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ON BESSEL-MAITLAND MATRIX FUNCTION

AYMAN SHEHATA and SUBUHI KHAN

Abstract. The main object of this paper is to consider the Bessel-Maitland
matrix function in the following form:

φ(A,B; z) =

∞∑
k=0

zk

k!
Γ−1(kA+B).

A different approach is adopted to study the radius of regularity, order and
type of this function. Certain properties including integral representation and
differential recurrence relations are also derived. Further, the composite Bessel-
Maitland matrix function is introduced and its properties are discussed.
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1. INTRODUCTION

An important generalization of special functions [7, 15] is special matrix
functions and polynomials. The study of special matrix functions is impor-
tant due to their applications in certain areas of statistics, physics and en-
gineering, and often new perspectives in special functions are motivated by
such connections, see for example [9] (for applications in statistics). Several
special functions, called recently special functions of fractional calculus, play a
very important and interesting role as solutions of fractional order differential
equations [1, 16, 27], such as the Bessel-Maitland function with its auxil-
iary functions [5, 6, 8, 14]. It has been established that there is a close link
between scalar polynomials satisfying higher order recurrence relations and
orthogonal matrix polynomials. Keeping in view this fact, the matrix-valued
counterparts of special functions such as special functions of matrix arguments
and special functions with matrix parameters, have gained increasing inter-
est. Constantine and Muirhead [3] studied the hypergeometric functions of
two argument matrices. The special polynomials with matrix parameters pro-
vide the solutions of the corresponding matrix differential equations. These
matrix differential equations are the systems of differential equations, each of
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which is satisfied by the corresponding scalar special polynomial. In the same
way the other results for special matrix polynomials like generating functions,
series definitions, recurrence relations etc. can be viewed as the systems of
equations, which are satisfied by the corresponding scalar special polynomi-
als. Recently, the theory of special functions with matrix parameters is devel-
oped and their properties are also studied by various authors, see for example
[10, 12, 13, 17, 18, 19, 20, 21, 22, 24].

Our main motivation to write this paper is to complement the results of
shehata [23] and their interesting and useful properties in the future. In this
paper, the matrix form of the function φ(ρ, β; z) is considered, which we shall
call as Bessel-Maitland matrix function. The radius of regularity, order and
type of this function are studied by adopting a different approach. Certain
properties inluding integral representation and differential recurrence relations
are also established. Further, the composite Bessel-Maitland matrix function
is introduced and its properties are discussed.

1.1. Preliminaries. We review certain definitions and concepts related to el-
ementary matrix functions.

Throughout this paper, for a matrix A in CN×N , its spectrum σ(A) denotes
the set of all eigenvalues of A. Its two-norm will be denoted by ||A||, and is
defined by

||A|| = sup
x 6=0

||Ax||2
||x||2

where for a vector y in CN , ||y||2 = (yT y)
1
2 is the Euclidean norm of y. If

f(z) and g(z) are holomorphic functions of the complex variable z, which are
defined in an open set Ω of the complex plane and if A, B are matrices in CN×N
such that σ(A) ⊂ Ω, σ(B) ⊂ Ω and AB = BA, then from the properties of
the Riesz-Dunford functional calculus ([4], p.558), it follows that

f(A)g(B) = g(B)f(A).(1.1)

The reciprocal gamma function denoted by Γ−1(z) = 1
Γ(z) is an entire function

of the complex variable z. Then the image of A under the action of Γ−1

denoted by Γ−1(A) is a well-defined matrix. Further, if

(1.2) A+ nI is an invertible matrix for every non-negative integer n,

then Γ(A) is an invertible matrix and its inverse coincides with Γ−1(A). Thus
the formula

(A)(A+ I) . . . (A+ (n− 1)I)Γ−1(A+ nI) = Γ−1(A),(1.3)

is well defined. From equation (1.1) and under condition (1.2), equation (1.3)
takes the form

(A)(A+ I) · · · (A+ (n− 1)I) = Γ(A+ nI) Γ−1(A), n ≥ 1.(1.4)
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Thus, for any matrix A in CN×N , the Pochhammer symbol or shifted fac-
torial is defined as:

(A)n =A(A+ I) · · · (A+ (n− 1)I)

=Γ(A+ nI)Γ−1(A), n ≥ 1;

(A)0 =I.

(1.5)

A matrix A in CN×N is said to be positive stable matrix, if

Re(µ) � 0, µ ∈ σ(A), σ(A) := spectrum of A.(1.6)

For a positive stable matrix A in CN×N and an integer n ≥ 1, we note that
[11]:

Γ(A) = lim
n−→∞

(n− 1)![(A)n]−1nA(1.7)

and also in accordance with [11], if A and B are positive stable matrices in
CN×N , then the gamma matrix function Γ(A) and the beta matrix function
B(A,B) are defined as:

Γ(A) =

∫ ∞
0

e−ttA−Idt; tA−I = exp

(
(A− I) ln t

)
(1.8)

and

B(A,B) =

∫ 1

0
tA−I(1− t)B−Idt,(1.9)

respectively. Thus, if A and B are commuting positive stable matrices then

B(A,B) = B(B,A)

and commutativity is a necessary condition for the symmetry of the beta
matrix function. Also, we have

B(A,B) = Γ(A)Γ(B)Γ−1(A+B),(1.10)

where A and B are commuting matrices in CN×N such that A, B and A+B
are positive stable matrices.

In 1933, E. Maitland Wright introduced a generalization of the Bessel func-
tion Jν(z) [15] in the form ([28], p.72 (1.3), [5, 6]):

φ(z) = φ(ρ, β; z) =

∞∑
k=0

zk

Γ(k + 1)Γ(ρk + β)
, ρ > −1, β ∈ C.(1.11)

Some important properties of this integral function of z, in particular its as-
ymptotic expansion for large z are studied in [28]. These functions have the
following relation with the Bessel function Jν(z):

Jν(z) =

(
1

2
z

)ν
φ

(
1, ν + 1;−1

4
z2

)
.(1.12)

Thus, apart from a trivial factor, the Bessel function is a particular case of
the φ-function.
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Stirling’s formula is an approximation for large factorials, precisely, (see [2])

n! ≈
√

2πn

(
n

e

)n
,(1.13)

in the sense that the ratio of the two sides tends to 1 as n→∞. It is easy to
show that

lim
n→∞

n
1
n = 1.(1.14)

Note that, for an integer n, the functional equation becomes Γ(n) = (n− 1)!.

2. BESSEL-MAITLAND MATRIX FUNCTION

We consider the Bessel-Maitland matrix function denoted by φ(A,B; z), in
the following form:

φ(A,B; z) =
∑∞

k=0
zk

k! Γ−1(kA+B)(2.1)

where A and B are matrices in CN×N satisfying the conditions Re(a) > −1
for all eigenvalues a ∈ σ(A) and Re(b) > 0 for all eigenvalues b ∈ σ(B), and
kA+B is matrix in CN×N such that kA+B is an invertible matrix for every
integer k ≥ 0.

Motivation here is a study of the order and type of the Bessel-Maitland ma-
trix function is the link between the subjects of special functions and complex
analysis. We establish an important property of the Bessel-Maitland matrix
function by proving the following result:

Theorem 2.1. Let A and B be matrices in CN×N satisfying the condition
Re(a) > −1 for all eigenvalues a ∈ σ(A) and Re(b) > 0 for all eigenvalues
b ∈ σ(B), and kA + B is matrix in CN×N such that kA + B is an invertible
matrix for every integer k ≥ 0. Then the Bessel-Maitland matrix function is
an entire function of order ρ ≤ 1 and type τ ≤ 0.

Proof. Let

φ(A,B; z) =

∞∑
k=0

zk

k!
Γ−1(kA+B) =

∞∑
k=0

Ukz
k.(2.2)

First, we show that the matrix power series (2.2) converges uniformly in any
bounded domain of the complex variable z. From (2.2), we have the following
inequality

‖φ(A,B; z)‖ ≤
∥∥∥∥∑∞k=0

zk

k! Γ−1(kA+B)

∥∥∥∥ ≤∑∞k=0

∥∥∥∥Γ−1(kA+B)zk

k!

∥∥∥∥.
Thus, the matrix power series (2.2) converges uniformly in any bounded do-
main of the complex variable z.
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Now, the radius of regularity of the function φ(A,B; z) is given as:

1

R
= lim sup

k→∞

∥∥∥∥(Uk) 1
k
∥∥∥∥ = lim sup

k→∞

∥∥∥∥( 1

k!
Γ−1(kA+B)

) 1
k
∥∥∥∥,

that is,

1

R
= lim sup

k→∞

∥∥∥∥
(

1√
2πk(ke )k

√
2π(kA+B − I)(kA+B−I

e )kA+B−I

) 1
k ∥∥∥∥

= lim sup
k→∞

∥∥∥∥
(

1

(2π k)
1
2k (ke ) (2π(kA+B − I))

1
2k (kA+B−I

e )
kA+B−I

k

)∥∥∥∥ ≤ 0.

(2.3)

Thus, the Bessel-Maitland matrix function is an entire function.
Next, we calculate the order of the Bessel-Maitland matrix function of the

complex variable as follows it is shown in the following:

ρ = lim sup
k→∞

∥∥∥∥k ln(k)

ln( 1
Uk

)

∥∥∥∥ = lim sup
k→∞

∥∥∥∥ k ln(k)

ln(k! Γ(kA+B))

∥∥∥∥,
which gives

ρ = lim sup
k→∞

∥∥∥∥ k ln(k)

ln(
√

2πk(ke )k
√

2π(kA+B − I)(kA+B−I
e )kA+B−I)

∥∥∥∥
= lim sup

k→∞

∥∥∥∥k ln(k)

E1

∥∥∥∥ = lim sup
k→∞

∥∥∥∥ 1

E2

∥∥∥∥,
where

E1 = ln(
√

2πk)I + ln

(
k

e

)k
I + ln(

√
2π(kA+B − I))

+ ln

((
kA+B − I

e

)kA+B−I
)

=
1

2
ln(2πk)I + k ln

(
k

e

)
I +

1

2
ln(2π(kA+B − I))

+ (kA+B − I) ln

(
kA+B − I

e

)
,

E2 =
ln(2πk)

2k ln(k)
I +

k ln(k)

k ln(k)
I − k ln(e)

k ln(k)
I +

ln(2π(kA+B − I))

2k ln(k)

+
(kA+B − I) ln(kA+B − I)

k ln(k)
− (kA+B − I) ln(e)

k ln(k)

=
ln(2πk)

2k ln(k)
I +

k ln(k)

k ln(k)
I − ln(e)

ln(k)
I +

ln(2π(kA+B − I))

2k ln(k)

+
(kA+B − I) ln(kA+B − I)

k ln(k)
− (kA+B − I) ln(e)

k ln(k)
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or, equivalently

ρ ≤ lim sup
k→∞

∥∥∥∥ 1

I + (kA+B−I) ln(kA+B−I)
k ln(k)

∥∥∥∥ ≤ 1.(2.4)

Further, the type of the Bessel-Maitland matrix function is formulated as
follows:

τ =
1

eρ
lim sup
k→∞

∥∥∥∥k(Uk) ρ
k
∥∥∥∥ =

1

eρ
lim sup
k→∞

∥∥∥∥k( 1

k! Γ(kA+B))

) ρ
k
∥∥∥∥,

which gives

τ =
1

eρ
lim sup
k→∞

∥∥∥∥k( 1√
2πk(ke )k

√
2π(kA+B − I)(kA+B−I

e )kA+B−I

) ρ
k
∥∥∥∥

=
1

eρ
lim sup
k→∞

∥∥∥∥ k

(2πk)
ρ
2k (ke )

ρ
k (2π(kA+B − I))

ρ
2k (kA+B−I

e )
ρ(kA+B−I)

k

∥∥∥∥
=

1

ρ
lim sup
k→∞

∥∥∥∥ 1

(2πk)
ρ
2k (ke )

ρ
k
−1 (2π(kA+B − I))

ρ
2k (kA+B−I

e )
ρ(kA+B−I)

k

∥∥∥∥,
that is,

τ ≤ 1

ρ
lim sup
k→∞

∥∥∥∥ k
e

(kA+B−I
e )

ρ(kA+B−I)
k

∥∥∥∥ ≤ 0.(2.5)

�

Next, we derive an integral representation for the Bessel-Maitland matrix
function by proving the following result:

Theorem 2.2. Let A and B be matrices in CN×N satisfying the condition
Re(a) > −1 for all eigenvalues a ∈ σ(A) and Re(b) > 0 for all eigenvalues
b ∈ σ(B), and kA + B is matrix in CN×N such that kA + B is an invertible
matrix for every integer k ≥ 0. Then the Bessel-Maitland matrix function
φ(A,B; z) defined by (2.1) for complex variable z has the following integral
representation:

φ(A,B; z) =
1

2πi

∫
C

exp(sI + zs−A)s−B ds.(2.6)

Proof. Since the contour integral representation for the reciprocal gamma
function is given as: (see [15], p. 115, No. (5.10.5) )

1

Γ(z)
=

1

2πi

∫
C

ett−zdt,(2.7)

where C is the path encircling the origin in the positive direction, beginning
at and returning to positive infinity with respect for the branch cut along the
positive real axis.
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Thus, from (2.7), we have

Γ−1(kA+B) =
1

2πi

∫
C

exp(s)s−(kA+B)ds.(2.8)

Making use of equation (2.8) in series definition (2.1), we have

φ(A,B; z) =

∞∑
k=0

zk

k!

1

2πi

∫
C

exp(s)s−(kA+B) ds,(2.9)

Now, interchanging the order of the integration and summation in the r.h.s.
of the equation (2.9), we find

φ(A,B; z) =
1

2πi

∫
C

exp(s)s−B
∞∑
k=0

(zs−A)k

k!
ds,

which on using exponential property yields assertion (2.6). �

In the following theorem, we derive another integral expression involving
Bessel-Maitland matrix function φ(A,B; z).

Theorem 2.3. For Re(a), Re(b), Re(c) and µ > 0 the following integral
expression involving Bessel-Maitland matrix function φ(A,B; z) holds true:∫ ∞

0
e−az

µ
zc−1 φ(A,B; b z) dz

=
1

2µ
√
π

∞∑
k=0

bk

k!

(
2

a

) k+c
µ

Γ

(
k + c

2µ

)
Γ

(
k + c+ µ

2µ

)
Γ−1(kA+B).

(2.10)

Proof. Denoting the l.h.s. of assersion (2.10) by I and using definition (2.1),
we have

I =

∫ ∞
0

e−az
µ
zc−1φ(A,B; bz)dz

=
∞∑
k=0

bk

k!
Γ−1(kA+B)

∫ ∞
0

e−az
µ
zk+c−1dz,

(2.11)

which on using integral (see [26])∫ ∞
0

e−at
µ
tn−1dt =

1

µ
Γ
(n
µ

) 1

a
n
µ

, Re(a) > 0; Re(n) > 0;∣∣∣∣arg
(n
µ

)∣∣∣∣ < π; µ > 0,

(2.12)

takes the form

I =
∑∞

k=0
bk

k! Γ
−1(kA+B) 1

µΓ

(
k+c
µ

)
1

a
k+c
µ

.
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Further, making use of the following well-known duplication formula for the
gamma function [26],

Γ

(
k + c

µ

)
=

2
k+c
µ
−1

√
π

Γ

(
k + c

2µ

)
Γ

(
k + c+ µ

2µ

)
,(2.13)

we get assertion (2.10). �

Further, in order to derive the differential properties of the Bessel-Maitland
matrix function φ(A,B; z), we prove in the following result:

Theorem 2.4. For |z| < ∞; | arg z| < π and n ∈ N, the Bessel-Maitland
matrix function φ(A,B; z) defined by (2.1) satisfies the following differential
relations:

dn

dzn
φ(A,B; z) = φ(A,B + nA; z),(2.14)

θn φ(A,B; z) = zn φ(A,B + nA; z)(2.15)

and

(2.16)

[
z

d

dz

(
z

d

dz
− 1

)(
z

d

dz
− 2

)
. . .

(
z

d

dz
− n+ 1

)
− zn dn

dzn

]
φ(A,B; z) = 0,

where θ = z d
dz and θn denotes the falling factorial defined by

θn = θ(θ − 1)(θ − 2) · · · (θ − (n− 1)).(2.17)

Proof. From definition (2.1), we have

d

dz
φ(A,B; z) = d

dz

[∑∞
k=0

zk

k! Γ−1(kA+B)

]
.

Differentiating the r.h.s. of the above equation, we find

d

dz
φ(A,B; z) =

∞∑
k=1

zk−1

(k − 1)!
Γ−1(kA+B).

Now, setting k = r + 1, in the r.h.s. of the above equation, we have

d

dz
φ(A,B; z) =

∞∑
r=0

zr

r!
Γ−1(rA+A+B),

which, in view of definition (2.1), gives

d

dz
φ(A,B; z) = φ(A,B +A; z).(2.18)

Again, differentiating (2.18) with respect to z, we find

d2

dz2
φ(A,B; z) =

d

dz

[
φ(A,B +A; z)

]
.



98 A. Shehata and S. Khan 9

Further, making use of (2.18) in the r.h.s. of the above equation, we get

d2

dz2
φ(A,B; z) = φ(A,B + 2A; z).

Repeating the above process or by using mathematical induction, we get as-
sertion (2.14).

Next, we prove assertion (2.15) by using mathematical induction.
In view of equations (2.17) and (2.18), we can write

θ1 φ(A,B; z) = z φ(A,B +A; z),(2.19)

which shows that, the result is true for n = 1.
Let the result be true for some n = k, so that, we have

θk φ(A,B; z) = zk φ(A,B + kA; z).(2.20)

Since, in view of definition (2.17), we have

θk+1 = θk (θ − k).

Therefore, it follows that

θk+1 φ(A,B; z) = θk (θ − k) φ(A,B; z),

which on using equation (2.20) in the r.h.s. gives

θk+1 φ(A,B; z) = (θ − k)zk φ(A,B + kA; z).

Now, in view of the fact that θ = z d
dz and using equation (2.18) in the r.h.s.

of the above equation, we get

θk+1 φ(A,B; z) = kzk φ(A,B + kA; z) + zk+1 φ(A,B + (k + 1)A; z)

−kzk φ(A,B + kA; z),

which shows that the result is true for n = k+ 1. This proves assertion (2.15).
Finally, to prove assertion (2.16), we express equation (2.15) as:(

z
d

dz

)n
φ(A,B; z) = znφ(A,B + nA; z),(2.21)

which on using equation (2.14), in the r.h.s. gives(
z

d

dz

)n
φ(A,B; z) = zn

dn

dzn
φ(A,B; z).(2.22)

Simplifying the above equation we get assertion (2.16). �

Theorem 2.5. Let A and B be matrices in CN×N satisfying the conditions
Re(a) > −1 for all eigenvalues a ∈ σ(A) and Re(b) > 0 for all eigenvalues
b ∈ σ(B), and kA + B is matrix in CN×N such that kA + B is an invertible
matrix for every integer k ≥ 0. The derivative of the BesselMaitland matrix
functions holds true:

φ(A,B; z) = Bφ(A,B + I; z) +Az
d

dz
φ(A,B + I; z).(2.23)
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Proof. Using definition (2.1), we have

Bφ(A,B + I; z) +Az
d

dz
φ(A,B + I; z)

= B
∞∑
k=0

1

k!
Γ−1(kA+B + I)zk +Az

d

dz

∞∑
k=0

1

k!
Γ−1(kA+B + I)zk

= B
∞∑
k=0

1

k!
Γ−1(kA+B + I)zk +A

∞∑
k=0

1

k!
Γ−1(kA+B + I)kzk

=
∞∑
k=0

1

k!
Γ−1(kA+B + I)(kA+B)zk = φ(A,B; z).

Thus the proof is completed. �

Theorem 2.6. Let A, B and B − I be matrices in CN×N satisfying the
conditions Re(a) > −1 for all eigenvalues a ∈ σ(A) and Re(b) > 0 for all
eigenvalues b ∈ σ(B), and kA + B is matrix in CN×N such that kA + B is
an invertible matrix for every integer k ≥ 0. Then the Bessel-Maitland matrix
function satisfying the following pure matrix recurrence relations:

Bφ(A,B; z) = φ(A,B − I; z)− zAφ(A,A+B; z).(2.24)

Proof. From (2.19) and using the relation (2.23), the equation (2.24) follows
directly. �

In the next section, we introduce the composite Bessel-Maitland matrix
function and study some properties of this function.

3. COMPOSITE BESSEL-MAITLAND MATRIX FUNCTION

Suppose that

(3.1) φ(Ai, Bi; zi) =
∞∑
ki=0

zkii Γ−1(kiAi +Bi)

ki!
, i = 1, 2, . . . , s

are s Bessel-Maitland matrix functions, where A1, A2, · · · , As and B1, B2,
. . . , Bs are matrices in CN×N satisfying the conditions Re(ai) > −1 for all
eigenvalues ai ∈ σ(Ai) and Re(bi) > 0 for all eigenvalues bi ∈ σ(Bi) (i =
1, 2, . . . , s) and k1A1 + B1, k2A2 + B2, . . . , ksAs + Bs are matrices in CN×N
with the condition that kiAi +Bi are invertible matrices for all integers ki ≥
0 (i = 1, 2, . . . , s). In order to introduce the composite Bessel-Maitland matrix
function, which we shall denote by φ(A,B; z), we use the following notation
in accordance with [20]:

(3.2) k = (k1, k2, . . . , ks),

(3.3) (k)! = k1!k2! · · · ks!,

(3.4) (k) = k1 + k2 + · · ·+ ks,
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(3.5) zk = zk11 zk22 · · · z
ks
s ,

(3.6) Γ−1(kA+B) = Γ−1(k1A1 +B1)Γ−1(k2A2 +B2) · · ·Γ−1(ksAs +Bs),

(3.7) φ(A,B; z) =
(
φ(A1, B1; z1), φ(A2, B2; z2), . . . , φ(As, Bs; zs)

)
.

In view of definition (2.1) and using notations (3.2)-(3.7), we construct the
following matrix function:

(3.8) φ(A,B; z) =

∞∑
k=0

zkΓ−1(kA+B)

(k)!
.

This matrix function is called the composite Bessel-Maitland matrix func-
tion of complex variables z1, z2, . . . , zs.

We begin the study of this matrix function by calculating its radius of

convergence R. For this purpose, let Uk :=
Γ−1(kA+B)

(k)! , keeping in mind that

σk ≥ 1. Hence

1

R
= lim sup

(k)→∞

(∥∥∥∥(Ukσk
) 1

(k)
∥∥∥∥
)

= lim sup
(k)→∞

∥∥∥∥∥
(

Γ−1(kA+B)

(k)!

) 1
(k)
∥∥∥∥∥
(

1

σk

) 1
(k)

= lim sup
(k)→∞

∥∥∥∥∥
(

Γ−1(k1A1 +B1)Γ−1(k2A2 +B2) · · ·Γ−1(ksAs +Bs)

k1!k2! · · · ks!

) 1
(k)
∥∥∥∥∥
(

1

σk

) 1
(k)

,

where

σk =


(
k1+k2+···+ks

k1

) k1
2
(
k1+k2+···+ks

k2

) k2
2 · · ·

(
k1+k2+···+ks

ks

) ks
2
, k 6= 0;

1, k = 0,

that is,

1

R
≤ lim sup

(k)→∞

∥∥∥∥∥
(

Γ−1(k1A1 +B1)Γ−1(k2A2 +B2) · · ·Γ−1(ksAs +Bs)

k1!k2! · · · ks!

) 1
(k)
∥∥∥∥∥

≤ lim sup
(k)→∞

∥∥∥∥∥
(

1
√

2πk1(k1e )k1
√

2πk2(k2e )k2 · · ·
√

2πks(
ks
e )ks

× 1√
2π(k1A1 +B1 − I)(k1A1+B1−I

e )k1A1+B1−I

× 1√
2π(k2A2 +B2 − I)(k2A2+B2−I

e )k2A2+B2−I
· · ·

× 1√
2π(ksAs +Bs − I)(ksAs+Bs−Ie )ksAs+Bs−I

) 1
(k)
∥∥∥∥∥.

(3.9)

For positive numbers µi and positive integer k, we can write

(3.10) ki = µik, i = 1, 2, 3, . . . , s.



12 On Bessel-Maitland Matrix Function 101

Making use of equation (3.10) in inequality (3.9), we find

1

R
≤ lim sup
k(µ1+µ2+···+µs)→∞

∥∥∥∥∥
(

1
√

2πµ1k(µ1k
e )µ1k

√
2πµ2k(µ2k

e )µ2k · · ·
√

2πµsk(µske )µsk

× 1√
2π(µ1kA1 +B1 − I)(µ1kA1+B1−I

e )µ1kA1+B1−I
· · ·

× 1√
2π(µ2kA2 +B2 − I)(µ2kA2+B2−I

e )µ2kA2+B2−I
· · ·

× 1√
2π(µskAs +Bs − I)(µskAs+Bs−Ie )µskAs+Bs−I

) 1
k(µ1+µ2+···+µs)

∥∥∥∥∥ = 0.

(3.11)

Thus the radius of convergence of the composite Bessel-Maitland matrix func-
tion is infinity, which means that the composite Bessel-Maitland matrix func-
tion is an entire function.

Next, we derive an integral formula for the composite Bessel-Maitland ma-
trix function. In view of equation (2.8), we have

Γ−1(k1A1 +B1) =
1

2πi

∫
C1

exp(r1)r
−(k1A1+B1)
1 dr1,

Γ−1(k2A2 +B2) =
1

2πi

∫
C2

exp(r2)r
−(k2A2+B2)
2 dr2,

...
...

Γ−1(ksAs +Bs) =
1

2πi

∫
Cs

exp(rs)r
−(ksAs+Bs)
s drs.

(3.12)

Substituting integral expressions (3.12) in the r.h.s. of series definition (3.8),
we find

φ(A,B; z) =
∞∑
k=0

zk

(k)! (2πi)s

∫
C1

exp(r1)r
−(k1A1+B1)
1 dr1

×
∫
C2

exp(r2)r
−(k2A2+B2)
2 dr2 · · ·

∫
Cs

exp(rs)r
−(ksAs+Bs)
1 drs.

(3.13)

Now, interchanging the order of the integration and summation in equation
(3.13) and using notations (3.4) and (3.5), we get

φ(A,B; z) =
1

(2πi)s

∫
C1

∫
C2

· · ·
∫
Cs

exp((r)I)

∞∑
k=0

zk

(k)!
(r−A)k r−B dr1dr2 · · · drs ,

which on simplification gives the following integral representation for the
composite Bessel-Maitland matrix function φ(A,B; z):

φ(A,B; z) = 1
(2πi)s

(∫
C1

∫
C2
· · ·
∫
Cs

exp
(
(r)I + z r−A

)
r−B dr1dr2 · · · drs

)
.
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4. CONCLUDING REMARKS

We have established several important properties of the Bessel-Maitland
matrix function φ(A,B; z) and composite Bessel-Maitland matrix function
φ(A,B; z) under suit spectral conditions.

The scalar form (1.11) of the Bessel-Maitland matrix function φ(A,B; z) is
obtained by replacing the matrix A by a real number ρ > −1 and the matrix
B by a complex number β. Further, we express relation (1.12) in the matrix
form as:

JA(z) =

(
1

2
z

)A
φ

(
I, A+ I;−1

4
z2

)
,

which may be regarded as a kind of generalized Bessel matrix function.
The results established in this paper are significant. Other important prop-

erties of these new families of Bessel-Maitland matrix functions will be ex-
plored in future investigations and applications of the fractional calculus.
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