≡ 0 (mod p).

Proof. The necessary part is trivial. In order to prove the sufficient part,
we choose p 6= 2 and assume that detTp ≡ 0 (mod p). In view of

Tp =

(
−b11 b21
−b21 6b21 − b11

)
=

1

p
(Q

π(p)
B − I),

we have

(1) detQ
π(p)
B = 1 + 2p(3b21 − b11) + p2detTp,

where
detTp = b2

11 − 6b11b21 + b2
21.

As detQB = 1 and p divides detTp, (1) reduces to 3b21− b11 ≡ 0 (mod p) and
detTp ≡ −8

9b2
11 (mod p). It follows that b11 ≡ 0 (mod p) and hence 3b21 ≡ 0

(mod p). This completes the proof. �

Let Qp be the field of p-adic numbers. Consider Lp as the splitting field
over Qp of the balancing characteristic polynomial g(x) = x2 − 6x+ 1. Let λ1
and λ2, belonging to the ring of integers Op, be the zeros of g(x) in Lp. Since
the discriminant of g(x) is 32, for prime p 6= 2, Lp/Qp does not ramify and
the maximal ideal of Op is generated by p. For ξ ∈ Op, ordps(ξ) is the least

positive rational integer l for which ξl ≡ 1 (mod ps). Since ξl ≡ 1 (mod p), we
have ξpl ≡ 1 (mod p2), which implies either ordp2(ξ) = ordp(ξ) or ordp2(ξ) =
p · ordp(ξ). Moreover, if ξ 6= ±1 and t is the largest positive integer for which
ordpt(ξ) = ordp(ξ), then we have ordps(ξ) = ps−tordp(ξ) for s ≥ t.

Lemma 2.3. For any prime p 6= 2, ordps(λ1) = ordps(λ2).

Proof. Since λ1λ2 = 1, it follows that λ1 = ±1 if and only if λ2 = ±1.
Now, if λv2 = 1, then λv1 = 1, which gives ordps(λ1) = ordps(λ2). On the
other hand, if λv2 = −1, then λ2v2 = 1. It follows that λ2v1 = 1 and hence
ordps(λ1) = ordps(λ2) and the result follows. �

From the above result, we conclude that, for p 6= 2,

(2) ordp2(λ2) ≡ 0 (mod p) if and only if ordp2(λ1) ≡ 0 (mod p).

In order to prove the following result, we choose q = |Op/(p)| for p 6= 2, from
which it follows that q = pt, where t = [Lp : Qp] ∈ {1, 2}.

Lemma 2.4. ordp2(λ1) 6≡ 0 (mod p) if and only if λq−11 ≡ 1 (mod p2).

Proof. Let r = ordp2(λ1) and p - r. As [Op/(p)] has q(q − 1) elements,

r | q(q − 1). Since q = pt, it follows that r | (q − 1) and therefore λq−11 ≡ 1
(mod p2).

Conversely, assume that λq−11 ≡ 1 (mod p2). It follows that r | (q−1). Since
p - (q − 1), we conclude that p - ordp2(λ1). This ends the proof. �
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3. MAIN RESULTS

Theorem 3.1. Let s be any positive integer and p be any odd prime. Then
π(ps) = lcm

(
ordps(λ1), ordps(λ2)

)
.

Proof. For any positive integer n and C,D ∈ Lp, let Bn = Cλn1 + Dλn2 ,
where the coefficients C and D are determined uniquely. The above system of
equations can be rewritten in the matrix form as follows:(

1 1
λ1 λ2

)(
C
D

)
=

(
0
1

)
.

Since λ1 6≡ λ2 (mod p), C = −(λ2 − λ1)
−1 and D = (λ2 − λ1)

−1. Letting
k = π(ps), we can write

(Cλk1 +Dλk2, Cλ
k+1
1 +Dλk+1

2 ) ≡ (C +D, Cλ1 +Dλ2) (mod ps).

This can be rewritten as(
1 1
λ1 λ2

)(
C(λk1 − 1)
D(λk2 − 1)

)
≡

(
0
0

)
(mod ps).

It follows that C(λk1 − 1) ≡ 0 (mod ps) and D(λk2 − 1) ≡ 0 (mod ps). Further
simplification reduces the above congruences to (λk1, λ

k
2) ≡ (1, 1) (mod ps).

Therefore, ordps(λ1) and ordps(λ2) both divide k and thus we have that
lcm(ordps(λ1), ordps(λ2)) divides k.

On the other hand, as (C,D) 6≡ (0, 0) (mod p), the period of the sequences
(Cλn1 )∞n=0 and (Dλn2 )∞n=0 modulo ps are ordps(λ1) and ordps(λ2), respectively.
Thus the period of the sequence (Bn)∞n=0 = (Cλn1 +Dλn2 )∞n=0 modulo ps, which
is π(ps), divides lcm

(
ordps(λ1), ordps(λ2)

)
and the result follows. �

Theorem 3.2. For any prime p 6= 2, π(p) 6= π(p2) if and only if ordp2(λ1) ≡
0 (mod p) and ordp2(λ2) ≡ 0 (mod p).

Proof. Let ordp2(λ1) ≡ 0 (mod p) and ordp2(λ2) ≡ 0 (mod p). Then

lcm
(
ordp2(λ1), ordp2(λ2)

)
≡ 0 (mod p).

Combining this with Theorem 3.1 for s = 2, we have

π(p2) = lcm
(
ordp2(λ1) and ordp2(λ2)

)
≡ 0 (mod p).

Since p is the maximal ideal of Op and π(p) = lcm
(
ordp(λ1), ordp(λ2)

)
, π(p) 6≡

0 (mod p). The above discussion implies π(p) 6= π(p2). Conversely, let π(p) 6=
π(p2). So π(p2) = pπ(p). From Theorem 3.1, we have

lcm
(
ordp2(λ1), ordp2(λ2)

)
≡ 0 (mod p),

which implies ordp2(λ1) ≡ 0 (mod p) or ordp2(λ2) ≡ 0 (mod p). This, to-
gether with (2), gives ordp2(λ1) ≡ 0 (mod p) and ordp2(λ2) ≡ 0 (mod p),
which ends the proof. �

From equation (2) and Theorem 3.2, we have ordp2(λ1) 6≡ 0 (mod p) and
ordp2(λ2) 6≡ 0 (mod p) if and only if p is a balancing-Wieferich prime.
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Theorem 3.3. Let p 6= 2, w ∈ Op for which g(w) ≡ 0 (mod p). Then p is
a balancing-Wieferich prime if and only if w2q − 6wq + 1 ≡ 0 (mod p2), or
equivalently, g(w) + (wq − w)g′(w) ≡ 0 (mod p2).

Proof. For w ∈ Op, consider w2 − 6w + 1 ≡ 0 (mod p). It follows that
either w ≡ λ1 (mod p) or w ≡ λ2 (mod p). We first assume w ≡ λ1 (mod p).
This implies that wq ≡ λq1 (mod p2). Now, for π(p) = π(p2), wq ≡ λq1 ≡ λ1
(mod p2). Consequently, w2q − 6wq + 1 ≡ w2 − 6w + 1 ≡ 0 (mod p2).

Conversely, assume that w2q − 6wq + 1 ≡ 0 (mod p2). Let wq = λ1 + pv.
Therefore, w2q − 6wq + 1 = (λ1 + pv)2 − 6(λ1 + pv) + 1 ≡ 2pv(λ1 − 3) ≡ 0
(mod p2). For p 6= 2, λ1 − 3 6≡ 0 (mod p), we have v ≡ 0 (mod p). Thus

wq = λ1 + pv ≡ λ1 (mod p2) and hence λq−11 ≡ wq(q−1) ≡ 1 (mod p2). Using
Lemma 2.4, ordp2(λ1) 6≡ 0 (mod p2). Theorem 3.2, together with (2) , gives

π(p) = π(p2). Moreover, for w = λ1 + pr, g(w) + (wq − w)g′(w) ≡ (λq1 −
λ1)(2λ1 + 2pr − 6) ≡ 0 (mod p2). Assuming π(p) = π(p2), we have λq1 ≡ λ1
(mod p2), consequently (λq1 − λ1)(2λ1 + 2pr − 6) ≡ 0 (mod p2). On the other
hand, for p 6= 2, 2λ1 + 2pr − 6 ≡ 2w − 6 ≡ 2λ1 − 6 ≡ g′(λ1) 6≡ 0 (mod p).
Therefore, λq1 − λ1 ≡ 0 (mod p2). Using Lemma 2.4 and λq1 ≡ λ1 (mod p2),
we conclude that π(p) = π(p2). This ends the proof. �
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