REFINING LAH-RIBARIĆ INTEGRAL INEQUALITY
 FOR DIVISIONS OF MEASURABLE SPACE

SILVESTRU SEVER DRAGOMIR

Abstract

In this paper, we establish some refinements of Lah-Ribarić inequality for the general Lebesgue integral on divisions of measurable space. Applications for discrete inequalities and weighted means of positive numbers are also given. Some examples related to Hermite-Hadamard inequality for convex functions are provided as well. MSC 2010. Primary 26D15; Secondary 26D10. Key words. Jensen's inequality, convex functions, Lebesgue integral, weighted means, Lah-Ribarić inequality, special means.

1. INTRODUCTION

Let $(\Omega, \mathcal{A}, \mu)$ be a measurable space consisting of a set Ω, a σ-algebra \mathcal{A} of parts of Ω and a countably additive and positive measure μ on \mathcal{A} with values in $\mathbb{R} \cup\{\infty\}$. For the μ-integrable positive μ-a.e. weight w consider the Lebesgue space
$L_{w}(\Omega, \mu):=\left\{f: \Omega \rightarrow \mathbb{R}, f\right.$ is μ-measurable and $\left.\int_{\Omega}|f(t)| w(t) \mathrm{d} \mu(t)<\infty\right\}$.
For simplicity of notation we write everywhere in the sequel $\int_{\Omega} w \mathrm{~d} \mu$ instead of $\int_{\Omega} w(t) \mathrm{d} \mu(t)$ etc.

We say that the family of measurable sets $F_{n}(\Omega)=\left\{\Omega_{i}\right\}_{i \in\{1, \ldots, n\}}$ is a n division for Ω if $\Omega=\bigcup_{i=1}^{n} \Omega_{i}$ and $\Omega_{i} \cap \Omega_{j}=\emptyset$ for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$ and $\mu\left(\Omega_{i}\right)>0$ for any $i \in\{1, \ldots, n\}$. In this situation, if $f \in L_{w}(\Omega, \mu)$, then $f \in L_{w}\left(\Omega_{i}, \mu\right)$ for any $i \in\{1, \ldots, n\}$ and $\int_{\Omega} f w \mathrm{~d} \mu=\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu$. Also, $\int_{\Omega} w \mathrm{~d} \mu=\sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu$ with $\int_{\Omega_{i}} w \mathrm{~d} \mu>0$ for any $i \in\{1, \ldots, n\}$.

For a given $n \geq 2$ we denote by $\mathfrak{D}_{n}(\Omega)$ the set of all n-divisions of Ω and consider the functional $\psi(\Phi, w, f, \cdot): \mathfrak{D}_{n}(\Omega) \rightarrow \mathbb{R}$ defined by

$$
\begin{equation*}
\psi\left(\Phi, f, w, F_{n}(\Omega)\right):=\frac{1}{\int_{\Omega} w \mathrm{~d} \mu} \sum_{i=1}^{n} \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \int_{\Omega_{i}} w \mathrm{~d} \mu . \tag{1}
\end{equation*}
$$

The following result has been obtained in [14].

Theorem 1.1. Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a convex function, $f: \Omega \rightarrow[m, M] a$ μ-measurable function such that $f, \Phi \circ f \in L_{w}(\Omega, \mu)$. Then for any $F_{n}(\Omega) \in$ $\mathfrak{D}_{n}(\Omega)$ with $\int_{\Omega_{i}} w \mathrm{~d} \mu>0$ for any $i \in\{1, \ldots, n\}$ we have

$$
\begin{equation*}
\frac{\int_{\Omega}(\Phi \circ f) w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu} \geq \psi\left(\Phi, f, w, F_{n}(\Omega)\right) \geq \Phi\left(\frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right) \tag{2}
\end{equation*}
$$

where $n \geq 2$.
For a nonempty finite family of indices J and positive weights $w_{j}, j \in J$ we denote $W_{J}:=\sum_{j \in J} w_{j}$. If $\Phi:[m, M] \rightarrow \mathbb{R}$ is a convex function and $x_{j} \in[m, M], j \in J$, then Jensen's inequality states that

$$
\frac{1}{W_{J}} \sum_{j \in J} w_{j} \Phi\left(x_{j}\right) \geq \Phi\left(\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right) .
$$

Assume that, for $n \geq 2$, the family J of indices containing more than n elements and $F_{n}(J)=\left\{J_{i}\right\}_{i \in\{1, \ldots, n\}}$ is a n-division for J, namely $J=\bigcup_{i=1}^{n} J_{i}$ and $J_{i} \cap J_{j}=\emptyset$, for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$.

For a given $n \geq 2$, we denote by $\mathfrak{D}_{n}(J)$ the set of all n-divisions of J and consider the functional $\psi(\Phi, f, \cdot): \mathfrak{D}_{n}(J) \rightarrow \mathbb{R}$ defined by

$$
\psi\left(\Phi, f, w, F_{n}(J)\right):=\frac{1}{W_{J}} \sum_{i=1}^{n} W_{J_{i}} \Phi\left(\frac{1}{W_{J_{i}}} \sum_{j \in J_{i}} w_{j} x_{j}\right) .
$$

From the inequality (2) for the discrete measure we have

$$
\begin{align*}
\frac{1}{W_{J}} \sum_{j \in J} w_{j} \Phi\left(x_{j}\right) & \geq \frac{1}{W_{J}} \sum_{i=1}^{n} W_{J_{i}} \Phi\left(\frac{1}{W_{J_{i}}} \sum_{j \in J_{i}} w_{j} x_{j}\right) \tag{3}\\
& \geq \Phi\left(\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right)
\end{align*}
$$

for any $F_{n}(J) \in \mathfrak{D}_{n}(J)$.
The following reverse of Jensen's inequality is known in the literature as Lah-Ribarić inequality [20]:

$$
\begin{align*}
& \frac{\int_{\Omega}(\Phi \circ f) w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu} \tag{4}\\
& \quad \leq \frac{1}{M-m}\left[\left(M-\frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right) \Phi(m)+\left(\frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}-m\right) \Phi(M)\right],
\end{align*}
$$

provided $\Phi:[m, M] \rightarrow \mathbb{R}$ is a convex function, $f: \Omega \rightarrow[m, M]$ is a μ measurable function and such that $f, \Phi \circ f \in L_{w}(\Omega, \mu)$.

For other results and applications related to Ky Fan's inequality, the arithmetic mean-geometric mean inequality, the generalized triangle inequality, the f-Divergence measure etc., see [1], [3]-[16], [17]-[19] and [22, 23].

Motivated by the above results we establish in this paper some refinements of Lah-Ribarić inequality for the general Lebesgue integral on divisions of measurable space. Applications for discrete inequalities and weighted means of positive numbers are also given. Some examples related to Hermite-Hadamard inequality for convex functions are provided as well.

2. THE RESULTS

Let $\Phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ and for $a, b \in I$ with $a<b$ consider the function $\Delta(\Phi ; a, b, \cdot): \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
\Delta(\Phi ; a, b, t)=\frac{(b-t) \Phi(a)+(t-a) \Phi(b)}{b-a}
$$

This is the straight line that connects the points $(a, \Phi(a))$ and $(b, \Phi(b))$.
The following lemma holds:
Lemma 2.1. Let $\Phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $a, b, c, d \in I$ with $a<c<d<b$. Then

$$
\begin{equation*}
\Phi(t) \leq \Delta(\Phi ; c, d, t) \leq \Delta(\Phi ; a, b, t) \tag{5}
\end{equation*}
$$

for any $t \in[c, d]$.
Proof. By the convexity of Φ we have for any $t \in[c, d]$ that

$$
\begin{aligned}
\Delta(\Phi ; c, d, t) & -\Phi(t)=\frac{(d-t) \Phi(c)+(t-c) \Phi(d)}{d-c}-\Phi(t) \\
& =\frac{(d-t) \Phi(c)+(t-c) \Phi(d)}{d-c}-\Phi\left(\frac{(d-t) c+(t-c) d}{d-c}\right) \geq 0 .
\end{aligned}
$$

We observe that for $t \in[a, b]$,

$$
y=\frac{(b-t) \Phi(a)+(t-a) \Phi(b)}{b-a}
$$

is the equation of the segment joining the points $(a, \Phi(a))$ and $(b, \Phi(b))$ while

$$
y=\frac{(d-t) \Phi(c)+(t-c) \Phi(d)}{d-c}, t \in[c, d]
$$

is the equation of the segment joining the points $(c, \Phi(c))$ and $(d, \Phi(d))$.
Since the function Φ is convex on I the segment on the smaller interval $[c, d]$ is under the segment on the larger interval $[a, b]$ containing $[c, d]$.

These prove the desired inequality (5).

For a division $F_{n}(\Omega)=\left\{\Omega_{i}\right\}_{i \in\{1, \ldots, n\}} \in \mathfrak{D}_{n}(\Omega)$ and the measurable essentially bounded function $f: \Omega \rightarrow \mathbb{R}$ we denote $M_{i}:=\operatorname{essup}_{x \in \Omega_{i}} f(x)<\infty$ and $m_{i}:=\operatorname{essinf}_{x \in \Omega_{i}} f(x)>-\infty$. We also consider

$$
M:=\operatorname{essup}_{x \in \Omega} f(x)<\infty \text { and } m:=\underset{x \in \Omega}{\operatorname{essinf}} f(x)>-\infty .
$$

Obviously, $M \geq M_{i}$ and $m \leq m_{i}$ for any $i \in\{1, \ldots, n\}$.
We assume in what follows that $M_{i}>m_{i}$ for any $i \in\{1, \ldots, n\}$.
We define the functional

$$
\begin{align*}
& \sigma\left(\Phi, f, w, F_{n}(\Omega)\right) \\
&:=\frac{1}{\int_{\Omega} w \mathrm{~d} \mu} \sum_{i=1}^{n}\left(\int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Delta\left(\Phi ; m_{i}, M_{i}, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \\
&=\frac{1}{\int_{\Omega} w \mathrm{~d} \mu} \sum_{i=1}^{n}\left(\int_{\Omega_{i}} w \mathrm{~d} \mu\right) \times \frac{1}{M_{i}-m_{i}} {\left[\left(M_{i}-\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \Phi\left(m_{i}\right)\right.} \tag{6}\\
&\left.+\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}-m_{i}\right) \Phi\left(M_{i}\right)\right]
\end{align*}
$$

Observe also that

$$
\begin{aligned}
& \Delta\left(\Phi ; m, M, \frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right) \\
& =\frac{1}{M-m}\left[\left(M-\frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right) \Phi(m)+\left(\frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}-m\right) \Phi(M)\right] .
\end{aligned}
$$

We have the following refinement of Lah-Ribarić inequality:
Theorem 2.2. Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a convex function, $f: \Omega \rightarrow[m, M] a$ μ-measurable function such that $f, \Phi \circ f \in L_{w}(\Omega, \mu)$. Then for any $F_{n}(\Omega)=$ $\left\{\Omega_{i}\right\}_{i \in\{1, \ldots, n\}} \in \mathfrak{D}_{n}(\Omega)$ we have

$$
\begin{equation*}
\frac{\int_{\Omega} w(\Phi \circ f) \mathrm{d} \mu}{\int_{\Omega} w \mathrm{~d} \mu} \leq \sigma\left(\Phi, f, w, F_{n}(\Omega)\right) \leq \Delta\left(\Phi ; m, M, \frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right) \tag{7}
\end{equation*}
$$

Proof. From the second inequality (5) we have for

$$
t=\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu} \in\left[m_{i}, M_{i}\right], i \in\{1, \ldots, n\},
$$

that

$$
\begin{align*}
& \Delta\left(\Phi ; m_{i}, M_{i}, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \\
& \leq \Delta\left(\Phi ; m, M, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)=\frac{1}{M-m} {\left[\left(M-\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \Phi(m)\right.} \tag{8}\\
&+\left.\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}-m\right) \Phi(M)\right]
\end{align*}
$$

for any $i \in\{1, \ldots, n\}$.
If we multiply by $\int_{\Omega_{i}} w \mathrm{~d} \mu>0$ and sum over i from 1 to n we get

$$
\begin{aligned}
& \sum_{i=1}^{n}\left(\int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Delta\left(\Phi ; m_{i}, M_{i}, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \\
& \leq \frac{1}{M-m}\left[\left(M \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu-\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi(m)\right. \\
&\left.+\left(\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu-m \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi(M)\right]
\end{aligned}
$$

that is equivalent to the second inequality in (7).
For μ-almost every $x \in \Omega_{i}$ we have $f(x) \in\left[m_{i}, M_{i}\right]$ and then by the first inequality in (5) we have

$$
\Phi(f(x)) \leq \Delta\left(\Phi ; m_{i}, M_{i}, f(x)\right)
$$

namely,
(9) $\quad \Phi(f(x)) \leq \frac{1}{M_{i}-m_{i}}\left[\left(M_{i}-f(x)\right) \Phi\left(m_{i}\right)+\left(f(x)-m_{i}\right) \Phi\left(M_{i}\right)\right]$
μ-almost every $x \in \Omega_{i}$ and for any $i \in\{1, \ldots, n\}$.
If we multiply by $w \geq 0 \mu$-almost everywhere and integrate on Ω_{i} we get

$$
\begin{align*}
& \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu \\
& \leq \frac{1}{M_{i}-m_{i}} \times\left[\left(M_{i} \int_{\Omega_{i}} w \mathrm{~d} \mu-\int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi\left(m_{i}\right)\right. \\
& \left.\quad+\left(\int_{\Omega_{i}} f w \mathrm{~d} \mu-m_{i} \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi\left(M_{i}\right)\right] \tag{10}\\
& =\frac{\int_{\Omega_{i}} w \mathrm{~d} \mu}{M_{i}-m_{i}}\left[\left(\begin{array}{l}
\left(M_{i}-\frac{\int_{\Omega_{i}}}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \Phi\left(m_{i}\right) \\
\left.\quad+\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}-m_{i}\right) \Phi\left(M_{i}\right)\right]
\end{array}\right.\right.
\end{align*}
$$

for any $i \in\{1, \ldots, n\}$.
Now, if we sum the inequality (10) over i from 1 to n we get the first inequality in (7).

The following lemma holds:
Lemma 2.3. Let $\Phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function and $a, b, c, d \in I$ with $a<c<d<b$. Then

$$
\begin{equation*}
0 \leq[\Delta(\Phi ; c, d, t)-\Phi(t)](d-c) \leq[\Delta(\Phi ; a, b, t)-\Phi(t)](b-a) \tag{11}
\end{equation*}
$$

for any $t \in[c, d]$.
Proof. We observe that for any $t \in(c, d)$ we also have

$$
\begin{aligned}
\Delta(\Phi ; c, d, t)-\Phi(t) & =\frac{(d-t) \Phi(c)+(t-c) \Phi(d)}{d-c}-\Phi(t) \\
& =\frac{(d-t) \Phi(c)+(t-c) \Phi(d)-(d-c) \Phi(t)}{d-c} \\
& =\frac{(d-t) \Phi(c)+(t-c) \Phi(d)-(d-t+t-c) \Phi(t)}{d-c} \\
& =\frac{(t-c)(\Phi(d)-\Phi(t))-(d-t)(\Phi(t)-\Phi(c))}{d-c} \\
& =\frac{(t-c)(d-t)}{d-c}\left(\frac{\Phi(d)-\Phi(t)}{d-t}-\frac{\Phi(t)-\Phi(c)}{t-c}\right)
\end{aligned}
$$

giving that

$$
\begin{align*}
& {[\Delta(\Phi ; c, d, t)-\Phi(t)](d-c)} \\
& \quad=(t-c)(d-t)\left(\frac{\Phi(d)-\Phi(t)}{d-t}-\frac{\Phi(t)-\Phi(c)}{t-c}\right) \tag{12}
\end{align*}
$$

Similarly we have

$$
\begin{align*}
& {[\Delta(\Phi ; a, b, t)-\Phi(t)](b-a)} \\
& \quad=(t-a)(b-t)\left(\frac{\Phi(b)-\Phi(t)}{b-t}-\frac{\Phi(t)-\Phi(a)}{t-a}\right) \tag{13}
\end{align*}
$$

for any $t \in I$.
It is know that, since $\Phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ is a convex function, then for any $\alpha \in I$ the function $\psi: I \backslash\{\alpha\} \rightarrow \mathbb{R}$,

$$
\psi(s):=\frac{\Phi(s)-\Phi(\alpha)}{s-\alpha}
$$

is monotonic nondecreasing on $I \backslash\{\alpha\}$.
Then for $t \in(c, d)$ we have

$$
\frac{\Phi(d)-\Phi(t)}{d-t} \leq \frac{\Phi(b)-\Phi(t)}{b-t}
$$

and

$$
\frac{\Phi(t)-\Phi(c)}{t-c}=\frac{\Phi(c)-\Phi(t)}{c-t} \geq \frac{\Phi(a)-\Phi(t)}{a-t}=\frac{\Phi(t)-\Phi(a)}{t-a}
$$

giving that

$$
\begin{equation*}
\frac{\Phi(d)-\Phi(t)}{d-t}-\frac{\Phi(t)-\Phi(c)}{t-c} \leq \frac{\Phi(b)-\Phi(t)}{b-t}-\frac{\Phi(t)-\Phi(a)}{t-a} \tag{14}
\end{equation*}
$$

for any $t \in(c, d)$.
We also have

$$
\begin{equation*}
0 \leq(t-c)(d-t) \leq(t-a)(b-t) \tag{15}
\end{equation*}
$$

for any $t \in(c, d)$.
Therefore, by (14) and (15) we get

$$
\begin{align*}
& (t-c)(d-t)\left(\frac{\Phi(d)-\Phi(t)}{d-t}-\frac{\Phi(t)-\Phi(c)}{t-c}\right) \\
& \quad \leq(t-a)(b-t)\left(\frac{\Phi(b)-\Phi(t)}{b-t}-\frac{\Phi(t)-\Phi(a)}{t-a}\right) \tag{16}
\end{align*}
$$

for any $t \in(c, d)$.
If $t=c$ then (11) becomes

$$
0 \leq \Delta(\Phi ; a, b, c)-\Phi(c)
$$

namely

$$
0 \leq \frac{(b-c) \Phi(a)+(c-a) \Phi(b)}{b-a}-\Phi(c)
$$

that is also obvious by the convexity of Φ.
The case $t=d$ is similar and the details are omitted.
The following result also holds:
Theorem 2.4. Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a convex function, $f: \Omega \rightarrow[m, M]$ a μ-measurable function such that $f, \Phi \circ f \in L_{w}(\Omega, \mu)$. Then for any $F_{n}(\Omega)=$ $\left\{\Omega_{i}\right\}_{i \in\{1, \ldots, n\}} \in \mathfrak{D}_{n}(\Omega)$ we have

$$
\begin{align*}
0 & \leq \frac{1}{(M-m) \int_{\Omega} w \mathrm{~d} \mu}\left[\sum_{i=1}^{n}\left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right) \Phi\left(m_{i}\right)\right. \\
& +\sum_{i=1}^{n}\left(\int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu\right) \Phi\left(M_{i}\right) \tag{17}\\
& \left.-\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \int_{\Omega_{i}} w \mathrm{~d} \mu\right] \\
& \leq \Delta\left(\Phi ; m, M, \frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right)-\psi\left(\Phi, f, w, F_{n}(\Omega)\right),
\end{align*}
$$

where $\psi\left(\Phi, f, w, F_{n}(\Omega)\right)$ is defined by (1).

Proof. From the inequality (11) we have for

$$
t=\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu} \in\left[m_{i}, M_{i}\right], i \in\{1, \ldots, n\}
$$

that

$$
\begin{align*}
0 & \leq\left[\Delta\left(\Phi ; m_{i}, M_{i}, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)-\Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)\right]\left(M_{i}-m_{i}\right) \tag{18}\\
& \leq\left[\Delta\left(\Phi ; m, M, \frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)-\Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)\right](M-m)
\end{align*}
$$

for any $i \in\{1, \ldots, n\}$.
This inequality is equivalent to

$$
\begin{align*}
0 & \leq\left(M_{i}-\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \Phi\left(m_{i}\right)+\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}-m_{i}\right) \Phi\left(M_{i}\right) \\
& -\Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)\left(M_{i}-m_{i}\right) \\
& \leq\left(M-\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \Phi(m)+\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}-m\right) \Phi(M) \tag{19}\\
& -(M-m) \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)
\end{align*}
$$

for any $i \in\{1, \ldots, n\}$.
If we multiply this inequality by $\int_{\Omega_{i}} w \mathrm{~d} \mu>0$ we get

$$
\begin{align*}
0 \leq & \left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right) \Phi\left(m_{i}\right) \\
& +\left(\int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu\right) \Phi\left(M_{i}\right) \\
- & \left(M_{i}-m_{i}\right) \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \int_{\Omega_{i}} w \mathrm{~d} \mu \\
\leq & \left(M \int_{\Omega_{i}} w \mathrm{~d} \mu-\int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi(m) \tag{20}\\
+ & \left(\int_{\Omega_{i}} f w \mathrm{~d} \mu-m \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi(M) \\
& -(M-m) \int_{\Omega_{i}} w \mathrm{~d} \mu \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right)
\end{align*}
$$

for any $i \in\{1, \ldots, n\}$.

Now, if we sum the inequality (20) over i from 1 to n we get

$$
\begin{aligned}
0 \leq & \sum_{i=1}^{n}\left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right) \Phi\left(m_{i}\right) \\
& +\sum_{i=1}^{n}\left(\int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu\right) \Phi\left(M_{i}\right) \\
- & \sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \int_{\Omega_{i}} w \mathrm{~d} \mu \\
\leq & \left(M \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu-\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi(m) \\
+ & \left(\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu-m \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi(M) \\
- & (M-m) \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu \Phi\left(\frac{\int_{\Omega_{i}} f w \mathrm{~d} \mu}{\int_{\Omega_{i}} w \mathrm{~d} \mu}\right) \\
& =\left(M \int_{\Omega} w \mathrm{~d} \mu-\int_{\Omega} f w \mathrm{~d} \mu\right) \Phi(m) \\
& +\left(\int_{\Omega} f w \mathrm{~d} \mu-m \int_{\Omega} w \mathrm{~d} \mu\right) \Phi(M) \\
& \quad-(M-m) \psi\left(\Phi, f, w, F_{n}(\Omega)\right) \int_{\Omega} w \mathrm{~d} \mu,
\end{aligned}
$$

which is equivalent to the desired result (17).
The following result also holds.
Theorem 2.5. Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a convex function, $f: \Omega \rightarrow[m, M] a$ μ-measurable function such that $f, \Phi \circ f \in L_{w}(\Omega, \mu)$. Then for any $F_{n}(\Omega)=$ $\left\{\Omega_{i}\right\}_{i \in\{1, \ldots, n\}} \in \mathfrak{D}_{n}(\Omega)$ we have

$$
\begin{align*}
& 0 \leq \frac{1}{(M-m) \int_{\Omega} w \mathrm{~d} \mu} {\left[\sum_{i=1}^{n} \Phi\left(m_{i}\right)\left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right)\right.} \\
&\left.+\sum_{i=1}^{n} \Phi\left(M_{i}\right) \int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu-\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu\right] \tag{22}\\
& \leq \Delta\left(\Phi ; m, M, \frac{\int_{\Omega} f w \mathrm{~d} \mu}{\int_{\Omega} w \mathrm{~d} \mu}\right)-\int_{\Omega} w(\Phi \circ f) \mathrm{d} \mu .
\end{align*}
$$

Proof. For μ-almost every $x \in \Omega_{i}$ we have $f(x) \in\left[m_{i}, M_{i}\right], i \in\{1, \ldots, n\}$ and then by the inequality (11) we get

$$
\begin{align*}
& 0 \leq\left[\Delta\left(\Phi ; m_{i}, M_{i}, f(x)\right)-\Phi(f(x))\right]\left(M_{i}-m_{i}\right) \\
& \leq[\Delta(\Phi ; m, M, f(x))-\Phi(f(x))](M-m) \tag{23}
\end{align*}
$$

for μ-almost every $x \in \Omega_{i}$.
This is equivalent to

$$
\begin{aligned}
0 & \leq\left(M_{i}-f(x)\right) \Phi\left(m_{i}\right)+\left(f(x)-m_{i}\right) \Phi\left(M_{i}\right)-\Phi(f(x))\left(M_{i}-m_{i}\right) \\
& \leq(M-f(x)) \Phi(m)+(f(x)-m) \Phi(M)-\Phi(f(x))(M-m)
\end{aligned}
$$

for μ-almost every $x \in \Omega_{i}$ and every $i \in\{1, \ldots, n\}$.
If we multiply by $w \geq 0 \mu$-almost everywhere and integrate on Ω_{i} we get

$$
\begin{aligned}
0 & \leq \Phi\left(m_{i}\right)\left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right)+\Phi\left(M_{i}\right) \int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu \\
& -\left(M_{i}-m_{i}\right) \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu \\
& \leq\left(M \int_{\Omega_{i}} w \mathrm{~d} \mu-\int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi(m)+\left(\int_{\Omega_{i}} f w \mathrm{~d} \mu-m \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi(M) \\
& -(M-m) \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu
\end{aligned}
$$

for every $i \in\{1, \ldots, n\}$.
If we sum over i from 1 to n we get

$$
\begin{aligned}
0 & \leq \sum_{i=1}^{n} \Phi\left(m_{i}\right)\left(\int_{\Omega_{i}}\left(M_{i}-f\right) w \mathrm{~d} \mu\right)+\sum_{i=1}^{n} \Phi\left(M_{i}\right) \int_{\Omega_{i}}\left(f-m_{i}\right) w \mathrm{~d} \mu \\
& -\sum_{i=1}^{n}\left(M_{i}-m_{i}\right) \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu \\
& \leq\left(M \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu-\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu\right) \Phi(m) \\
& +\left(\sum_{i=1}^{n} \int_{\Omega_{i}} f w \mathrm{~d} \mu-m \sum_{i=1}^{n} \int_{\Omega_{i}} w \mathrm{~d} \mu\right) \Phi(M) \\
& -(M-m) \sum_{i=1}^{n} \int_{\Omega_{i}} w(\Phi \circ f) \mathrm{d} \mu
\end{aligned}
$$

which is equivalent to (22).

3. DISCRETE INEQUALITIES

Assume that, for $n \geq 2$, we have a family J of indices containing more than n elements and $F_{n}(J)=\left\{J_{i}\right\}_{i \in\{1, \ldots, n\}}$ is a n-division for J, namely $J=\bigcup_{i=1}^{n} J_{i}$ and $J_{i} \cap J_{j}=\emptyset$ for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$.

Let $\Phi: I \subset \mathbb{R} \rightarrow \mathbb{R}$ be a convex function, $\left\{x_{j}\right\}_{j \in J} \subset I$ and put $m:=$ $\min _{j \in J}\left\{x_{j}\right\}$ and $M:=\max _{j \in J}\left\{x_{j}\right\}$. Also let $m_{J_{i}}:=\min _{j \in J i}\left\{x_{j}\right\}$ and $M_{J_{i}}=$ $\max _{j \in J i}\left\{x_{j}\right\}$ and assume that $m_{J_{i}}<M_{J_{i}}$ for $i \in\{1, \ldots, n\}$. For a nonempty
finite family of indices J and positive weights $w_{j}, j \in J$ we denote $W_{J}:=$ $\sum_{j \in J} w_{j}$.

Consider the discrete version of the functional (6)

$$
\begin{aligned}
& \sigma\left(\Phi, x, w, F_{n}(J)\right) \\
& \qquad=\frac{1}{W_{J}} \sum_{i=1}^{n} W_{J_{i}} \Delta\left(\Phi ; m_{J_{i}}, M_{J_{i}}, \frac{\sum_{j \in J_{i}} w_{j} x_{j}}{W_{J_{i}}}\right) \\
& =\frac{1}{W_{J}} \sum_{i=1}^{n} \frac{W_{J_{i}}}{M_{J_{i}}-m_{J_{i}}} \\
& \quad \times\left[\left(M_{J_{i}}-\frac{\sum_{j \in J_{i}} w_{j} x_{j}}{W_{J_{i}}}\right) \Phi\left(m_{i}\right)+\left(\frac{\sum_{j \in J_{i}} w_{j} x_{j}}{W_{J_{i}}}-m_{J_{i}}\right) \Phi\left(M_{J_{i}}\right)\right]
\end{aligned}
$$

If we write the inequality (7) for the discrete measure we get
(25) $\quad \frac{1}{W_{J}} \sum_{j \in J} w_{j} \Phi\left(x_{j}\right) \leq \sigma\left(\Phi, x, w, F_{n}(J)\right) \leq \Delta\left(\Phi ; m, M, \frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right)$.

From (17) we have

$$
\begin{align*}
& 0 \leq \frac{1}{(M-m) W_{J}}\left[\sum_{i=1}^{n}\left(\sum_{j \in J_{i}}\left(M_{J_{i}}-x_{j}\right) w_{j}\right) \Phi\left(m_{J_{i}}\right)\right. \\
&+\sum_{i=1}^{n}\left(\sum_{j \in J_{i}}\left(x_{j}-m_{J_{i}}\right) w_{j}\right) \Phi\left(M_{J_{i}}\right) \tag{26}\\
&\left.-\sum_{i=1}^{n}\left(M_{J_{i}}-m_{J_{i}}\right) \Phi\left(\frac{\sum_{j \in J_{i}} x_{j} w_{j}}{W_{J_{i}}}\right) W_{J_{i}}\right] \\
& \leq \Delta\left(\Phi ; m, M, \frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right)-\psi\left(\Phi, x, w, F_{n}(J)\right)
\end{align*}
$$

where

$$
\psi\left(\Phi, f, w, F_{n}(J)\right):=\frac{1}{W_{J}} \sum_{i=1}^{n} W_{J_{i}} \Phi\left(\frac{1}{W_{J_{i}}} \sum_{j \in J_{i}} w_{j} x_{j}\right)
$$

From (22) we also have

$$
\begin{align*}
0 & \leq \frac{1}{(M-m) W_{J}}\left[\sum_{i=1}^{n} \Phi\left(m_{J_{i}}\right)\left(\sum_{j \in J_{i}}\left(M_{J_{i}}-x_{j}\right) w_{j}\right)\right. \\
& \left.+\sum_{i=1}^{n} \Phi\left(M_{J_{i}}\right) \sum_{j \in J_{i}}\left(x_{j}-m_{J_{i}}\right) w_{j}-\sum_{i=1}^{n}\left(M_{J_{i}}-m_{J_{i}}\right) \sum_{j \in J_{i}} w_{j} \Phi\left(x_{j}\right)\right] \tag{27}\\
& \leq \Delta\left(\Phi ; m, M, \frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right)-\frac{1}{W_{J}} \sum_{j \in J} w_{j} \Phi\left(x_{j}\right)
\end{align*}
$$

If we write the above inequalities for the positive numbers $x_{i}>0, i \in\{1, \ldots, n\}$ and the convex power function $\Phi(t)=t^{p}, p \in(-\infty, 0) \cup(1, \infty)$ we have

$$
\begin{align*}
& \frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}^{p} \leq \frac{1}{W_{J}} \sum_{i=1}^{n} \frac{W_{J_{i}}}{M_{J_{i}}-m_{J_{i}}} \times\left[\left(M_{J_{i}}-\frac{\sum_{j \in J_{i}} w_{j} x_{j}}{W_{J_{i}}}\right) m_{i}^{p}\right. \\
& \left.+\left(\frac{\sum_{j \in J_{i}} w_{j} x_{j}}{W_{J_{i}}}-m_{J_{i}}\right) M_{J_{i}}^{p}\right] \\
& \leq \frac{1}{M-m}\left[\left(M-\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right) m^{p}\right. \tag{28}\\
& \left.+\left(\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}-m\right) M^{p}\right],
\end{align*}
$$

$$
\begin{align*}
& 0 \leq \frac{1}{(M-m) W_{J}} {\left[\sum_{i=1}^{n}\left(\sum_{j \in J_{i}}\left(M_{J_{i}}-x_{j}\right) w_{j}\right) m_{J_{i}}^{p}\right.} \\
&+\sum_{i=1}^{n}\left(\sum_{j \in J_{i}}\left(x_{j}-m_{J_{i}}\right) w_{j}\right) M_{J_{i}}^{p} \\
&\left.-\sum_{i=1}^{n}\left(M_{J_{i}}-m_{J_{i}}\right)\left(\sum_{j \in J_{i}} x_{j} w_{j}\right)^{p} W_{J_{i}}^{1-p}\right] \tag{29}\\
& \leq \frac{1}{M-m}\left[\left(M-\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right) m^{p}+\left(\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}-m\right) M^{p}\right] \\
&-\frac{1}{W_{J}} \sum_{i=1}^{n} W_{J_{i}}^{1-p}\left(\sum_{j \in J_{i}} w_{j} x_{j}\right)^{p}
\end{align*}
$$

and

$$
\begin{align*}
& 0 \leq \frac{1}{(M-m) W_{J}}\left[\sum_{i=1}^{n} m_{J_{i}}^{p}\left(\sum_{j \in J_{i}}\left(M_{J_{i}}-x_{j}\right) w_{j}\right)\right. \\
&\left.+\sum_{i=1}^{n} M_{J_{i}}^{p} \sum_{j \in J_{i}}\left(x_{j}-m_{J_{i}}\right) w_{j}-\sum_{i=1}^{n}\left(M_{J_{i}}-m_{J_{i}}\right) \sum_{j \in J_{i}} w_{j} x_{j}^{p}\right] \tag{30}\\
& \leq \frac{1}{M-m}\left[\left(M-\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}\right) m^{p}+\left(\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}-m\right) M^{p}\right] \\
&-\frac{1}{W_{J}} \sum_{j \in J} w_{j} x_{j}^{p} .
\end{align*}
$$

4. SOME INEQUALITIES RELATED TO HH-INEQUALITY

It is clear that all inequalities from Section 2 can be written for univariate functions $f:[a, b] \subset \mathbb{R} \rightarrow[m, M]$ and the functional defined in (6).

We are, however, interested here in the particular case that is related to the celebrated Hermite-Hadamard inequality

$$
\Phi\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} \Phi(t) \mathrm{d} t \leq \frac{\Phi(a)+\Phi(b)}{2}
$$

where $\Phi:[a, b] \rightarrow \mathbb{R}$ is a convex function on $[a, b]$.
Let $\Phi:[m, M] \rightarrow \mathbb{R}$ be a convex function and $f:[a, b] \rightarrow[m, M]$ an integrable function. Consider the division of the interval $[a, b]$ given by

$$
d_{n}: a=x_{0}<x_{1<\cdots<x_{n-1}<x_{n}=b, n \geq 2 . . ~}^{\text {. }}
$$

If we take $\Omega=[a, b]$ and $\Omega_{1}=\left[a, x_{1}\right], \Omega_{i}=\left(x_{i}, x_{i+1}\right]$ for $i \in\{1, \ldots, n-1\}$ then $\Omega=\bigcup_{i=1}^{n} \Omega_{i}$ and $\Omega_{i} \cap \Omega_{j}=\emptyset$ for any $i, j \in\{1, \ldots, n\}$ with $i \neq j$.

By making use of (6) for this division and $f:[a, b] \subset \mathbb{R} \rightarrow[a, b], f(x)=x$, we can consider the functional

$$
\begin{equation*}
\sigma\left(\Phi, d_{n}\right):=\frac{1}{b-a} \sum_{i=1}^{n}\left(x_{i+1}-x_{i}\right) \frac{\Phi\left(x_{i}\right)+\Phi\left(x_{i+1}\right)}{2} . \tag{31}
\end{equation*}
$$

If we use the inequality (7) we have

$$
\begin{array}{r}
\frac{1}{b-a} \int_{a}^{b} \Phi(t) \mathrm{d} t \leq \frac{1}{b-a} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right) \frac{\Phi\left(x_{i}\right)+\Phi\left(x_{i-1}\right)}{2} \tag{32}\\
\leq \frac{\Phi(a)+\Phi(b)}{2} .
\end{array}
$$

This inequality was obtained by the author in 1994 in [2], see also [15, p. 22].

From (17) we have

$$
\begin{align*}
0 \leq \frac{1}{(b-a)^{2}} & \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)^{2}\left[\frac{\Phi\left(x_{i}\right)+\Phi\left(x_{i-1}\right)}{2}-\Phi\left(\frac{x_{i-1}+x_{i}}{2}\right)\right] \\
& \leq \frac{\Phi(a)+\Phi(b)}{2}-\frac{1}{b-a} \sum_{i=1}^{n} \Phi\left(\frac{x_{i}+x_{i-1}}{2}\right)\left(x_{i}-x_{i-1}\right) \tag{33}
\end{align*}
$$

while from (22) we have

$$
\begin{align*}
& 0 \leq \frac{1}{(b-a)^{2}} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)^{2} \\
& \times\left[\frac{\Phi\left(x_{i}\right)+\Phi\left(x_{i-1}\right)}{2}-\frac{1}{x_{i}-x_{i-1}} \int_{x_{i-1}}^{x_{i}} \Phi(x) \mathrm{d} x\right] \tag{34}\\
& \quad \leq \frac{\Phi(a)+\Phi(b)}{2}-\frac{1}{b-a} \int_{a}^{b} \Phi(t) \mathrm{d} t .
\end{align*}
$$

If we take in (33) and $(34) \Phi(t)=\frac{1}{t}, t \in[a, b] \subset(0, \infty)$ then we get the inequalities

$$
\begin{equation*}
\frac{1}{2(b-a)^{2}} \sum_{i=1}^{n} \frac{\left(x_{i}-x_{i-1}\right)^{4}}{x_{i} x_{i-1}\left(x_{i}+x_{i-1}\right)} \leq \frac{a+b}{2 a b}-\frac{2}{b-a} \sum_{i=1}^{n} \frac{x_{i}-x_{i-1}}{x_{i}+x_{i-1}} \tag{35}
\end{equation*}
$$

and

$$
\begin{array}{r}
0 \leq \frac{1}{(b-a)^{2}} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)^{2}\left[\frac{L\left(x_{i}, x_{i-1}\right)-H\left(x_{i}, x_{i-1}\right)}{L\left(x_{i}, x_{i-1}\right) H\left(x_{i}, x_{i-1}\right)}\right] \tag{36}\\
\leq \frac{L(a, b)-H(a, b)}{L(a, b) H(a, b)},
\end{array}
$$

where

$$
H(\alpha, \beta):=\frac{2 \alpha \beta}{\alpha+\beta}
$$

is the harmonic mean while

$$
L(\alpha, \beta):=\frac{\alpha-\beta}{\ln \alpha-\ln \beta}, \alpha \neq \beta
$$

is the logarithmic mean.
If we take in (33) and $(34) \Phi(t)=-\ln t, t \in[a, b] \subset(0, \infty)$ then we get the inequalities

$$
\begin{equation*}
1 \leq \prod_{i=1}^{n}\left(\frac{A\left(x_{i-1}, x_{i}\right)}{G\left(x_{i-1}, x_{i}\right)}\right)^{\frac{\left(x_{i}-x_{i-1}\right)^{2}}{(b-a)^{2}}} \leq \frac{\prod_{i=1}^{n}\left(A\left(x_{i-1}, x_{i}\right)\right)^{\frac{\left(x_{i}-x_{i-1}\right)}{b-a}}}{G(a, b)} \tag{37}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq \prod_{i=1}^{n}\left(\frac{I\left(x_{i-1}, x_{i}\right)}{G\left(x_{i-1}, x_{i}\right)}\right)^{\frac{\left(x_{i}-x_{i-1}\right)^{2}}{(b-a)^{2}}} \leq \frac{I(a, b)}{G(a, b)} \tag{38}
\end{equation*}
$$

where

$$
G(\alpha, \beta):=\sqrt{\alpha \beta}
$$

is the geometric mean while

$$
I(\alpha, \beta):=\frac{1}{e}\left(\frac{\beta^{\beta}}{\alpha^{\alpha}}\right)^{\frac{1}{\beta-\alpha}}, \alpha \neq \beta
$$

is the identric mean.
Now, consider the p-logarithmic mean defined by

$$
L_{p}(\alpha, \beta):=\left(\frac{\beta^{p+1}-\alpha^{p+1}}{(p+1)(\alpha-\beta)}\right)^{1 / p}
$$

where $p \in \mathbb{R} \backslash\{-1,0\}$.
From (33) and (34) we have for $p \in(-\infty, 0) \cup(1, \infty) \backslash\{-1\}$

$$
\begin{align*}
0 & \leq \frac{1}{(b-a)^{2}} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)^{2}\left[A\left(x_{i}^{p}, x_{i-1}^{p}\right)-A^{p}\left(x_{i-1}, x_{i}\right)\right] \tag{39}\\
& \leq A\left(a^{p}, b^{p}\right)-\frac{1}{b-a} \sum_{i=1}^{n} A^{p}\left(x_{i-1}, x_{i}\right)\left(x_{i}-x_{i-1}\right)
\end{align*}
$$

and

$$
\begin{array}{r}
0 \leq \frac{1}{(b-a)^{2}} \sum_{i=1}^{n}\left(x_{i}-x_{i-1}\right)^{2}\left[A\left(x_{i}^{p}, x_{i-1}^{p}\right)-L_{p}^{p}\left(x_{i-1}, x_{i}\right)\right] \tag{40}\\
\leq A\left(a^{p}, b^{p}\right)-L_{p}^{p}(a, b) .
\end{array}
$$

REFERENCES

[1] S. Abramovich, S. Ivelić and J. Pečarić, Generalizations of Jensen-Steffensen and related integral inequalities for superquadratic functions, CEJOR Cent. Eur. J. Oper. Res., 8 (2010), 937-949.
[2] S.S. Dragomir, Some remarks on Hadamard's inequalities for convex functions, Extracta Math., 9 (1994), 88-94.
[3] S.S. Dragomir, An improvement of Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie (N.S.), 34 (82) (1990), 291-296.
[4] S.S. Dragomir, Some refinements of Ky Fan's inequality, J. Math. Anal. Appl., 163 (1992), 317-321.
[5] S.S. Dragomir, Some refinements of Jensen's inequality, J. Math. Anal. Appl., 168 (1992), 518-522.
[6] S.S. Dragomir, A further improvement of Jensen's inequality, Tamkang J. Math., 25 (1994), 29-36.
[7] S.S. Dragomir, A new improvement of Jensen's inequality, Indian J. Pure Appl. Math., 26 (1995), 959-968.
[8] S.S. Dragomir, A refinement of Jensen's inequality with applications for f-divergence measures, Taiwanese J. Math., 14 (2010), 153-164.
[9] S.S. Dragomir, A new refinement of Jensen's inequality in linear spaces with applications, Mathematical and Computer Modelling, 52 (2010), 1497-1505.
[10] S.S. Dragomir, Some reverses of the Jensen inequality with applications, Bull. Aust. Math. Soc., 87 (2013), 177-194.
[11] S.S. Dragomir and N.M. Ionescu, Some converse of Jensen's inequality and applications, J. Numer. Anal. Approx. Theory, 23 (1994), 71-78.
[12] S.S. Dragomir and C.J. Goh, A counterpart of Jensen's discrete inequality for differentialble convex mappings and applications in information theory, Mathematical and Computer Modelling, 24 (1996), 1-11.
[13] S.S. Dragomir and M.A. Khan, Refinement of the Jensen integral inequality, Research Group in Mathematical Inequalities and Applications, Research Report Collection, 18, Article 94 (2015), 1-10.
[14] S.S. Dragomir, Refining Jensen's integral inequality for divisions of measurable space, Research Group in Mathematical Inequalities and Applications, Research Report Collection, 18, Article 97 (2015), 1-14.
[15] S.S. Dragomir and C.E.M. Pearce, Selected Topics on Hermite-Hadamard Inequalities and Applications, Research Group in Mathematical Inequalities and Applications, Monographs, Victoria University, 2000.
[16] S.S. Dragomir, J. Pečarić and L.E. Persson, Properties of some functionals related to Jensen's inequality, Acta Math. Hungar., 70 (1996), 129-143.
[17] L. Hortháth, Inequalities corresponding to the classical Jensen's inequality, Journal of Mathematical Inequalities, 3 (2009), 189-200.
[18] L. Hortháth, A refinement of the integral form of Jensen's inequality, J. Inequal. Appl., 2012, Article 178 (2012), 1-19.
[19] S. Khalid and J. Pečarić, On the refinement of the integral Jensen-Steffensen inequality, J. Inequal. Appl., 2013, Article 20 (2013), 1-18.
[20] P. Lah and M. Ribarič, Converse of Jensen's inequality for convex functions, Publikacije Elektrotehničkog fakulteta, Serija Matematika i fizika, 412/460 (1973), 201-205.
[21] J. Pečarić and S.S. Dragomir, A refinements of Jensen inequality and applications, Stud. Univ. Babes-Bolyai Math., 24 (1989), 15-19.
[22] F. Qi and M.L. Yang, Comparisons of two integral inequalities with Hermite-HadamardJensen's integral inequality, Research Group in Mathematical Inequalities and Applications, Research report collection, 8 (2005), 1-6.
[23] Z.Y. Song, Discussion on the integral type Jensen inequality for P-convex functions (in Chinese), Pure Appl. Math. (Xi'an), 28 (2012), 36-40.

Received July 28, 2017
Accepted August 23, 2017

Victoria University
Mathematics, College of Engineering $\mathfrak{8}$ Science
PO Box 14428
Melbourne City, MC 8001, Australia
University of the Witwatersrand
School of Computer Science \& Applied Mathematics
Private Bag 3, Johannesburg 2050, South Africa
E-mail: sever.dragomir@vu.edu.au

