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A SCHECHTER-TYPE CRITICAL POINT RESULT
FOR LOCALLY LIPSCHITZ FUNCTIONS

ORSOLYA VAS

Abstract. Based on the variational principle of Ekeland, we prove a Schechter-
type critical point existence theorem for locally Lipschitz functions defined on a
ball of a Hilbert space. As application we give an existence result for a differential
inclusion problem.
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1. INTRODUCTION

Concerning the critical points of a C''-functional on a ball, Schechter proved
[9] an existence and localization result. In this case, he also presents [10] a
systematic way of finding critical points and shows that how this method can
be used for solving partial differential equations. Schechter’s original state-
ments for extrema in a ball of a Hilbert space can be found in [10, Theorems
5.3.3 and 5.5.5].

In the articles [8, 6], Precup deals with the critical point theory [10] devel-
oped by Schechter. Based on the variational principle of Bishop-Phelps, he
also gives in [8] a new proof to Schechter’s theorem for these extrema.

The objective of the present paper is to extend the Schechter-type result of
Precup [8] for locally Lipschitz functions. Confirming the applicability of this
result, we present a differential inclusion problem.

The paper is structured as follows. In Section 2, we recall some definitions
and properties of locally Lipschitz functions and generalized gradients. Section
3 describes the abstract framework in which we work, the formulation of our
main theorem and its proof. Concerning the applicability of our abstract
result, Section 4 presents a concrete application of the theorem.

2. PRELIMINARY RESULTS

In this section we recall some basic definitions and properties of locally
Lipschitz functions from the theory developed by Clarke [2].

Let X be a Banach space, X* be its topological dual space, U be an open
subset of X and f : U — R be a function.
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DEFINITION 2.1. The f : U — R function is called locally Lipschitz if for
each point u € U there exists a neighborhood N, C U such that

’f(ul) - f(u2)| <K Hul - u2|| ) Vul,“? € Nua
for a constant K > 0 depending on N,.

DEFINITION 2.2. The generalized directional derivative of the locally Lips-
chitz function f : U — R at the point w € U in the direction v € X is defined

by
f°(u;v) :=lim sup % [f(w+tv) — f(w)].

w—ru
t10

PROPOSITION 2.1. The generalized directional derivative of the locally Lip-
schitz function f : U — R has the following properties
a) For everyu € U the function f°(u;-) : X — R is positively homogenous
and subadditive and satisfies

£ (us o)l < Kflull, Vo e X.

Moreover, it is Lipschitz continuous on X with the Lipschitz constant
K, where K > 0 is a Lipschitz constant of f near u.

b) f°(;): U x X — R is upper semicontinuous.

c) fo(u;—v):=(=f)°(w;v), YuelU, YveX.

DEFINITION 2.3. The generalized gradient of the locally Lipschitz function
f:U =R at the point u € U is a subset of X*, defined by

Of(u) ={z€ X*: (z,v) < f(u;v),Yv € X}.

PrOPOSITION 2.2. Let f : U — R be a locally Lipschitz function. Then the
following assertions hold:

a) For every u € U, 0f(u) is a nonempty, convex and weakly-compact
subset of X* which is bounded by the Lipschitz constant K > 0 of f
near u.

b) For every u € U, f°(u;-) is the support function of Of(u),

f(u;v) = max {(z,v) : z € df (u)},Vv € X.

c) The set valued map Of : U — X* is weakly-closed, that is, if {un} C U
and {z,} C X* are sequences such that u, — u strongly in X, z, €
Of (up) and z, — z weakly in X* foru € U,z € X*, then z € 0f(u).

DEFINITION 2.4 (Palais—Smale condition). The locally Lipschitz function
f U — R satisfies the non-smooth Palais-Smale condition at level ¢ € R if
any sequence {u,} C U which satisfies
a) f(un) = ¢
b) there exists {e,} C R, e, | 0 such that f°(un;v—1up)+ep ||[v — up| >0,
for allve U and alln € N
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admits a convergent subsequence. If this holds for every ¢ € R we say that f
satisfies the non-smooth Palais-Smale condition.

THEOREM 2.1 (Ekeland’s variational principle). Let (X,d) be a complete
metric space and let f : X — R be a lower semicontinuous, proper and bounded
from below function. For any € > 0, there exists some point x. € X such that

flze) < wlél)f( f(x) +¢;
fy) > f(ze) —ed(ze,y), Vy € X.

3. MAIN RESULT

Let (X, (-,-)) be a Hilbert space with the inner product (-,-) and the norm
|-l = v/ (-, ), consider the origin centered closed ball Bg = {z € X : ||z|| < R}
of X with radius R > 0 and denote by Br = {x € X : ||z|| < R} the origin
centered open ball of X having radius R > 0.

DEFINITION 3.1. Let F : X — R be a locally Lipschitz function. In the space
X we consider the sphere Sr of center 0 and radius R > 0, i.e., Sg = {z €
X ¢ ||z|| = R}. The generalized gradient O (F' |s,) (u) at w € Sg is defined by

* 1 * *
O(F 15 (0) = {u* = 1w ) Aus* € 0P )}
where A : X — X* denotes the duality mapping.

Using the aforementioned notations we can state the main result of the
paper.

THEOREM 3.1. Let F : Br — R be a locally Lipschitz function, which is
bounded from below. There exist a sequence (z,) C Br, such that F(z,) —
inf F(Bg) and one of the following two situations holds:

a) Ap(xy) — 0;
b) ||@n| = R and (w} x,) <0, for alln and w}, € OF (x,), then
AF,SR (:L'n) — 0,
where OF (zy,) is the generalized gradient of the locally Lipschitz function F

and
1

MRSy (2y) = inf{w* — o2 (w'ep) Az, w* € OF ()}
If in addition <acfx> > —a > —oo for all v € OBg, z* € OF (x), F satisfies a
Palais-Smale type compactness condition and the boundary condition

(3.1) 2% + pAx # 0 for all v € OBgR and pu > 0,

holds, then there exists x € OBg with

F(x) =inf F(BR) .
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Proof. We apply the variational principle of Ekeland stated in Theorem 2.1,
to the closed set X = Bp, to the continuous and bounded from below function
f = F, to distance d(z,y) = |z —y[|, e = 2(n € N\ {0}) and to z. € Bp
with

— 1
F(z:) < inf F(BRr)+ —.
JJEBR n

In this case there exists a sequence (z,,) € Bg such that

— 1
(3.2) F(z,) < F(z:) < inf F(BR)+ —
r€BR n
and
1 _
(33)  Flan) < Fy)+ - lon — yl for every y € Br\ {za).

From (3.2) follows that F(x,) — inf F(Bg).
The sequence (z,,) belongs to Bg, hence we distinguish two possible cases:

(1) there exists a subsequence of (x,), also denoted by (z,), such that
|zn|| < R for all n € N;

(2) there exists a subsequence of (x,), also denoted by (z,), such that
|zn|| = R for all n € N.

In case (1) we suppose that ||z, < R for all n € N. For a fixed n and any
z € X with [|z]| = 11let y := x, —tz, where t > 0. For t small enough ||y < R,

thus y still belongs to Br. By consequence (3.3) of the variational principle
of Ekeland we have

1
F(zy,) < F(x, —tz) + - |xn + tz — ]|,
therefore
t
F(xy) — F(x, —tz) < e

Dividing by ¢ > 0 and taking ¢ — 0, we obtain
Fe( ) < !
—F°(zy, —2 —.

" n

The property of the generalized directional derivative stated in Proposition
2.2 gives us

1
—max{(wy, —z) : wy € OF (x,)} < o
thus

1
min{(wy, z) : wy, € OF (zy,)} < — for any z € X, where ||z]| = 1.
n
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Then there exists w} € OF (zy,) such that z = ||$§||’ and
: x _Wh . 1
,—— ) twh € OF < —
min{ (s iy ) vk € OFlan) <
[ 1
: € oF < =
mln{ Tws wy (xn) -
1
min {||wy]|| : wy € OF (z,,)} < e

whence it follows that Ap(z,) — 0. Therefore, in this case, the property (a)
of the theorem holds.

In case (2) we suppose that ||z,| = R, for all n € N. For a fixed n and any
z € X with ||z|| =1 let y := @, — tz, where ¢t > 0. For such a y we have

HyHZ = |lzn— tZH2 = (rp —tz,zn —t2) = ”3771”2 — 2t(zn, 2) + t2||2”2
= R?—2t(xy,2) + 1t

If (xy,z) > 0, then there exists t € (0,2 (zy, 2)) for which y still belongs to
Bp, thus we also have

1
(3.4) —F°(xp,—2) < —.
n
If (z,, z) = 0 for any fixed n we choose a subsequence (zj) such that z, — =

and (@, z;) > 0. Then F°(z,, —z;) — F°(zy, —z) holds, and we obtain

1
(3.5) —F°(zp, —2) < —.
n
Hence (3.4) and (3.5) gives us
1
(3.6) —F°(xzy,—2) < — for every z € X with |[2]| =1 and (zy 2) > 0.
n

Henceforward, two subcases are possible:

(i) there exists a subsequence of (z,), also denoted by (x,), such that
(wh xn) > 0 for wy € OF(x,) and n € N;

(ii) there exists a subsequence of (z,), also denoted by (x,), such that
(wh xn) <0 for wy € OF(x,) and n € N.

*

In case (i), by taking z = leuifH in (3.6), we also obtain

1
—F° T < -,
(Tn, —2) n
whence it follows that Ap(z,) — 0, thus for the sequence (z,,) the property

(a) of the theorem holds.
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*

In case (ii) let 2 € X be such that ||z| = 1. By taking z = =2, where

K
* * <wf*um”>

ZTL - w,n R2

Z*
(wy,z) = <w* >
" llzxll
PR SR R YA
" Rz |z Rr? |zl
wr T * wy, x
:<w*_<n, ”>x Zn>+< ”><xn’z*>‘

xp in (3.6) we have

" R2 TV R2|| Zi |l "
But
* <w1”(w‘rn>
(zhs Tn) = (Wp, Tp) — TRz (T Tn)
(wr, Tn)
= (w,n) — T | |
(wy,, Tn)
(wr, xp) 2 R?
= 0’

and by the definition of 2}, we get

* * *
* _ * <’LUn7ZL'n> Zn x “n _ *
<wn72> - <wn R2 ||Z H Zna ||Z;L” - ||ZnH7

AF,Sg(2n) = min{||z}]|| : w; € OF (z,)} — 0.
Thus for the sequence (x,,) the property (b) of the theorem holds.

Finally, if <x*a:> > —a > —oo holds for all x € dBg,2* € OF(r) and
the function F' satisfies the Palais-Smale condition, we may assume that
(x},xn) — b, where b < 0. Then, by the Palais-Smale condition, there exists
a convergent subsequence (z,) such that =, — z, ||z,|| = R, where x € Bp.
Using Proposition 2.2, there exist sequences (x,) C Bgr and x}, € OF(x,)
such that x,, — x strongly in X and z} — z* weakly in X* for x € B and
x* € OF(x). Then

hence

b
xy — (xR2 >Axn x* - ﬁAx =0,
whence
¥+ pAz =0,
where p1 = —<x;’2m> = —% > 0. The boundary condition (3.1) excludes the

case that u > 0, thus we obtain x* = 0, consequently
F(x,) = F(x) = inf F(BR).
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4. APPLICATION

In this section we give a concrete application of our main result.
Let Q denote a bounded domain in RY with the C! regular boundary 0.
Consider the Sobolev space I/VO1 2(Q) equipped with the norm

fullyge = ([ rwx)\?dxf = Vlwu.

Let Wo_l’Q(Q) denote the topological dual space (Wol’Q(Q))*.

From the Sobolev embedding theorem, [1], we know that the embedding
Wol’Q(Q) < L9(Q) is compact for all ¢ € (1,2* = 2&5), hence there exists a
constant C' > 0 such that

lull e < Cllullyz,  Vu € Wy(9).

Let the Carathéodory function F' : ) x R — R satisfy the conditions:

a) F(-,u) is measurable for each u € R;
b) F(z,-) is locally Lipschitz for each x € ;
c) F(-,0) € LY(Q).
We consider the following non-smooth Dirichlet problem
(P) —Au € 0yF (z,u) ae. x €,
u=0 on  Of.

We assume that the function F': 2 x R — R satisfies the growth condition
(4.1) 2| < a(z)+b(x) [yl!™", forVze d,F(x,y), (z,y) € (2 xR),
where a € Lq%l(Q), b € L>(Q) are positive functions and ¢ € (1,2*), with
o* — 2N

- N-2°
We introduce the notations

Br={uecW;*(Q): [l < R}
and

Sk ={ueW,*Q): lullyy12 = R}.

DEFINITION 4.1. A function u € Wol’Q(Q) is a weak solution of problem
(P) if there exists wp(xz) € OyF(x,u(zx)) for a.e. x € Q such that for all

vE Wol’z(Q) we have
/QVu(x)Vv(x)dx = /pr(ac) <v(x)de.
Let I : W, *(Q)

—+ R
1 9 1,2
I(u) = B /Q |Vu|”dz — /QF(x,u)da:, Yu € Wyt (92),



124 O. Vas 8

be the energy functional associated to the problem (P).The critical points of
the energy functional I are the weak solutions of (P).

PropPOSITION 4.1. If R > 0 is the solution of the inequality in R
(4.2) R—|[bllpee - CF - RT™1 > Jlall, o) - Co

then
(u u) + - (Au,u) #0, Yu* € dI(u)

for any > 0, where u € Spg.

Proof. We prove this proposition by contradiction. We assume that there
exists u € Sg and p > 0 such that (u*,u) 4+ p - (Au, u) = 0 for any u* € 9I(u).
Then using the growth condition (4.1) we obtain

/ wp(z) - u(z)dr < / a(z) -u(z) + b(x) - Ju(z)|?dx < R?
Q

Q

S/Qa(x)-u(:v)dx+/ﬂb(x)-u(x)\qu

g(lgmmw);wwu;4+ (Agmww)ﬂquum

< llall, j2; - llellpo + 110l oo - lullZa -

By the Sobolev embedding theorem

q
[ wr(@)- u(@)ds < ol 2, - Cy lullygo + bl - Gl

Since our assumption gives us

(1+ p) Hu||12/vl2 = / wr(z) - u(z)de,
0 Q
we have
2
(L4 ) llullyyyz < llall oy - Cyllullyge + [0l oo - CF el 1z -
We know that 1+ 1 > 0, therefore
2 2
lullype < (L) ullyyz < llall oy - Cg - llullyprz + 1Bl o - Cg - llullfr-

Using that u € Sg, namely [[ul] ;12 = R, we get
0

R < (1+pR* < al|, _a; - Cq- R+ bl - CF - RY.
Dividing the inequality by R > 0 and rearranging it, we obtain
(4.3) R—||b]l g - CF - RTH < all, o) - Cy.

The condition (4.2) implies that (4.3) cannot be satisfied. O
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Using the conditions of Proposition 4.1 and Theorem 3.1, we can state the
next result.

THEOREM 4.1. If we choose R > 0 to be the solution of the inequality
R bl - O - B9 > a2, -G,

in R then, the problem (P) admits a weak solution u € Br, which minimizes
I on Bp.
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