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A SCHECHTER-TYPE CRITICAL POINT RESULT
FOR LOCALLY LIPSCHITZ FUNCTIONS

ORSOLYA VAS

Abstract. Based on the variational principle of Ekeland, we prove a Schechter-
type critical point existence theorem for locally Lipschitz functions defined on a
ball of a Hilbert space. As application we give an existence result for a differential
inclusion problem.
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1. INTRODUCTION

Concerning the critical points of a C1-functional on a ball, Schechter proved
[9] an existence and localization result. In this case, he also presents [10] a
systematic way of finding critical points and shows that how this method can
be used for solving partial differential equations. Schechter’s original state-
ments for extrema in a ball of a Hilbert space can be found in [10, Theorems
5.3.3 and 5.5.5].

In the articles [8, 6], Precup deals with the critical point theory [10] devel-
oped by Schechter. Based on the variational principle of Bishop-Phelps, he
also gives in [8] a new proof to Schechter’s theorem for these extrema.

The objective of the present paper is to extend the Schechter-type result of
Precup [8] for locally Lipschitz functions. Confirming the applicability of this
result, we present a differential inclusion problem.

The paper is structured as follows. In Section 2, we recall some definitions
and properties of locally Lipschitz functions and generalized gradients. Section
3 describes the abstract framework in which we work, the formulation of our
main theorem and its proof. Concerning the applicability of our abstract
result, Section 4 presents a concrete application of the theorem.

2. PRELIMINARY RESULTS

In this section we recall some basic definitions and properties of locally
Lipschitz functions from the theory developed by Clarke [2].

Let X be a Banach space, X? be its topological dual space, U be an open
subset of X and f : U → R be a function.
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Definition 2.1. The f : U → R function is called locally Lipschitz if for
each point u ∈ U there exists a neighborhood Nu ⊂ U such that

|f(u1)− f(u2)| ≤ K ‖u1 − u2‖ , ∀u1,u2 ∈ Nu,

for a constant K > 0 depending on Nu.

Definition 2.2. The generalized directional derivative of the locally Lips-
chitz function f : U → R at the point u ∈ U in the direction v ∈ X is defined
by

f◦(u; v) := lim sup
w→u
t↓0

1

t
[f(w + tv)− f(w)] .

Proposition 2.1. The generalized directional derivative of the locally Lip-
schitz function f : U → R has the following properties

a) For every u ∈ U the function f◦(u; ·) : X → R is positively homogenous
and subadditive and satisfies

|f◦(u; v)| ≤ K ‖u‖ , ∀v ∈ X.
Moreover, it is Lipschitz continuous on X with the Lipschitz constant
K, where K > 0 is a Lipschitz constant of f near u.

b) f◦(·; ·) : U ×X → R is upper semicontinuous.
c) f◦(u;−v) := (−f)◦(u; v), ∀u ∈ U, ∀v ∈ X.

Definition 2.3. The generalized gradient of the locally Lipschitz function
f : U → R at the point u ∈ U is a subset of X?, defined by

∂f(u) = {z ∈ X? : 〈z, v〉 ≤ f◦(u; v), ∀v ∈ X} .

Proposition 2.2. Let f : U → R be a locally Lipschitz function. Then the
following assertions hold:

a) For every u ∈ U, ∂f(u) is a nonempty, convex and weakly-compact
subset of X? which is bounded by the Lipschitz constant K > 0 of f
near u.

b) For every u ∈ U, f◦(u; ·) is the support function of ∂f(u),

f◦(u; v) = max {〈z, v〉 : z ∈ ∂f(u)} , ∀v ∈ X.
c) The set valued map ∂f : U → X? is weakly-closed, that is, if {un} ⊂ U

and {zn} ⊂ X? are sequences such that un → u strongly in X, zn ∈
∂f(un) and zn → z weakly in X? for u ∈ U, z ∈ X?, then z ∈ ∂f(u).

Definition 2.4 (Palais–Smale condition). The locally Lipschitz function
f : U → R satisfies the non-smooth Palais-Smale condition at level c ∈ R if
any sequence {un} ⊂ U which satisfies

a) f(un)→ c;
b) there exists {εn} ⊂ R, εn ↓ 0 such that f◦(un; v−un)+εn ‖v − un‖ ≥ 0,

for all v ∈ U and all n ∈ N
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admits a convergent subsequence. If this holds for every c ∈ R we say that f
satisfies the non-smooth Palais-Smale condition.

Theorem 2.1 (Ekeland’s variational principle). Let (X, d) be a complete
metric space and let f : X → R be a lower semicontinuous, proper and bounded
from below function. For any ε > 0, there exists some point xε ∈ X such that

f(xε) ≤ inf
x∈X

f(x) + ε;

f(y) > f(xε)− εd(xε, y), ∀y ∈ X.

3. MAIN RESULT

Let (X, 〈·, ·〉) be a Hilbert space with the inner product 〈·, ·〉 and the norm

‖·‖ =
√
〈·, ·〉, consider the origin centered closed ball BR = {x ∈ X : ‖x‖ ≤ R}

of X with radius R > 0 and denote by BR = {x ∈ X : ‖x‖ < R} the origin
centered open ball of X having radius R > 0.

Definition 3.1. Let F : X → R be a locally Lipschitz function. In the space
X we consider the sphere SR of center 0 and radius R > 0, i.e., SR = {x ∈
X : ‖x‖ = R}. The generalized gradient ∂ (F |SR

) (u) at u ∈ SR is defined by

∂ (F |SR
) (u) =

{
w? − 1

R2
〈w?, u〉Λu;w? ∈ ∂F (u)

}
,

where Λ : X → X? denotes the duality mapping.

Using the aforementioned notations we can state the main result of the
paper.

Theorem 3.1. Let F : BR → R be a locally Lipschitz function, which is
bounded from below. There exist a sequence (xn) ⊂ BR, such that F (xn) −→
inf F (BR) and one of the following two situations holds:

a) λF (xn) −→ 0;
b) ‖xn‖ = R and

〈
w?
n,xn

〉
≤ 0, for all n and w?

n ∈ ∂F (xn), then
λF,SR

(xn) −→ 0,

where ∂F (xn) is the generalized gradient of the locally Lipschitz function F
and

λF,SR
(xn) = inf{w? − 1

R2

〈
w?
, xn
〉

Λxn, w
? ∈ ∂F (xn)}.

If in addition
〈
x?, x
〉
≥ −a > −∞ for all x ∈ ∂BR, x? ∈ ∂F (x), F satisfies a

Palais-Smale type compactness condition and the boundary condition

(3.1) x? + µΛx 6= 0 for all x ∈ ∂BR and µ > 0,

holds, then there exists x ∈ ∂BR with

F (x) = inf F (BR) .
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Proof. We apply the variational principle of Ekeland stated in Theorem 2.1,
to the closed set X = BR, to the continuous and bounded from below function
f = F , to distance d(x, y) = ‖x− y‖, ε = 1

n(n ∈ N \ {0}) and to xε ∈ BR

with

F (xε) ≤ inf
x∈BR

F (BR) +
1

n
.

In this case there exists a sequence (xn) ∈ BR such that

(3.2) F (xn) ≤ F (xε) ≤ inf
x∈BR

F (BR) +
1

n

and

(3.3) F (xn) < F (y) +
1

n
‖xn − y‖ for every y ∈ BR \ {xn}.

From (3.2) follows that F (xn)→ inf F (BR).
The sequence (xn) belongs to BR, hence we distinguish two possible cases:

(1) there exists a subsequence of (xn), also denoted by (xn), such that
‖xn‖ < R for all n ∈ N;

(2) there exists a subsequence of (xn), also denoted by (xn), such that
‖xn‖ = R for all n ∈ N.

In case (1) we suppose that ‖xn‖ < R for all n ∈ N. For a fixed n and any
z ∈ X with ‖z‖ = 1 let y := xn−tz, where t > 0. For t small enough ‖y‖ ≤ R,
thus y still belongs to BR. By consequence (3.3) of the variational principle
of Ekeland we have

F (xn) < F (xn − tz) +
1

n
‖xn + tz − xn‖ ,

therefore

F (xn)− F (xn − tz) <
t

n
.

Dividing by t > 0 and taking t→ 0, we obtain

−F ◦(xn,−z) <
1

n
.

The property of the generalized directional derivative stated in Proposition
2.2 gives us

−max{〈w?
n,−z〉 : w?

n ∈ ∂F (xn)} < 1

n
,

thus

min{〈w?
n, z〉 : w?

n ∈ ∂F (xn)} < 1

n
for any z ∈ X, where ‖z‖ = 1.
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Then there exists w?
n ∈ ∂F (xn) such that z = w?

n
‖w?

n‖
, and

min

{〈
w?
n,

w?
n

‖w?
n‖

〉
: w?

n ∈ ∂F (xn)

}
<

1

n

min

{
‖w?

n‖
2

‖w?
n‖

: w?
n ∈ ∂F (xn)

}
<

1

n

min {‖w?
n‖ : w?

n ∈ ∂F (xn)} < 1

n
,

whence it follows that λF (xn) −→ 0. Therefore, in this case, the property (a)
of the theorem holds.

In case (2) we suppose that ‖xn‖ = R, for all n ∈ N. For a fixed n and any
z ∈ X with ‖z‖ = 1 let y := xn − tz, where t > 0. For such a y we have

‖y‖2 = ‖xn − tz‖2 = 〈xn − tz, xn − tz〉 = ‖xn‖2 − 2t〈xn, z〉+ t2‖z‖2

= R2 − 2t〈xn, z〉+ t2.

If 〈xn,z〉 > 0, then there exists t ∈ (0, 2 〈xn, z〉) for which y still belongs to

BR, thus we also have

(3.4) −F ◦(xn,−z) <
1

n
.

If 〈xn,z〉 = 0 for any fixed n we choose a subsequence (zk) such that zk −→ z
and 〈xn, zk〉 > 0. Then F ◦(xn,−zk)→ F ◦(xn,−z) holds, and we obtain

(3.5) −F ◦(xn,−z) <
1

n
.

Hence (3.4) and (3.5) gives us

(3.6) −F ◦(xn,−z) <
1

n
for every z ∈ X with ‖z‖ = 1 and 〈xn,z〉 ≥ 0.

Henceforward, two subcases are possible:

(i) there exists a subsequence of (xn), also denoted by (xn), such that〈
w?
n,xn

〉
> 0 for w?

n ∈ ∂F (xn) and n ∈ N;
(ii) there exists a subsequence of (xn), also denoted by (xn), such that〈

w?
n,xn

〉
≤ 0 for w?

n ∈ ∂F (xn) and n ∈ N.

In case (i), by taking z = w?
n

‖w?
n‖

in (3.6), we also obtain

−F ◦(xn,−z) <
1

n
,

whence it follows that λF (xn) −→ 0, thus for the sequence (xn) the property
(a) of the theorem holds.



122 O. Vas 6

In case (ii) let z ∈ X be such that ‖z‖ = 1. By taking z = z?n
‖z?n‖

, where

z?n = w?
n −
〈w?

n,xn〉
R2 xn in (3.6) we have

〈w?
n, z〉 =

〈
w?
n,

z?n
‖z?n‖

〉
=

〈
w?
n −

〈
w?
n,xn

〉
R2

xn,
z?n
‖z?n‖

〉
+

〈
w?
n,xn

〉
R2

〈
xn,

z?n
‖z?n‖

〉

=

〈
w?
n −

〈
w?
n,xn

〉
R2

xn,
z?n
‖z?n‖

〉
+

〈
w?
n,xn

〉
R2 ‖z?n‖

〈xn, z?n〉 .

But

〈z?n, xn〉 = 〈w?
n, xn〉 −

〈w?
n, xn〉
R2

〈xn, xn〉

= 〈w?
n, xn〉 −

〈w?
n, xn〉
R2

‖xn‖2

= 〈w?
n, xn〉 −

〈w?
n, xn〉
R2

R2

= 0,

and by the definition of z?n we get

〈w?
n, z〉 =

〈
w?
n −

〈
w?
n,xn

〉
R2

xn,
z?n
‖z?n‖

〉
=

〈
z?n,

z?n
‖z?n‖

〉
= ‖z?n‖ ,

hence
λF,SR

(xn) = min{‖z?n‖ : w?
n ∈ ∂F (xn)} −→ 0.

Thus for the sequence (xn) the property (b) of the theorem holds.
Finally, if

〈
x?, x
〉
≥ −a > −∞ holds for all x ∈ ∂BR, x

? ∈ ∂F (x) and
the function F satisfies the Palais-Smale condition, we may assume that
〈x?n, xn〉 → b, where b ≤ 0. Then, by the Palais-Smale condition, there exists
a convergent subsequence (xn) such that xn → x, ‖xn‖ = R, where x ∈ BR.
Using Proposition 2.2, there exist sequences (xn) ⊂ BR and x?n ∈ ∂F (xn)
such that xn → x strongly in X and x?n → x? weakly in X? for x ∈ BR and
x? ∈ ∂F (x). Then

x?n −
〈x?n, xn〉
R2

Λxn = x? − b

R2
Λx = 0,

whence
x? + µΛx = 0,

where µ = − 〈x
?,x〉
R2 = − b

R2 ≥ 0. The boundary condition (3.1) excludes the
case that µ > 0, thus we obtain x? = 0, consequently

F (xn) = F (x) = inf F (BR).

�
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4. APPLICATION

In this section we give a concrete application of our main result.
Let Ω denote a bounded domain in RN with the C1 regular boundary ∂Ω.

Consider the Sobolev space W 1,2
0 (Ω) equipped with the norm

‖u‖
W 1,2

0
=

(∫
Ω
|∇u(x)|2 dx

) 1
2

=
√
〈u, u〉.

Let W−1,2
0 (Ω) denote the topological dual space (W 1,2

0 (Ω))?.
From the Sobolev embedding theorem, [1], we know that the embedding

W 1,2
0 (Ω) ↪→ Lq(Ω) is compact for all q ∈ (1, 2? = 2N

N−2), hence there exists a
constant C > 0 such that

‖u‖Lq ≤ C ‖u‖W 1,2
0
, ∀u ∈W 1,2

0 (Ω).

Let the Carathéodory function F : Ω× R→ R satisfy the conditions:

a) F (·, u) is measurable for each u ∈ R;
b) F (x, ·) is locally Lipschitz for each x ∈ Ω;
c) F (·, 0) ∈ L1(Ω).

We consider the following non-smooth Dirichlet problem

(P)

{
−∆u ∈ ∂yF (x, u) a.e. x ∈ Ω,

u = 0 on ∂Ω.

We assume that the function F : Ω× R→ R satisfies the growth condition

(4.1) |z| ≤ a(x) + b(x) |y|q−1 , for ∀z ∈ ∂yF (x, y), (x, y) ∈ (Ω× R),

where a ∈ L
q

q−1 (Ω), b ∈ L∞(Ω) are positive functions and q ∈ (1, 2?), with
2? = 2N

N−2 .
We introduce the notations

BR = {u ∈W 1,2
0 (Ω) : ‖u‖

W 1,2
0
≤ R}

and

SR = {u ∈W 1,2
0 (Ω) : ‖u‖

W 1,2
0

= R}.

Definition 4.1. A function u ∈ W 1,2
0 (Ω) is a weak solution of problem

(P ) if there exists wF (x) ∈ ∂yF (x, u(x)) for a.e. x ∈ Ω such that for all

v ∈W 1,2
0 (Ω) we have∫

Ω
∇u(x)∇v(x)dx =

∫
Ω
wF (x) · v(x)dx.

Let I : W 1,2
0 (Ω)→ R

I(u) =
1

2

∫
Ω
|∇u|2 dx−

∫
Ω
F (x, u)dx, ∀u ∈W 1,2

0 (Ω),
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be the energy functional associated to the problem (P ) .The critical points of
the energy functional I are the weak solutions of (P ).

Proposition 4.1. If R > 0 is the solution of the inequality in R

(4.2) R− ‖b‖L∞ · C
q
q ·Rq−1 > ‖a‖

L
q

q−1
· Cq,

then

〈u?, u〉+ µ · 〈Λu, u〉 6= 0, ∀u? ∈ ∂I(u)

for any µ > 0, where u ∈ SR.

Proof. We prove this proposition by contradiction. We assume that there
exists u ∈ SR and µ > 0 such that 〈u?, u〉+µ · 〈Λu, u〉 = 0 for any u? ∈ ∂I(u).
Then using the growth condition (4.1) we obtain∫

Ω
wF (x) · u(x)dx ≤

∫
Ω
a(x) · u(x) + b(x) · |u(x)|q dx < R2

≤
∫

Ω
a(x) · u(x)dx+

∫
Ω
b(x) · |u(x)|q dx

≤
(∫

Ω
|u(x)|q

) 1
q

· ‖a‖
L

q
q−1

+

[(∫
Ω
|u(x)|q

) 1
q

]q
· ‖b‖L∞

≤ ‖a‖
L

q
q−1
· ‖u‖Lq + ‖b‖L∞ · ‖u‖

q
Lq .

By the Sobolev embedding theorem∫
Ω
wF (x) · u(x)dx ≤ ‖a‖

L
q

q−1
· Cq ‖u‖W 1,2

0
+ ‖b‖L∞ · C

q
q ‖u‖

q

W 1,2
0

.

Since our assumption gives us

(1 + µ) ‖u‖2
W 1,2

0
=

∫
Ω
wF (x) · u(x)dx,

we have

(1 + µ) ‖u‖2
W 1,2

0
≤ ‖a‖

L
q

q−1
· Cq ‖u‖W 1,2

0
+ ‖b‖L∞ · C

q
q ‖u‖

q

W 1,2
0

.

We know that 1 + µ > 0, therefore

‖u‖2
W 1,2

0
≤ (1 + µ) ‖u‖2

W 1,2
0
≤ ‖a‖

L
q

q−1
· Cq · ‖u‖W 1,2

0
+ ‖b‖L∞ · C

q
q · ‖u‖

q

W 1,2
0

.

Using that u ∈ SR, namely ‖u‖
W 1,2

0
= R, we get

R2 ≤ (1 + µ)R2 ≤ ‖a‖
L

q
q−1
· Cq ·R+ ‖b‖L∞ · C

q
q ·Rq.

Dividing the inequality by R > 0 and rearranging it, we obtain

(4.3) R− ‖b‖L∞ · C
q
q ·Rq−1 ≤ ‖a‖

L
q

q−1
· Cq.

The condition (4.2) implies that (4.3) cannot be satisfied. �
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Using the conditions of Proposition 4.1 and Theorem 3.1, we can state the
next result.

Theorem 4.1. If we choose R > 0 to be the solution of the inequality

R− ‖b‖L∞ · C
q
q ·Rq−1 > ‖a‖

L
q

q−1
· Cq,

in R then, the problem (P ) admits a weak solution u ∈ BR, which minimizes
I on BR.
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Math., 58 (2013), 87–95.

[9] Schechter, M., A bounded mountain pass lemma without the (PS) condition and
applications, Trans. Amer. Math. Soc., 331 (1991), 681–703.

[10] Schechter, M., Linking Methods in Critical Point Theory, Birkhäuser, Basel, 1999.
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Babeş-Bolyai University

Faculty of Mathematics and Computer Science

Str. M. Kogălniceanu 1
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