A BRIEF REMARK ON BALANCING-WIEFERICH PRIMES

UTKAL KESHARI DUTTA, BIJAN KUMAR PATEL, and PRASANTA KUMAR RAY

Abstract

A prime p is said to be a balancing-Wieferich prime if it satisfies the congruence $B_{p-\left(\frac{8}{p}\right)} \equiv 0\left(\bmod p^{2}\right)$, equivalently $\pi(p)=\pi\left(p^{2}\right)$. Here B_{n} denotes the n-th balancing number and $\pi(m)$ is the period of balancing numbers modulo any positive integer m. In this note, we establish some conditions related to the balancing-Wieferich primes. MSC 2010. 11B25, 11B39, 11B41. Key words. Balancing numbers, Wieferich primes, balancing-Wieferich primes, periodicity.

1. INTRODUCTION

It is well known that, if p is a prime and a is any integer such that $p \nmid a$, then p divides $a^{p-1}-1$ and the quotient $\frac{a^{p-1}-1}{p}$ is the Fermat quotient with base a. It is also known that a prime p is a Wieferich prime, if it satisfies $2^{p-1} \equiv$ $1\left(\bmod p^{2}\right)$. The primes 1093 and 3511 are the only two known Wieferich primes to date. Sun and Sun [16] proved that, if $p \nmid x y z$ and $x^{p}+y^{p}=$ z^{p}, then p^{2} divides $F_{p-\left(\frac{5}{p}\right)}$, where $\left\{F_{n}\right\}$ is the well-known Fibonacci sequence and $\left(\frac{m}{n}\right)$ denotes the Legendre symbol of m and n. In [4], Elsenhans and Jahnel showed that p^{2} divides $F_{p-\left(\frac{5}{p}\right)}$ if and only if the period of the Fibonacci sequence modulo prime p equals the period of the Fibonacci sequence modulo the square of that prime. The primes satisfying $F_{p-\left(\frac{5}{p}\right)} \equiv 0\left(\bmod p^{2}\right)$ are called Fibonacci-Wieferich primes or Sun-Sun primes [2]. According to Mcintosh and Roettger [10], there are no Fibonacci-Wieferich primes less than $p<2 \times 10^{14}$. Later the bound was improved to 9.7×10^{14} in [3].

The modular representation of Fibonacci sequence modulo any positive integer was studied by Wall [17] in the year 1960. Many important and interesting properties concerning the periodicity of the Fibonacci numbers were established by Marques in [6, 7, 8, 9]. Recently, Panda and Rout [12] considered the periods of the balancing numbers modulo any positive integer that involved some divisibility properties regarding these numbers. They defined

[^0]the period of the balancing sequence modulo $m, \pi(m)$, as the least positive integer t satisfying $\left(B_{t}, B_{t+1}\right) \equiv(0,1)(\bmod m)$. In [12], they also conjectured that 13,31 and 1546463 are the only three primes satisfying $\pi(p)=\pi\left(p^{2}\right)$, which is analogous to the congruence
$$
B_{p-\left(\frac{8}{p}\right)} \equiv 0 \quad\left(\bmod p^{2}\right) .
$$

Rout [15] later called those primes as balancing Wieferich primes. Analogously, the primes satisfying $B_{p-\left(\frac{8}{p}\right)} \not \equiv 0\left(\bmod p^{2}\right)$ are called balancing non-Wieferich primes. In [15], he also proved that there are infinitely many balancing nonWieferich primes under the assumption of the $a b c$ conjecture.

It is now worthy to define the balancing numbers. A balancing number n and its balancer r are the solutions of the Diophantine equation $1+2+\cdots+$ $(n-1)=(n+1)+(n+2)+\cdots+(n+r)($ see $[1])$. A balancing sequence $\left\{B_{n}\right\}$ satisfies the recurrence relation $B_{n+1}=6 B_{n}-B_{n-1}, n \geq 1$, starting with $B_{0}=0$ and $B_{1}=1$, whose Binet formula is given by $B_{n}=\frac{\bar{\lambda}_{1}^{n}-\lambda_{2}^{n}}{4 \sqrt{2}}$, where $\lambda_{1}=3+2 \sqrt{2}$ and $\lambda_{2}=\left(\lambda_{1}\right)^{-1}$ are the roots of the balancing characteristic polynomial $g(x)=x^{2}-6 x+1$ (see $[1,11]$). Balancing numbers can be also generated through matrices, which are studied extensively in [14]. A balancing matrix denoted by Q_{B} is a second order matrix whose entries are the first three balancing numbers 0,1 and 6 , that is

$$
Q_{B}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 6
\end{array}\right)
$$

and its n-th power is

$$
Q_{B}^{n}=\left(\begin{array}{cc}
-B_{n-1} & B_{n} \\
-B_{n} & B_{n+1}
\end{array}\right)
$$

for any positive integer n (see [14]). In [13], Patel and Ray redefined the period of the balancing numbers, by using the matrix concept. They defined $\pi(p)$ as the smallest positive integer k satisfying $Q_{B}^{k} \equiv I(\bmod p)$, where I is the identity matrix of the same order as Q_{B}. It follows that $\pi\left(p^{2}\right)$ is the smallest positive integer s for which $Q_{B}^{s} \equiv I\left(\bmod p^{2}\right)$.

In order to prove the results of the present work, we consider a matrix T_{p} defined by $T_{p}=\frac{1}{p}\left(Q_{B}^{\pi(p)}-I\right)=\left[b_{i j}\right]$ for any prime p. Consequently,

$$
T_{p}=\left(\begin{array}{cc}
-b_{11} & b_{21} \\
-b_{21} & 6 b_{21}-b_{11}
\end{array}\right)
$$

The proofs of our results closely follow the work of Klaška [5].

2. PRELIMINARIES

In this section, we need some results which are useful to prove our main theorems.

The following lemma directly follows from the definition of T_{p}.

Lemma 2.1. For any prime $p, \pi(p) \neq \pi\left(p^{2}\right)$ if and only if $T_{p} \not \equiv 0(\bmod p)$.
Lemma 2.2. For $p \neq 2, T_{p} \equiv 0(\bmod p)$ if and only if $\operatorname{det}_{\mathrm{p}} \equiv 0(\bmod \mathrm{p})$.
Proof. The necessary part is trivial. In order to prove the sufficient part, we choose $p \neq 2$ and assume that $\operatorname{det}_{\mathrm{p}} \equiv 0(\bmod \mathrm{p})$. In view of

$$
T_{p}=\left(\begin{array}{cc}
-b_{11} & b_{21} \\
-b_{21} & 6 b_{21}-b_{11}
\end{array}\right)=\frac{1}{p}\left(Q_{B}^{\pi(p)}-I\right),
$$

we have

$$
\begin{equation*}
\operatorname{det} Q_{B}^{\pi(p)}=1+2 p\left(3 b_{21}-b_{11}\right)+p^{2} \operatorname{det} \mathrm{~T}_{\mathrm{p}} \tag{1}
\end{equation*}
$$

where

$$
\operatorname{det} T_{p}=b_{11}^{2}-6 b_{11} b_{21}+b_{21}^{2}
$$

As det $\mathrm{Q}_{\mathrm{B}}=1$ and p divides $\operatorname{det}_{\mathrm{p}}$, (1) reduces to $3 b_{21}-b_{11} \equiv 0(\bmod p)$ and $\operatorname{det}_{\mathrm{p}} \equiv-\frac{8}{9} \mathrm{~b}_{11}^{2}(\bmod \mathrm{p})$. It follows that $b_{11} \equiv 0(\bmod p)$ and hence $3 b_{21} \equiv 0$ $(\bmod p)$. This completes the proof.

Let Q_{p} be the field of p-adic numbers. Consider L_{p} as the splitting field over Q_{p} of the balancing characteristic polynomial $g(x)=x^{2}-6 x+1$. Let λ_{1} and λ_{2}, belonging to the ring of integers \mathcal{O}_{p}, be the zeros of $g(x)$ in L_{p}. Since the discriminant of $g(x)$ is 32 , for prime $p \neq 2, L_{p} / Q_{p}$ does not ramify and the maximal ideal of \mathcal{O}_{p} is generated by p. For $\xi \in \mathcal{O}_{p}, \operatorname{ord}_{p^{s}}(\xi)$ is the least positive rational integer l for which $\xi^{l} \equiv 1\left(\bmod p^{s}\right)$. Since $\xi^{l} \equiv 1(\bmod p)$, we have $\xi^{p l} \equiv 1\left(\bmod p^{2}\right)$, which implies either $\operatorname{ord}_{\mathrm{p}^{2}}(\xi)=\operatorname{ord}_{\mathrm{p}}(\xi)$ or $\operatorname{ord}_{\mathrm{p}^{2}}(\xi)=$ $\mathrm{p} \cdot \operatorname{ord}_{\mathrm{p}}(\xi)$. Moreover, if $\xi \neq \pm 1$ and t is the largest positive integer for which $\operatorname{ord}_{\mathrm{p}^{\mathrm{t}}}(\xi)=\operatorname{ord}_{\mathrm{p}}(\xi)$, then we have $\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}(\xi)=\mathrm{p}^{\mathrm{s}-\mathrm{t}} \operatorname{ord}_{\mathrm{p}}(\xi)$ for $s \geq t$.

Lemma 2.3. For any prime $p \neq 2, \operatorname{ord}_{p^{s}}\left(\lambda_{1}\right)=\operatorname{ord}_{p^{s}}\left(\lambda_{2}\right)$.
Proof. Since $\lambda_{1} \lambda_{2}=1$, it follows that $\lambda_{1}= \pm 1$ if and only if $\lambda_{2}= \pm 1$. Now, if $\lambda_{2}^{v}=1$, then $\lambda_{1}^{v}=1$, which gives $\operatorname{ord}_{p^{s}}\left(\lambda_{1}\right)=\operatorname{ord}_{p^{s}}\left(\lambda_{2}\right)$. On the other hand, if $\lambda_{2}^{v}=-1$, then $\lambda_{2}^{2 v}=1$. It follows that $\lambda_{1}^{2 v}=1$ and hence $\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{1}\right)=\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{2}\right)$ and the result follows.

From the above result, we conclude that, for $p \neq 2$,
(2) $\quad \operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{2}\right) \equiv 0 \quad(\bmod \mathrm{p})$ if and only if $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \equiv 0 \quad(\bmod \mathrm{p})$.

In order to prove the following result, we choose $q=\left|\mathcal{O}_{p} /(p)\right|$ for $p \neq 2$, from which it follows that $q=p^{t}$, where $t=\left[L_{p}: Q_{p}\right] \in\{1,2\}$.

Lemma 2.4. $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \not \equiv 0(\bmod \mathrm{p})$ if and only if $\lambda_{1}^{q-1} \equiv 1\left(\bmod p^{2}\right)$.
Proof. Let $r=\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right)$ and $p \nmid r$. As $\left[\mathcal{O}_{p} /(p)\right]$ has $q(q-1)$ elements, $r \mid q(q-1)$. Since $q=p^{t}$, it follows that $r \mid(q-1)$ and therefore $\lambda_{1}^{q-1} \equiv 1$ $\left(\bmod p^{2}\right)$.

Conversely, assume that $\lambda_{1}^{q-1} \equiv 1\left(\bmod p^{2}\right)$. It follows that $r \mid(q-1)$. Since $p \nmid(q-1)$, we conclude that $p \nmid \operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right)$. This ends the proof.

3. MAIN RESULTS

Theorem 3.1. Let s be any positive integer and p be any odd prime. Then $\pi\left(p^{s}\right)=\operatorname{lcm}\left(\operatorname{ord}_{p^{s}}\left(\lambda_{1}\right), \operatorname{ord}_{\mathrm{p}^{s}}\left(\lambda_{2}\right)\right)$.

Proof. For any positive integer n and $C, D \in L_{p}$, let $B_{n}=C \lambda_{1}^{n}+D \lambda_{2}^{n}$, where the coefficients C and D are determined uniquely. The above system of equations can be rewritten in the matrix form as follows:

$$
\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right)\binom{C}{D}=\binom{0}{1}
$$

Since $\lambda_{1} \not \equiv \lambda_{2}(\bmod p), C=-\left(\lambda_{2}-\lambda_{1}\right)^{-1}$ and $D=\left(\lambda_{2}-\lambda_{1}\right)^{-1}$. Letting $k=\pi\left(p^{s}\right)$, we can write

$$
\left(C \lambda_{1}^{k}+D \lambda_{2}^{k}, C \lambda_{1}^{k+1}+D \lambda_{2}^{k+1}\right) \equiv\left(C+D, C \lambda_{1}+D \lambda_{2}\right) \quad\left(\bmod p^{s}\right) .
$$

This can be rewritten as

$$
\left(\begin{array}{cc}
1 & 1 \\
\lambda_{1} & \lambda_{2}
\end{array}\right)\binom{C\left(\lambda_{1}^{k}-1\right)}{D\left(\lambda_{2}^{k}-1\right)} \equiv\binom{0}{0} \quad\left(\bmod p^{s}\right)
$$

It follows that $C\left(\lambda_{1}^{k}-1\right) \equiv 0\left(\bmod p^{s}\right)$ and $D\left(\lambda_{2}^{k}-1\right) \equiv 0\left(\bmod p^{s}\right)$. Further simplification reduces the above congruences to $\left(\lambda_{1}^{k}, \lambda_{2}^{k}\right) \equiv(1,1)\left(\bmod p^{s}\right)$. Therefore, $\operatorname{ord}_{p^{s}}\left(\lambda_{1}\right)$ and $\operatorname{ord}_{\mathrm{p}^{s}}\left(\lambda_{2}\right)$ both divide k and thus we have that $\operatorname{lcm}\left(\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{1}\right), \operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{2}\right)\right)$ divides k.

On the other hand, as $(C, D) \not \equiv(0,0)(\bmod p)$, the period of the sequences $\left(C \lambda_{1}^{n}\right)_{n=0}^{\infty}$ and $\left(D \lambda_{2}^{n}\right)_{n=0}^{\infty}$ modulo p^{s} are $\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{1}\right)$ and $\operatorname{ord}_{\mathrm{p}^{\mathrm{s}}}\left(\lambda_{2}\right)$, respectively. Thus the period of the sequence $\left(B_{n}\right)_{n=0}^{\infty}=\left(C \lambda_{1}^{n}+D \lambda_{2}^{n}\right)_{n=0}^{\infty}$ modulo p^{s}, which is $\pi\left(p^{s}\right)$, divides $\operatorname{lcm}\left(\operatorname{ord}_{p^{s}}\left(\lambda_{1}\right)\right.$, $\left.\operatorname{ord}_{p^{s}}\left(\lambda_{2}\right)\right)$ and the result follows.

Theorem 3.2. For any prime $p \neq 2, \pi(p) \neq \pi\left(p^{2}\right)$ if and only if $\operatorname{ord}_{p^{2}}\left(\lambda_{1}\right) \equiv$ $0(\bmod p)$ and $\operatorname{ord}_{p^{2}}\left(\lambda_{2}\right) \equiv 0(\bmod p)$.

Proof. Let $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \equiv 0(\bmod \mathrm{p})$ and $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{2}\right) \equiv 0(\bmod \mathrm{p})$. Then

$$
\operatorname{lcm}\left(\operatorname{ord}_{p^{2}}\left(\lambda_{1}\right), \operatorname{ord}_{p^{2}}\left(\lambda_{2}\right)\right) \equiv 0 \quad(\bmod p)
$$

Combining this with Theorem 3.1 for $s=2$, we have

$$
\pi\left(p^{2}\right)=\operatorname{lcm}\left(\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \text { and } \operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{2}\right)\right) \equiv 0 \quad(\bmod \mathrm{p})
$$

Since p is the maximal ideal of \mathcal{O}_{p} and $\pi(p)=\operatorname{lcm}\left(\operatorname{ord}_{\mathrm{p}}\left(\lambda_{1}\right), \operatorname{ord}_{\mathrm{p}}\left(\lambda_{2}\right)\right), \pi(p) \not \equiv$ $0(\bmod p)$. The above discussion implies $\pi(p) \neq \pi\left(p^{2}\right)$. Conversely, let $\pi(p) \neq$ $\pi\left(p^{2}\right)$. So $\pi\left(p^{2}\right)=p \pi(p)$. From Theorem 3.1, we have

$$
\operatorname{lcm}\left(\operatorname{ord}_{\mathbf{p}^{2}}\left(\lambda_{1}\right), \operatorname{ord}_{\mathbf{p}^{2}}\left(\lambda_{2}\right)\right) \equiv 0 \quad(\bmod \mathrm{p}),
$$

which implies $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \equiv 0(\bmod \mathrm{p})$ or $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{2}\right) \equiv 0(\bmod \mathrm{p})$. This, together with (2), gives $\operatorname{ord}_{p^{2}}\left(\lambda_{1}\right) \equiv 0(\bmod \mathrm{p})$ and $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{2}\right) \equiv 0(\bmod \mathrm{p})$, which ends the proof.

From equation (2) and Theorem 3.2, we have $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \not \equiv 0(\bmod \mathrm{p})$ and $\operatorname{ord}_{p^{2}}\left(\lambda_{2}\right) \not \equiv 0(\bmod p)$ if and only if p is a balancing-Wieferich prime.

Theorem 3.3. Let $p \neq 2, w \in \mathcal{O}_{p}$ for which $g(w) \equiv 0(\bmod p)$. Then p is a balancing-Wieferich prime if and only if $w^{2 q}-6 w^{q}+1 \equiv 0\left(\bmod p^{2}\right)$, or equivalently, $g(w)+\left(w^{q}-w\right) g^{\prime}(w) \equiv 0\left(\bmod p^{2}\right)$.

Proof. For $w \in \mathcal{O}_{p}$, consider $w^{2}-6 w+1 \equiv 0(\bmod p)$. It follows that either $w \equiv \lambda_{1}(\bmod p)$ or $w \equiv \lambda_{2}(\bmod p)$. We first assume $w \equiv \lambda_{1}(\bmod p)$. This implies that $w^{q} \equiv \lambda_{1}^{q}\left(\bmod p^{2}\right)$. Now, for $\pi(p)=\pi\left(p^{2}\right), w^{q} \equiv \lambda_{1}^{q} \equiv \lambda_{1}$ $\left(\bmod p^{2}\right)$. Consequently, $w^{2 q}-6 w^{q}+1 \equiv w^{2}-6 w+1 \equiv 0\left(\bmod p^{2}\right)$.

Conversely, assume that $w^{2 q}-6 w^{q}+1 \equiv 0\left(\bmod p^{2}\right)$. Let $w^{q}=\lambda_{1}+p v$. Therefore, $w^{2 q}-6 w^{q}+1=\left(\lambda_{1}+p v\right)^{2}-6\left(\lambda_{1}+p v\right)+1 \equiv 2 p v\left(\lambda_{1}-3\right) \equiv 0$ $\left(\bmod p^{2}\right)$. For $p \neq 2, \lambda_{1}-3 \not \equiv 0(\bmod p)$, we have $v \equiv 0(\bmod p)$. Thus $w^{q}=\lambda_{1}+p v \equiv \lambda_{1}\left(\bmod p^{2}\right)$ and hence $\lambda_{1}^{q-1} \equiv w^{q(q-1)} \equiv 1\left(\bmod p^{2}\right)$. Using Lemma 2.4, $\operatorname{ord}_{\mathrm{p}^{2}}\left(\lambda_{1}\right) \not \equiv 0\left(\bmod \mathrm{p}^{2}\right)$. Theorem 3.2, together with (2), gives $\pi(p)=\pi\left(p^{2}\right)$. Moreover, for $w=\lambda_{1}+p r, g(w)+\left(w^{q}-w\right) g^{\prime}(w) \equiv\left(\lambda_{1}^{q}-\right.$ $\left.\lambda_{1}\right)\left(2 \lambda_{1}+2 p r-6\right) \equiv 0\left(\bmod p^{2}\right)$. Assuming $\pi(p)=\pi\left(p^{2}\right)$, we have $\lambda_{1}^{q} \equiv \lambda_{1}$ $\left(\bmod p^{2}\right)$, consequently $\left(\lambda_{1}^{q}-\lambda_{1}\right)\left(2 \lambda_{1}+2 p r-6\right) \equiv 0\left(\bmod p^{2}\right)$. On the other hand, for $p \neq 2,2 \lambda_{1}+2 p r-6 \equiv 2 w-6 \equiv 2 \lambda_{1}-6 \equiv g^{\prime}\left(\lambda_{1}\right) \not \equiv 0(\bmod p)$. Therefore, $\lambda_{1}^{q}-\lambda_{1} \equiv 0\left(\bmod p^{2}\right)$. Using Lemma 2.4 and $\lambda_{1}^{q} \equiv \lambda_{1}\left(\bmod p^{2}\right)$, we conclude that $\pi(p)=\pi\left(p^{2}\right)$. This ends the proof.

REFERENCES

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart., 37 (1999), 98-105.
[2] R. Crandall, K. Dilcher and C. Pomerance, A search for Wieferich and Wilson primes, Math. Comp., 66 (1997), 443-449.
[3] F. Dorais and D. Klyve, A Wiefeich prime search up to 6.7×10^{15}, J. Integer Seq., 14, Article 11.9.2 (2011), 1-14.
[4] A.S. Elsenhans and J. Jahnel, The Fibonacci sequence modulo p^{2}-An investigation by computer for $p<10^{14}$, The On-Line Encyclopedia of Integer Sequences, 1-26.
[5] J. Klaška, Criteria for testing Wall's question, Czechoslovak Math. J., 58 (2008), 12411246.
[6] D. Marques, On the order of appearance of integers at most one away from Fibonacci numbers, Fibonacci Quart., 50 (2012), 36-43.
[7] D. Marques, The order of appearance of powers Fibonacci and Lucas numbers, Fibonacci Quart., 50 (2012), 239-245.
[8] D. Marques, The order of appearance of product of consecutive Lucas numbers, Fibonacci Quart., 51 (2013), 38-43.
[9] D. Marques, The order of appearance of product of five consecutive Lucas numbers, Tatra Mt. Math. Publ., 59 (2014), 65-77.
[10] R.J. Mcintosh and E.L. Roettger, A search for Fibonacci-Wieferich and Wolstenholme primes, Math. Comp., 76 (2007), 2087-2094.
[11] G.K. Panda, Some fascinating properties of balancing numbers, Congr. Numer., 194 (2009), 185-189.
[12] G.K. Panda and S.S. Rout, Periodicity of balancing numbers, Acta Math. Hungar., 143 (2014), 274-286.
[13] B.K. Patel and P.K. Ray, The period, rank and order of the sequence of balancing numbers modulo m, Math. Rep. (Bucur.), 18 (2016), 395-401.
[14] P.K. Ray, Certain matrices associated with balancing and Lucas-balancing numbers, Matematika, 28 (2012), 15-22.
[15] S.S. Rout, Balancing non-Wieferich primes in arithmetic progression and abc conjecture, Proc. Japan Acad. Ser. A Math. Sci., 92 (2016), 112-116.
[16] Z.H. Sun and Z.W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith., 60 (1992), 371-388.
[17] D.D. Wall, Fibonacci series modulo m, Amer. Math. Monthly, 67 (1960), 525-532.
Received November 2, 2017
Accepted January 23, 2018

Sambalpur University
Department of Mathematics
Sambalpur, India
E-mail: utkaldutta@gmail.com
International Institute of Information Technology
Bhubaneswar, India
E-mail: iiit.bijan@gmail.com
Sambalpur University
Department of Mathematics
Sambalpur, India
E-mail: prasantamath@suniv.ac.in

[^0]: The authors wish to thank the referees for useful comments and suggestions. P.K. Ray is the corresponding author.

