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SOME NEW RESULTS ON THE JOIN GRAPH
OF GIVEN GROUPS

AREFEH ASRARI and BEHNAZ TOLUE

Abstract. Recently, H. Ahmadi et al. defined the join graph associated to a
finite group. They studied this graph not only on graph theoretic points, but
also on group theoretic cases. They classified finite groups with planar complete
join graph and with domination number 1. Moreover, some graph theoretical
properties, such as its regularity, clique, chromatic number, bounds for its di-
ameter and girth, was discussed in their research. In this paper, we approach
to this graph in the other cases. For instance, the eccentric connectivity, total
eccentricity, Wiener index, hyper Wiener index, first, second and third Zagreb
index, domination and Hosoya polynomial are computed for the join graph of
the class of the groups Zp2 × Zp and Z2n × Z2, where p is a prime number and
n is a positive integer.
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1. INTRODUCTION

Suppose G is a finite group. H. Ahmadi et al. defined an undirected simple
graph ∆(G) whose vertices are the proper subgroups of G, which are not
contained in the Frattini subgroup of G. Moreover, two vertices H and K are
joined by an edge if and only if G = 〈H,K〉. This is called the join graph
associated to the group G. They classified finite groups using planar graphs,
complete graphs and those with domination number 1. Moreover, some graph
theoretical properties, such as its regularity, clique, chromatic number, bounds
for its diameter and girth, was discussed in the series of papers [1, 2, 3].

In this paper, we study the join graph of some special groups and, in the
process of the verification of the graph theoretical properties of their join
graph, we gain some precise knowledge about their subgroups.

In chemical graph theory, the Wiener index is a topological index of a
molecule, defined as the sum of the lengths of the shortest paths between all
pairs of vertices in the molecule. For the connected graph Γ, the Wiener index
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is defined as
W (Γ) =

∑
{u,v}⊆V (Γ)

d(u, v).

The Wiener index is named after Harry Wiener, who introduced it in 1947.
Based on its success, many other topological indices were introduced. The
Wiener index was extended to the hyper Wiener index. The hyper Wiener
index is

WW (Γ) =
1

2

∑
{u,v}⊆V (Γ)

d(u, v) +
1

2

∑
{u,v}⊆V (Γ)

d2(u, v).

The first and second Zagreb index are important topological indices which are
defined by Gutman and Trinajestic [6]. The graph invariants M1(Γ), M2(Γ)
and irr(Γ), known as the first, second and third Zagrebs, are defined as follows:

M1(Γ) =
∑

v∈V (Γ)

(deg(v))2,

M2(Γ) =
∑

uv∈E(Γ)

deg(u)deg(v),

irr(Γ) =
∑

uv∈E(Γ)

|deg(u)− deg(v)|,

respectively. The third Zagreb is called the irregularity index too. The subset
of vertices T is called a dominating set for the graph Γ, if every vertex outside
T is joined to at least one vertex in T . The size of the smallest dominating set
is called the domination number and is denoted by γ(Γ). Alikhani and Peng
[4] have introduced the domination polynomial of a graph. The domination
polynomial of Γ is

D(Γ, x) =

|V (Γ)|∑
i=γ(Γ)

d(Γ, i)xi,

where d(Γ, i) is the number of dominating sets of size i. The Hosoya polynomial
of a graph was introduced in Hosoya’s paper [7] in 1988 and received a lot of
attention. The Hosoya polynomial of the graph Γ is

H(Γ, x) =
∑

{u,v}⊆V (Γ)

xd(u,v).

In the next section, we consider the group Zp2 × Zp and its subgroups, where
p is a prime number. The structure of ∆(Zp2 × Zp) is clarified. The number
of induced and non-induced cycles with k vertices is presented by a formula
for this graph. We observe that the induced subgraph of ∆(Zp2 × Zp) on
the center vertices is Kp. Furthermore, some graph parameters, such as the
eccentric connectivity, total eccentricity, Wiener index, hyper Wiener index,
first, second and third Zagreb index, dominating and Hosoya polynomial of
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∆(Zp2 × Zp), are computed. Finally, we consider the join graph of the group
Z2n × Z2 and some of its properties are verified.

2. THE JOIN GRAPH OF THE GROUP Zp2 × Zp
There are many papers devoted to the subgroups of various finite abelian

groups, for instance see the recent paper [8]. Let us start with the following
result about the group Zp2 × Zp.

Theorem 2.1. If G = Zp2 × Zp, then the number of the subgroups of order

p is p+ 1 and the number of subgroups of order p2 is p+ 1.

Proof. Let H be a non-trivial subgroup of G. Therefore |H| = p, p2. Clearly
the subgroups generated by (0, b) are of order p and all of them are equal,
where 0 6= b ∈ Zp. On the other hand, the elements of order p in Zp2 form
a subgroup of order p; more precisely, the subgroup generated by an element
(a, 0) ∈ Zp2 × Zp, where a = kp, 1 ≤ k ≤ p− 1. Note that all such subgroups
are equal. Moreover, all the elements of the form (a, b) ∈ Zp2 × Zp generate a
subgroup of order p such that a and b are of order p in Zp2 and Zp, respectively.
The number of elements of order p in both Zp2 and Zp is (p−1). Thus there are

(p−1)2 elements of order p in Zp2×Zp. But the subgroups generated by them
are not distinct. Actually, the number of repetitive subgroups is (p−1)(p−2).
Therefore, the number of distinct subgroups of this type is p − 1. Hence the
number of subgroups of order p is p + 1. The subgroups generated by (1, b)
are of order p2, where b ∈ Zp2 , 0 ≤ b ≤ p − 1. Moreover, 〈(0, 1), (p, 1)〉 is a

non-cyclic group of order p2. �

Since the Frattini subgroup of G is Φ(G) = {(0, 0), (p, 0), (2p, 0), (3p, 0), . . . ,
((p − 1)p, 0)}, the join graph of the group G = Zp2 × Zp has 2p + 1 vertices
and (

2p+ 1
2

)
−
(
p+ 1

2

)
edges. Moreover, all the vertices can be classified in two parts: the upper part
vertices 〈(0, 1)〉, 〈(p, 1)〉, 〈(p, 2)〉, . . . , 〈(p, p − 1)〉, 〈(0, 1), (p, 1)〉 and the lower
part vertices 〈(1, 0)〉, 〈(1, 1)〉, 〈(1, 2)〉, . . . , 〈(1, p − 1)〉. The vertices which are
located in the upper part are not joined to each other, but they are adjacent
to all the vertices of lower part. Therefore, the degree of all the upper part
vertices is p and, since the lower part vertices are adjacent, their degree is 2p.
Furthermore, elementary formulas for this graph follow by its structure, for
instance diam(∆(Zp2 × Zp)) = 2, girth(∆(Zp2 × Zp)) = 3, ω(∆(Zp2 × Zp)) =
p+ 1, χ(∆(Zp2 × Zp)) = p+ 1 and α((∆(Zp2 × Zp)) = p+ 1.

Example 2.2. Let G = Z4 × Z2. It has 3 subgroups of order 2, 〈(0, 1)〉,
〈(2, 0)〉 and 〈(2, 1)〉. Moreover, 〈(1, 0)〉, 〈(1, 1)〉 and 〈(0, 1), (2, 1)〉 are its sub-
groups of order 4. Clearly Φ(G) = 〈(2, 0)〉 and so one can draw ∆(G) as
in the Figure 2.1. Taking into account Figure 2.1, one can deduce that
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〈(0, 1)〉

〈(2, 1)〉

〈(0, 1), (2, 1)〉

〈(1, 0)〉〈(1, 1)〉

Fig. 2.1 – ∆(Z4 × Z2)

W (∆(G)) = 13, WW (∆(G)) = 16, M1(∆(G)) = 44, M2(∆(G)) = 64 and
irr(∆(G)) = 12.

A graph Γ is a split graph if and only if there is a partition V (Γ) = C ] I,
where C is a complete and I an independent set (see [5] for more details). Split
graphs were first studied by Földes and Hammer and independently introduced
by Tyshkevich and Chernyak. It is clear that ∆(Zp2×Zp) splits into the upper
and lower parts which are independent and complete sets, respectively.

A chordless cycle in a graph, or an induced cycle, is a cycle such that no
two vertices of the cycle are connected by an edge that does not itself belong
to the cycle.

Theorem 2.3. The join graph of the group Zp2×Zp has
(
p
3

)
+(p+1)

(
p
2

)
induced cycles with k = 3 vertices.

Note that for the join graph of the group Zp2×Zp, there is no induced cycle
with k > 3. Since ∆(Zp2 × Zp) is a split graph and split graphs are graphs
that are both chordal and complements of chordal graphs, chordal and chordal
graphs have no induced cycles with more than 3 vertices.

The adjacency matrix of the join graph of the group Zp2 × Zp has the
following structure.

Proposition 2.4. The adjacency matrix A of the join graph of the group
Zp2 ×Zp is an m×m matrix, where m = 2p+ 1. For the first p+ 1 rows of A,
the first p+ 1 arrays are zero and the rest p arrays are 1. From the (p+ 2)th
row on, all the arrays are 1 except the diagonal arrays.

Theorem 2.5. The number of non-induced cycles with k vertices for the
join graph ∆(Zp2 × Zp) is obtained by the following formula:

(
2p+ 1
k

)
−
(
p+ 1
k

)
− p
(
p+ 1
k − 1

)
−
k−2∑
i=2

(
p

k − i
)(

p+ 1
i

)
.
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Proof. If k = 3, then the number of cycles with 3 vertices of the complete

graph K2p+1 is
(

2p+ 1
3

)
, but ∆(Zp2 × Zp) is not a complete graph. There-

fore, some of these cycles are additional, so we omit them. The p+ 1 vertices
on the upper part are not adjacent and they are not the good candidates for
a triangle. Moreover, any p vertices of the lower part with two vertices in the
upper part are not suitable too. Hence the result is clear for k = 3. Now, we
can finish the proof by induction on k. �

Recall the eccentric of the vertex u in the graph Γ is ξΓ(u) = Max{d(u, v) :
v ∈ V (Γ)} and the radius of the graph Γ is the smallest value of the eccentricity
Γ. The center of the graph is a subset of vertices for which their eccentricity
is equal to the radius of the graph.

Proposition 2.6. The induced subgraph on the center of the join graph
∆(Zp2 × Zp) is Kp.

Proof. Since the vertices in the lower part of the graph ∆(Zp2 × Zp) are
mutually adjacent, they have the eccentricity one. The induced subgraph of
these p vertices is a complete graph. �

The eccentric connectivity of a graph Γ is defined as

ξc(Γ) =
∑

u∈V (Γ)

degΓ(u)ξΓ(u).

Moreover, the sum of all the eccentricities of a graph is called the total eccen-
tricity and is denoted by ζ(Γ), and thus ζ(Γ) =

∑
u∈V (Γ) ξΓ(u).

Proposition 2.7. Let G = Zp2 × Zp. Then:

(i) ξc(∆(G)) = 2p(2p+ 1).
(ii) ζ(∆(G)) = 3p+ 2.

Proof. (i) By the structure of the graph which was explained after Theorem
2.1, we deduce that the upper and lower part vertices have eccentricity 2, 1
and degree p, 2p, respectively. The rest of the assertion is clear. �

Theorem 2.8. Let G = Zp2 × Zp. Then:

(i) The Wiener index of the join graph of the group ∆(G) is obtained by

2
(
p+ 1

2

)
+
[(

2p+ 1
2

)
−
(
p+ 1

2

)]
=
(
p+ 1

2

)
+
(

2p+ 1
2

)
.

(ii) The hyper Wiener index is WW (∆(G)) = 2
(
p+ 1

2

)
+
(

2p+ 1
2

)
.

Proof. (i) By the structure of the graph, there are p+1 vertices such that the

shortest path between every pair of them is 2. We can chose them in
(
p+ 1

2

)
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ways. Thus for computing the Wiener index, 2 will be added
(
p+ 1

2

)
times.

Consider the other p vertices that join all the vertices. Then
(

2p+ 1
2

)
times

1 is added to the Wiener index. Since p+ 1 vertices have been counted before,

the subtraction of
(
p+ 1

2

)
yields the result.

(ii) By the definition of hyper Wiener index, it is enough to compute∑
{u,v}⊆V (∆(G)) d

2(u, v), so by the first part, the result follows. �

Theorem 2.9. Let G = Zp2 × Zp.
(i) The first Zagreb index is M1(∆(G)) = 5p3 + p2.

(ii) The second Zagreb index is M2(∆(G)) = 2p3(p+ 1) + 4p2
(
p
2

)
.

(iii) The third Zagreb index (irregularity) is irr(∆(G)) = p2(p+ 1).

Proof. (i) Again, by the structure of the graph, the degree of the vertices is
clarified, so the assertion follows by the definition of the first Zagreb.
(ii) Let e = uv be an edge of ∆(G). It is enough to consider two cases. Firstly,
suppose the vertices u and v are in the lower part. Therefore, their degrees

is 2p and the number of such edges is
(
p
2

)
. Secondly, assume u is located

in the upper part and v in the lower part. Thus, the number of such edges is
p(p+ 1) and, by considering the degree of u and v, the result is clear.
(iii) By the definition of third Zagreb, it is enough to compute |deg(u)−deg(v)|
for all edges such that one of their ends is located in the lower part and another
in the upper part. �

Theorem 2.10. The domination polynomial of the graph ∆(Zp2 × Zp) is

D(∆(Zp2 × Zp), x)

=
[(

2p+ 1
1

)
−
(
p+ 1

1

)]
x+

[(
2p+ 1

2

)
−
(
p+ 1

2

)]
x2

+ · · ·+
[(

2p+ 1
p

)
−
(
p+ 1
p

)]
xp

+
[(

2p+ 1
p+ 1

)
−
(
p+ 1
p+ 1

)]
xp+1 + · · ·+ x2p+1.

Proof. By definition of the domination polynomial, it is enough to compute
the number of dominating sets of size i, 1 ≤ i ≤ 2p + 1. Since the adjacent
vertices are clarified by the discussion after Theorem 2.1, the assertion is
clear. �

By computation the Hosoya polynomial is obtained as follows:

H(∆(Zp2 × Zp) =
(
p+ 1

2

)
x2 +

[(
2p+ 1

2

)
− p+ 1

2

)]
x.
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Clearly its roots are zero and

(
p+ 1

2

)
−
(

2p+ 1
2

)
(
p+ 1

2

) .

Using Kuratowski’s Theorem, the planarity of some join graph of specific
groups was discussed in [3] and the structure of them are completely clear. For
instance, we observe the graph ∆(Zp1p2p3) in Figure 2.2, where |a| = p1, |b| =
p2, |c| = p3 and p1, p2, p3 are distinct prime numbers (see [3, Proposition 2.7]).
Obviously, M1(∆(Zp1p2p3)) = 30, M2(∆(Zp1p2p3)) = 36 and irr(∆(Zp1p2p3)) =
6.

〈b〉
〈a, c〉 〈a, b〉

〈c〉

〈b, c〉

〈a〉

Fig. 2.2 – ∆(Zp1p2p3)

Moreover, the structure of the join graph of the groups Zp21pn2 , Zp21p2p3 and

Zp21p22p3 are verified, so their graph parameters can be obtained by computa-

tions [3, Figures (4), (6), (7) ].

3. THE JOIN GRAPH OF THE GROUP Z2n × Z2

In the previous section, Example 2.2 clarifies the structure of the join graph
of the group Z4 × Z2. In the following results, we present some graph param-
eters of ∆(Z2n × Z2), where n ≥ 3.

Theorem 3.1. Let G = Z2n × Z2, where n ≥ 3. Then:

(i) G has 3n subgroups.
(ii) G has 3 maximal subgroups such that 2 of them are cyclic.

(iii) ∆(Z2n ×Z2) has 2n+ 1 vertices and the number of edges is 4n−1 (see
Figure 3.3).

(iv) ∆(Z2n × Z2) has 2n− 1 vertices of degree and eccentric 2. Moreover,
there are 2 vertices of degree 2n and eccentric 1.

(v) The eccentric connectivity of the graph ξc(∆(Z2n × Z2)) = 12n− 4.
(vi) The total eccentricity ζ(∆(Z2n × Z2)) = 4n.
(vii) The adjacency matrix is a (2n+ 1)× (2n+ 1) matrix with a zero block

submatrix (2n−1)×(2n−1) such that all the other arrays are 1 except
the diagonal arrays which are 0.
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M3

M2 M1

H1 H2 H3H1 H2n−3H2n−2

Fig. 3.3 – ∆(Z2n × Z2), n ≥ 3

Proof. One can compute all the subgroups of G. The Frattini subgroup is
Φ(G) = 〈(2, 0)〉 while maximal subgroups are M1 = 〈(1, 0)〉, M2 = 〈(1, 1)〉
and M3 = 〈(2, 0), (2, 1)〉. The other subgroups which are not inside Φ(G) are
denoted by Hi, 1 ≤ i ≤ 2n − 2 in the Figure 3.3. The proof of the items are
clear by computations, considering the Figure 3.3. �

It is not hard to conclude that there are 2n−1 cycles of length 3 in ∆(Z2n×
Z2) and the center of the graph is {M1,M2}.

Theorem 3.2. If G = Z2n × Z2, where n ≥ 3, then:

(i) The Wiener index of W (∆(G)) = (8n− 5).
(ii) The hyper Wiener index of WW (∆(G)) = 10n− 7.

(iii) The first Zagreb index is M1(∆(G)) = 8n2 + 8n− 4.
(iv) The second Zagreb index is M2(∆(G)) = 20n2 − 8n.
(v) The third Zagreb index (irregularity) is irr(∆(G)) = 8n2 − 12n+ 4.

Proof. (i) By Figure 3.3, all the maximal subgroups are adjacent. All
the non-maximal subgroups Hi do not join the non-cyclic maximal subgroup
M3, as they are inside it, and so the distance between them is 2. The dis-
tance of cyclic maximal subgroups Mj and non-maximal subgroups Hi is
1, j = 1, 2, 1 ≤ i ≤ 2n − 2. Now, by the definition of the Wiener index
W (∆) = 3(1) + (2n− 2)2 + 2(2n− 2), the second part follows similarly.
(iii) The degree of the vertices is clear by Figure 3.3, deg(M3) = 2, deg(M1) =
deg(M2) = 2n and deg(Hi) = 2, 1 ≤ i ≤ 2n− 2. Thus, the first Zagreb index
is computed.
(iv) The number of edges whose two end vertices are non-maximal and cyclic
maximal subgroups is 4n − 4. The degrees of these two ends are 2 and
2n. Moreover, there are 3 edges that join the maximal subgroups. Thus,
M2(∆(G)) = (4n − 4)(2n)2 + 2(2n)2 + (2n)2 and the assertion follows. By a
similar argument, the fifth part follows. �

Theorem 3.3. The domination polynomial of the graph ∆(Z2n × Z2) is

D(∆(Z2n × Z2), x) = (x+ 1)(2n−1)(x+ 2)x.
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Proof. By the structure of the graph ∆(Z2n×Z2), which is completely clear
by Figure 3.3, we can partition all the vertices in two sets A = {M1,M2}
(vertices which join all the other vertices) and B = {M3, H1, H2, . . . ,H2n−2}
(vertices which just join the vertices of A). Now, it is enough to count the
dominating sets of different sizes. Clearly, there are 2 dominating sets of size 1.
In order to construct the dominating sets of size 2, at least one of the vertices
M1 or M2 is inside it, so there are 1 + 2(2n − 1) dominating sets of size 2.

Similarly, there exist
(

2
2

)(
2n− 1
i− 2

)
+ 2
(

1
1

)(
2n− 1
i− 1

)
dominating sets

of size i, where 2 ≤ i ≤ 2n+ 1. Hence the assertion follows. �

Proposition 3.4. The Hosoya polynomial of the join graph of the group

Z2n × Z2 is H(∆(Z2n × Z2), x) =
(

2n− 1
2

)
x2 + (4n− 1)x.

Proof. By Figure 3.3, M1, M2 and M3 join, so 3x appears in the Hosoya
polynomial. Also, M1, M2 are adjacent to 2n − 2 vertices (non-maximal
subgroups) and so 2(2n−2)x is another term of the polynomial. The distance

from M3 to H1, H2, . . . ,H2n−2 is 2 and we deduce that
(

2n− 1
2

)
x2. Hence,

the assertion is clear. �
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