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OSCILLATION CRITERIA FOR NONLINEAR NEUTRAL
DIFFERENTIAL EQUATIONS OF FIRST ORDER

WITH SEVERAL DELAYS

SHYAM SUNDAR SANTRA

Abstract. In this work, oscillatory behaviour of the solutions of a class of non-
linear first-order neutral differential equations with several delays of the form

(E1) (x(t) + p(t)x(t− τ))′ +

m∑
i=1

qi(t)H(x(t− σi)) = f(t)

and

(E2) (x(t) + p(t)x(t− τ))′ +

m∑
i=1

qi(t)H(x(t− σi)) = 0

are studied under various ranges of p(t). Sufficient conditions are obtained for
existence of bounded positive solutions of (E1).
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1. INTRODUCTION

An increasing interest in oscillation of solutions to functional differential
equations during the last few decades has been stimulated by applications
arising in engineering and natural sciences. The new classes of such equations
provide challenges in these application areas. Equations involving delay, and
those involving advance and a combination of both arise in the models on loss-
less transmission lines in high speed computers which are used to interconnect
switching circuits. The construction of these models using delays is comple-
mented by the mathematical investigation of nonlinear equations. Moreover,
the delay differential equations play an important role in modelling virtually
every physical, technical, or biological process, from celestial motion, to bridge
design, to interactions between neurons. There has been many investigations
into the oscillation and nonoscillation of first order nonlinear neutral delay dif-
ferential equations (See for example [1] - [3], [5], [7]-[16]). However, the study
of oscillatory behaviour of solutions of (E1) has received much less attention,
which is due to mainly to the technical difficulties arising in its analysis.
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India, through the bank instruction order No.DST/INSPIRE Fellowship/2014/140, dated
Sept. 15, 2014.
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In [2], Ahmed et al. have studied the oscillation properties of a linear
differential equations of the form

(E3) (r(t)(x(t) + p(t)x(t− τ))′ + q(t)x(t− σ) = 0,

for the cases p(t) ≤ −1, −1 ≤ p(t) < 0 and p(t) ≡ p 6= ±1 and established
sufficient conditions so that every solution of (E3) is oscillatory. Their method
has made the proof unnecessarily complicated and applicable to only homo-
geneous equations.

In [3], Das and Misra have made an attempt to study the oscillation prop-
erties of a nonlinear differential equations of type

(E4) (x(t)− px(t− τ))′ + q(t)H(x(t− σ)) = f(t),

where 0 ≤ p < 1, f(t) > 0, and H satisfies the generalized sublinear condition∫ ±k
0

dt

H(t)
<∞,

for every positive constant k, and established necessary and sufficient condi-
tions so that every solution of (E4) either oscillates or tends to zero. Their
method does not allow for f ≡ 0 and H to be superlinear.

Hence in this work, the author have made an attempt to establish the suffi-
cient condition for oscillation of a class of nonlinear neutral delay differential
equation

(x(t) + p(t)x(t− τ))′ +

m∑
i=1

qi(t)H(x(t− σi)) = f(t),(1)

where τ, σi ∈ R+ = (0,+∞), i = 1, 2...,m, p ∈ C([0,∞),R), q ∈ (R+,R+),
f ∈ C(R,R), and H ∈ C(R,R) with uH(u) > 0 for u 6= 0. The objective of
this work to establish the sufficient conditions for oscillation of solutions of (1)
under various ranges of p(t). Its associated homogenous equation

(x(t) + p(t)x(t− τ))′ +
m∑
i=1

qi(t)H(x(t− σi)) = 0,(2)

is also considered. Clearly, equations (E3) (for r(t) = 1), and (E4) are partic-
ular cases of equations (2) and (1) respectively. Therefore, it is interesting to
study the more general equations (1) and (2). Unlike the work in [2] and [3]
an attempt is made here to establish sufficient conditions under which every
solution or every bounded solution of (1) and (2) oscillates. Of course, the
impact of forcing term is considered. keeping in view of the influence of forcing
function, this work is separated for forced and unforced equations.

Definition 1.1. By a solution of (1)/(2) we understand a function x ∈
C([−ρ,∞),R) such that x(t) + p(t)x(t− τ) is once continuously differentiable
and (1) or (2) is satisfied for t ≥ 0, where ρ = max{τ, σi} for i = 1, ...,m, and
sup{|x(t)| : t ≥ t0} > 0 for every t0 ≥ 0. A solution of (1)/(2) is said to be
oscillatory if it has arbitrarily large zeros; otherwise, it is called nonoscillatory.
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2. NON-HOMOGENEOUS OSCILLATION

In this section, sufficient conditions are obtained for oscillation of solutions
of the equation (1). We need the following conditions for this work in the
sequel.

(A1) There exists λ > 0 such that H(u) +H(v) ≥ λH(u+ v), for u, v > 0;
(A2) H(uv) = H(u)H(v), for u, v ∈ R;
(A3) H(−u) = −H(u), for u ∈ R;
(A4) There exists F ∈ C(R,R) such that F (t) changes sign with

−∞ < lim inf
t→∞

F (t) < 0 < lim sup
t→∞

F (t) <∞ and F ′(t) = f(t);

(A5) F
+(t) = max{F (t), 0}, F−(t) = max{−F (t), 0};

(A6) There exists F ∈ C(R,R) such that F (t) changes sign with

lim inf
t→∞

F (t) = −∞, lim sup
t→∞

F (t) = +∞ and F ′(t) = f(t).

Remark 2.1. Assumption (A2) implies (A3). Indeed, H(1)H(1) = H(1)
and H(1) > 0 imply that H(1) = 1. Further, H(−1)H(−1) = H(1) = 1
implies that (H(1))2 = 1. Since H(−1) < 0, we conclude that H(−1) = −1.
Hence,

H(−u) = H(−1)H(−u) = −H(u).

On the other hand, H(uv) = H(u)H(v) for u > 0 and v > 0 and H(−u) =
−H(u) imply that H(xy) = H(x)H(y) for every x, y ∈ R.

Remark 2.2. We may note that if x(t) is a solution of (1), then y(t) = −x(t)
is also a solution of (1) provided that H satisfies (A2) or (A3).

Theorem 2.1. Let p(t) ≥ 0, t ∈ R+. If (A2) and (A6) hold, then every
solution of the equation (1) is oscillatory.

Proof. Suppose for contrary that x(t) is a nonoscillatory solution of equation
(1). Then there exists t0 ≥ ρ such that x(t) > 0 or x(t) < 0, for t ≥ t0. Assume
that x(t) > 0 for t ≥ t0. Setting

z(t) = x(t) + p(t)x(t− τ),(3)

and

w(t) = z(t)− F (t),(4)

it follows from (1) that

w′(t) = −
m∑
i=1

qi(t)H(x(t− σi)) ≤ 0(5)

for t ≥ t1 > t0. Consequently, w(t) is nonincreasing on [t2,∞), t2 > t1. Hence
we have w(t) < 0 or w(t) > 0 for t ≥ t2 > t1. Since z(t) > 0, then w(t) < 0,
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for t ≥ t2 implies that lim inf
t→∞

F (t) ≥ 0, for t ≥ t2, a contradiction to (A6).

Hence, w(t) > 0 for t ≥ t2, then lim
t→∞

w(t) exists. Writing

z(t) = w(t) + F (t),

we notice that

0 ≤ lim inf
t→∞

z(t) = lim inf
t→∞

(w(t) + F (t))

≤ lim sup
t→∞

w(t) + lim inf
t→∞

F (t)

= lim
t→∞

w(t) + lim inf
t→∞

F (t)

= −∞,

a contradiction due to (A6).
If x(t) < 0, for t ≥ t0, then we set y(t) = −x(t), for t ≥ t0 in (1) and we

find

(y(t) + p(t)y(t− τ))′ +

m∑
i=1

qi(t)H(y(t− σi)) = f̃(t),(6)

where f̃(t) = −f(t) due to (A2). Let F̃ (t) = −F (t). Then

−∞ < lim inf
t→∞

F̃ (t) < 0 < lim sup
t→∞

F̃ (t) <∞

and F̃ ′(t) = f̃(t) hold. Hence proceeding as above, we find a contradiction to
(A6). This completes the proof of the theorem. �

Theorem 2.2. Let 0 ≤ p(t) ≤ p < ∞, t ∈ R+. Assume that (A1), (A2),
(A4) and (A5) hold. Furthermore, assume that

(A7)
∫∞
ρ

∑m
i=1Qi(t)H(F+(t−σi))dt =∞ =

∫∞
ρ

∑m
i=1Qi(t)H(F−(t−σi))dt

hold, then conclusion of Theorem 2.1 is true, where for t > τ, Qi(t) =
min{qi(t), qi(t− τ)}; i = 1, ...,m.

Proof. On the contrary, we proceed as in the proof of the Theorem 2.1 to
obtain that w(t) is monotonic on [t2,∞), t2 > t1. Since z(t) > 0, then w(t) < 0,
for t ≥ t2 implies that F (t) > 0, for t ≥ t2, a contradiction to (A4). Hence,
w(t) > 0 for t ≥ t2. Ultimately, z(t) > F (t) and hence z(t) > max{0, F (t)} =
F+(t), for t ≥ t2. Note that lim

t→∞
w(t) exists. Due to (4), (1) becomes

0 = w′(t) +
m∑
i=1

qi(t)H(x(t− σi))

+H(p)

[
w′(t− τ) +

m∑
i=1

qi(t− τ)H(x(t− τ − σi))

]
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for t ≥ t2, and because of (A1) and (A2), we find that

0 ≥ w′(t) +H(p)w′(t− τ)]

+

m∑
i=1

Qi(t) [H(x(t− σi)) +H(p x(t− τ − σi))]

≥ w′(t) +H(p)w′(t− τ) + λ

m∑
i=1

Qi(t)H(z(t− σi))

≥ w′(t) +H(p)w′(t− τ) + λ

m∑
i=1

Qi(t)H(F+(t− σi)),

(7)

for t ≥ t3 > t2. Integrating (7) from t3 to t(> t3), we obtain

λ

∫ t

t3

m∑
i=1

Qi(s)H(F+(t− σi))ds ≤ −[w(s) +H(p)w(s− τ)]tt3 <∞,

as t→∞, a contradiction to (A7).
If x(t) < 0, for t ≥ t0, then we set y(t) = −x(t) to obtain y(t) > 0 for

t ≥ t0 and hence using equation (6), we obtain a contradiction due to (A7).
This completes the proof of the theorem. �

Theorem 2.3. Let −1 ≤ p(t) ≤ 0, t ∈ R+. Suppose that (A2), (A4) and
(A5) hold. If any one of the following conditions:

(A8)
∫∞
ρ

m∑
i=1

qi(t)H(F+(t− σi))dt =∞ =
∫∞
ρ

m∑
i=1

qi(t)H(F−(t+ τ − σi))dt,

(A9)
∫∞
ρ

m∑
i=1

qi(t)H(F−(t− σi))dt =∞ =
∫∞
ρ

m∑
i=1

qi(t)H(F+(t+ τ − σi))dt

holds, then the conclusion of Theorem 2.1 is true.

Proof. On the contrary, we proceed as in the proof of Theorem 2.1 to obtain
that w(t) is monotonic on [t2,∞), t2 > t1. If w(t) < 0 for t ≥ t2, then z(t) <
F (t) is a contradiction due to (A4) when z(t) > 0. Ultimately, z(t) < 0 and
z(t) < F (t) for t ≥ t3 > t2. Using the fact that z(t) < 0 for t ≥ t3, it follows
that

x(t) ≤ −p(t)x(t− τ) ≤ x(t− τ) ≤ x(t− 2τ) ≤ ... ≤ x(t3),

implies that x(t) is bounded on [t3,∞). Consequently, lim
t→∞

w(t) exists. Clearly,

−z(t) > −F (t) implies that −z(t) > max{0,−F (t)} = F−(t). Therefore, for
t ≥ t3 > t2

−x(t− τ) ≤ p(t)x(t− τ) ≤ z(t) < −F−(t)

gives rise to x(t − σi) > F−(t + τ − σi), t ≥ t4 > t3, for i = 1, 2, ...,m and
hence (5) reduced to

w′(t) +

m∑
i=1

qi(t)H(F−(t+ τ − σi)) ≤ 0,
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for t ≥ t4 > t3. Integrating the last inequality from t4 to ∞, we obtain∫ ∞
t4

m∑
i=1

qi(s)H(F−(s+ τ − σi))ds <∞,

which contradicts (A8). Hence w(t) > 0, for t ≥ t2 > t1. We note that z(t) >
F (t) and z(t) < 0 is not possible due to (A4). Therefore z(t) > 0 and z(t) ≤
x(t), for t ≥ t3 > t2. In this case, lim

t→∞
w(t) exists. Because, it happens that

z(t) > F+(t) for t ≥ t3 > t2, then (5) can be viewed as

w′(t) +
m∑
i=1

qi(t)H(F+(t− σi)) ≤ 0.

Integrating the last inequality from t3 to ∞, we obtain∫ ∞
t3

m∑
i=1

qi(s)H(F+(s− σi))ds <∞,

a contradiction to (A8). The case x(t) < 0, for t ≥ t0 is similar. Hence, the
theorem is proved. �

Theorem 2.4. Let −∞ < −p ≤ p(t) ≤ −1, t ∈ R+ and p > 0. If all
conditions of Theorem 2.3 are satisfied, then every bounded solution of (1)
oscillates.

Proof. The proof of the theorem can be followed from the proof of Theorem
2.3. Hence the details are omitted. �

Remark 2.3. In Theorems 2.2–2.4, H could be linear, sublinear or super-
linear.

Theorem 2.5. Let −∞ < −p ≤ p(t) ≤ −1, t ∈ R+, p > 0 and τ ≥ σi, i =
1, ...,m. Assume that (A2), (A4), (A5) and (A8) hold. Furthermore, assume
that

(A10)
H(u)
uβ
≥ H(v)

vβ
, u ≥ v > 0, β > 1

and

(A11)
∫∞
ρ

m∑
i=1

qi(t)H(F+(t+τ−σi))
[F+(t+τ−σi)]β

dt =∞ =
∫∞
ρ

m∑
i=1

qi(t)H(F−(t+τ−σi))
[F−(t+τ−σi)]β

dt

hold. Then conclusion of Theorem 2.1 is true.

Proof. The proof of the theorem follows from the proof of Theorem 2.3
except for the case when w(t) < 0, z(t) < 0, for t ≥ t3 > t2. Since z(t) ≥
p(t)x(t− τ), then

w(t) = z(t)− F (t) ≥ p(t)x(t− τ)− F (t), t ≥ t3
implies that w(t)−p(t)x(t−τ) ≥ −F (t), for t ≥ t3. Clearly, w(t)−p(t)x(t−τ) <
0 is not possible due to (A4) and the fact that w(t)−p(t)x(t−τ) = x(t)−F (t) ≥
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−F (t) if and only if x(t) > 0, for t ≥ t3. Ultimately, w(t) − p(t)x(t − τ) > 0
and hence

w(t)− p(t)x(t− τ) ≥ max{0,−F (t)} = F−(t),

that is,

w(t) ≥ p(t)x(t− τ) + F−(t) ≥ −px(t− τ) + F−(t) > −px(t− τ)(8)

for t ≥ t4 > t3. Since w(t) is decreasing and τ ≥ σi, for i = 1, 2, ...,m, then it
follows that

−w(t) ≤ −w(t+ τ − σi) < px(t− σi), t ≥ t4, i = 1, 2, ...,m.

Therefore,

H(x(t− σi))
[−w(t)]β

≥ H(x(t− σi))
pβxβ(t− σi)

, t ≥ t4, i = 1, 2, ...,m.(9)

Consequently,

− d

dt
[−w(t)]1−β = −(1− β) [−w(t)]−β

[
−w(′t)

]
= (β − 1) [−w(t)]−β

m∑
i=1

qi(t)H(x(t− σi))

≥ (β − 1)
m∑
i=1

qi(t)
H(x(t− σi))
pβxβ(t− σi)

, t ≥ t4

due to (5) and (9). We may note from (8) that 0 > w(t) > −px(t− τ) +F−(t)
implies that x(t− σi) > p−1F−(t+ τ − σi), for i = 1, 2, ...,m and hence

− d

dt
[−w(t)]1−β ≥ (β − 1)

m∑
i=1

qi(t)
H(p−1F−(t+ τ − σi))
pβ[p−1F−(t+ τ − σi)]β

,(10)

for t ≥ t4 due to (A13). Integrating (10) from t4 to t, we get

(β − 1)H(p−1)

∫ t

t4

m∑
i=1

qi(s)
H(F−(s+ τ − σi))
[F−(s+ τ − σi)]β

ds ≤ −
[
−w(s)1−β

]t
t4

<∞, as t→∞,

due to (A2), a contradiction to (A11).
The case x(t) < 0 for t ≥ t0 can similarly be dealt with. Hence the theorem

is proved. �

Example 2.1. Consider

(x(t) + x(t− π))′ + x(t− 2π) + x(t− 4π) = 2 sin t,(11)

where p(t) = 1, q1(t) = q2(t) = 1, τ = π, m = 2, σ1 = 2π, σ2 = 4π, H(x) =
x and f(t) = 2 sin t. Indeed, if we choose F (t) = −2 cos t, then F ′(t) = f(t).
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Since

F+(t) =

{
−2 cos t, 2nπ + π

2 ≤ t ≤ 2nπ + 3π
2

0, otherwise,

and

F−(t) =

{
2 cos t, 2nπ + 3π

2 ≤ t ≤ 2nπ + 5π
2

0, otherwise.

Therefore

F+(t− 2π) =

{
−2 cos t, 2nπ + 5π

2 ≤ t ≤ 2nπ + 7π
2

0, otherwise,

and

F−(t− 2π) =

{
2 cos t, 2nπ + 7π

2 ≤ t ≤ 2nπ + 9π
2

0, otherwise.

Also,

F+(t− 4π) =

{
−2 cos t, 2nπ + 9π

2 ≤ t ≤ 2nπ + 11π
2

0, otherwise,

and

F−(t− 4π) =

{
2 cos t, 2nπ + 11π

2 ≤ t ≤ 2nπ + 13π
2

0, otherwise.

Now ∫ ∞
4π

[Q1(t)F
+(t− 2π) +Q2(t)F

+(t− 4π)]dt = I1 + I2,

where for n = 0, 1, 2..., we get

I1 =

∫ ∞
4π

F+(t− 2π)dt =

∞∑
n=0

∫ 2nπ+ 7π
2

2nπ+ 5π
2

[−2 cos t]dt

= −2
∞∑
n=0

[sin t]
2nπ+ 7π

2

2nπ+ 5π
2

= +∞,

I2 =

∫ ∞
4π

F+(t− 4π)dt =
∞∑
n=0

∫ 2nπ+ 11π
2

2nπ+ 9π
2

[−2 cos t]dt

= −2
∞∑
n=0

[sin t]
2nπ+ 11π

2

2nπ+ 9π
2

= +∞.

Clearly, (A1), (A2), (A4), (A5) and (A7) are satisfied. Hence, by Theorem
2.2, every solution of (11) is oscillatory. Thus, in particular, x(t) = sin t is an
oscillatory solution of the equation (11).



9 Oscillation of first order neutral delay 83

Example 2.2. Consider

(x(t)− x(t− 2π))′ + x(t− 2π) + x(t− 4π) = 2 sin t,(12)

where p(t) = −1, q1(t) = q2(t) = 1, τ = 2π, m = 2, σ1 = 2π, σ2 =
4π, H(x) = x and f(t) = 2 sin t. Indeed, if we choose F (t) = −2 cos t, then
F ′(t) = f(t). Clearly, (A2), (A4), (A5), (A8) and (A9) are hold true. Hence,
Theorem 2.3 can be applied to (12), that is, every solution of (12) oscillates.
Indeed, x(t) = sin t is such a solution of (12).

3. HOMOGENEOUS OSCILLATION

This section deals with the oscillatory behaviour of solutions of equation
(2). Here H could be linear, sublinear or superlinear.

Theorem 3.1. Let 0 ≤ p(t) ≤ p < ∞, t ∈ R+ and τ ≤ σi, i = 1, ...,m.
Assume that (A1) and (A2) hold. Furthermore, assume that

(A12)
±c2∫
c1

dt
H(t) <∞, c1, c2 > 0

and

(A13)
∞∫
τ

m∑
i=1

Qi(t)dt =∞

hold, where
m∑
i=1

Qi(t) is defined as in Theorem 2.2. Then every solution of the

equation (2) is oscillatory.

Proof. Let x(t) be nonoscillatory solution of equation (2) such that x(t) > 0
for t ≥ t0. Setting as in (3), (2) can be written as

z′(t) = −
m∑
i=1

qi(t)H(x(t− σi)) ≤ 0(13)

for t ≥ t1 > t0. Consequently, z(t) is nonincreasing on [t2,∞), t2 > t1. Since
z(t) > 0 for t2 > t1. Due to (13), (2) becomes

0 =z′(t) +

m∑
i=1

qi(t)H(x(t− σi))

+H(p)

[
z′(t− τ) +

m∑
i=1

qi(t− τ)H(x(t− τ − σi))

]
for t ≥ t2 and because of (A1) and (A2), we find that

0 ≥ z′(t) +H(p)z′(t− τ) +
m∑
i=1

Qi(t) [H(x(t− σi)) +H(p x(t− τ − σi))]

≥ z′(t) +H(p)z′(t− τ) + λ
m∑
i=1

Qi(t)H(z(t− σi)).
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Consequently, for i = 1, 2, ...,m there exists t3 > t2 such that

z′(t)

H(z(t− σi))
+H(p)

z′(t− τ)

H(z(t− σi))
+ λ

m∑
i=1

Qi(t) < 0.(14)

Because z(t) is decreasing on [t3,∞) and τ ≤ σi, for i = 1, 2, ...,m the inequal-
ities in (14) become

z′(t)

H(z(t))
+H(p)

z′(t− τ)

H(z(t− τ))
+ λ

m∑
i=1

Qi(t) < 0.

Note that lim
t→∞

z(t) exists. Integrating the last inequality from t3 to t, we get

t∫
t3

z′(s)

H(z(s))
ds+H(p)

t∫
t3

z′(s− τ)

H(z(s− τ))
ds+ λ

t∫
t3

m∑
i=1

Qi(s)ds < 0,

that is,

λ

t∫
t3

m∑
i=1

Qi(s)ds < −

 z(t)∫
z(t3)

dy

H(y)
+H(p)

z(t−τ)∫
z(t3−τ)

dy

H(y)


<∞, as t→∞,

due to (A12), a contradiction to (A13).
If x(t) < 0, for t ≥ t0, then we set y(t) = −x(t), for t ≥ t0 in (1) and we

find

(y(t) + p(t)y(t− τ))′ +

m∑
i=1

qi(t)H(y(t− σi)) = 0.

Then proceeding as above, we find the same contradiction. This completes
the proof of the theorem. �

Theorem 3.2. Let −∞ < −p ≤ p(t) ≤ −1, t ∈ R+, p > 0 and τ > σi, i =
1, ...,m. Assume that (A2) holds. If

(A14)
±∞∫
0

dt
H(t) <∞

and

(A15)
∞∫
0

∑m
i=1 qi(t)dt =∞

hold, then also the conclusion of Theorem 3.1 is true.

Proof. On the contrary, we proceed as in the proof of the Theorem 3.1 to
obtain z(t) is monotonic on [t2,∞), t2 > t1. We claim that z(t) < 0, for t ≥ t2.
If not, let z(t) ≥ 0, for t ≥ t2 > t1. Consequently,

x(t) ≥ −p(t)x(t− τ) ≥ x(t− τ) ≥ x(t− 2τ) ≥ x(t− 3τ) ≥ ... ≥ x(t2)
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implies that x is bounded from below by m > 0. Integrating (13) from t2 to
t(> t2), we obtain

z(t)− z(t3) +

t∫
t2

m∑
i=1

qi(s)H(x(s− σi))ds = 0,

that is,

z(t)− z(t3) +H(m)

t∫
t2

m∑
i=1

qi(s)ds < 0.

Therefore,

z(t) < z(t3)−H(m)

t∫
t2

m∑
i=1

qi(s)ds→ −∞ as t→∞,

a contradiction to the fact that z(t) > 0 on [t2,∞). So our claim holds. From
(3), it follows that z(t + τ − σi) > p(t + τ − σi)x(t − σi) for i = 1, 2, ...,m.
Hence, (13) becomes

z′(t) +
m∑
i=1

qi(t)

H(−p)
H(z(t+ τ − σi)) ≤ 0,(15)

due to (A2). Because z is decreasing on [t2,∞), then

z′(t) +

m∑
i=1

qi(t)

H(−p)
H(z(t)) ≤ 0.

Integrating the last inequality from t2 to t(> t2), we get

t∫
t2

z′(s)

H(z(s))
ds+

1

H(−p)

t∫
t2

m∑
i=1

qi(s)ds ≥ 0,

that is,

t∫
t2

m∑
i=1

qi(s)ds ≤ −H(−p)
∫ z(t)

z(t2)

dy

H(y)
<∞, as t→∞,

due to (A14), a contradiction to (A15). The case x(t) < 0 is similar. Hence the
theorem is proved. �

Theorem 3.3. Let −∞ < −p ≤ p(t) ≤ −1, t ∈ R+ and p > 0. Assume
that (A2) and (A15) hold. Then every bounded solution of (2) is oscillatory.



86 S.S. Santra 12

Proof. Proceeding as in the proof of Theorem 3.2, we have that z(t) < 0,
for t ≥ t2 > t1. Hence the inequality (15) holds. Because z is decreasing,
there exist t3 > t2 and k > 0 such that z(t) ≤ −k, for t ≥ t3. Therefore, the
inequality (15) can be viewed as

z′(t) +
H(−k)

H(−p)

m∑
i=1

qi(t) < 0,(16)

for t ≥ t3. Integrating (16) from t3 to t(> t3), we obtain

H(−k)

H(−p)

t∫
t3

m∑
i=1

qi(s)ds < − [z(s)]tt3 .

Since x(t) is bounded, then z(t) is bounded and hence for t → ∞ the last
inequality becomes

H(−k)

H(−p)

∞∫
t3

m∑
i=1

qi(s)ds <∞,

a contradiction to (A15). The case x(t) < 0 is similar dealt with. Hence the
proof of the theorem is completed. �

Theorem 3.4. Let −1 < −p ≤ p(t) ≤ 0, t ∈ R+, p > 0 and τ > σi, i =
1, ...,m. If (A1), (A12) and (A15) hold, then also the conclusion of Theorem
3.1 is true.

Proof. Proceeding as in Theorem 3.1, we may note that z(t) is monotonic
on [t2,∞), t2 > t1. Hence there exists t3 > t2 such that z(t) > 0 or z(t) < 0.
Let z(t) > 0 for t3 > t2. From (3), it follows that z(t) ≤ x(t) on [t3,∞).
Consequently, (13) becomes

z′(t) +

m∑
i=1

qi(t)H(z(t− σi)) < 0,

that is,

z′(t)

H(z(t))
+

m∑
i=1

qi(t) < 0.

Note that lim
t→∞

z(t) exists. Integrating the last inequality from t3 to t, we get

t∫
t3

m∑
i=1

qi(s)ds < −
z(t)∫

z(t3)

dy

H(y)
<∞, as t→∞,

due to (A12), a contradiction to (A15). Hence z(t) < 0, for t3 > t2. Proceedings
as above proof of Theorem 2.3, we obtain that x(t) is bounded on [t3,∞). The
rest of the theorem follows from Theorem 3.3. This completes the proof. �
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Example 3.1. Consider

(x(t) + x(t− π))′ + x(t− 2π) + x(t− 3π) = 0,(17)

where p(t) = 1, q1(t) = q2(t) = 1, τ = π, m = 2, σ1 = 2π, σ2 = 3π, H(x) =
x. Clearly, (A1), (A2), (A12) and∫ ∞

π
[Q1(t) +Q2(t)]dt =∞,

hold, where Q1(t) = Q2(t) = 1. Hence, Theorem 3.1 can be applied to (17),
that is, every solution of (17) oscillates. Indeed, x(t) = sin t is such a solution
of (17).

4. EXISTENCE OF POSITIVE SOLUTION

In this section, sufficient conditions are obtained to show that equation (1)
admits a positive bounded solution.

Theorem 4.1. Let 0 ≤ p(t) ≤ p1 < 1, t ∈ R and H be Lipschitzian on the
interval of the form [a, b], 0 < a < b <∞. Suppose that f(t) satisfies (A4). If

(A16)
∫∞
0

∑m
i=1 qi(t)dt <∞,

holds, then equation (1) admits a positive bounded solution.

Proof. Due to (A16), it is possible to find t1 > 0 such that∫ ∞
t1

m∑
i=1

qi(s)ds <
1− p1

5K
,

where K = max{K1, H(1)}, K1 is the Lipschitz constant on [1−p110 , 1]. Let F

be such that −1−p1
10 ≤ F (t) ≤ 1−p1

10 for t ≥ t2. For t3 > max{t1, t2}, we set
Y = BC([t3,∞),R), the space of real valued bounded continuous functions on
[t3,∞). Clearly, Y is a Banach space with respect to supremum norm defined
by

||y|| = sup{|y(t)| : t ≥ t3}.
Let us define

S =

{
u ∈ Y :

1− p1
10

≤ u(t) ≤ 1, t ≥ t3
}
.

Clearly, S is a closed and convex subspace of Y . Let T : S → S be defined by

Tx(t) =


Tx(t3 + ρ), for t ∈ [t3, t3 + ρ]

−p(t)x(t− τ) + 1+4p1
5 + F (t)

+
∫∞
t

∑m
i=1 qi(s)H(x(s− σi))ds, for t ≥ t3 + ρ.
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For every x ∈ S,

Tx(t) ≤ 1− p1
10

+
1 + 4p1

5
+H(1)

[∫ ∞
t

m∑
i=1

qi(s)ds

]

<
1− p1

10
+

1 + 4p1
5

+
1− p1

5
=

1 + p1
2

< 1

and

Tx(t) ≥ −p(t)x(t− τ) +
1 + 4p1

5
+ F (t)

≥ −p1 +
1 + 4p1

5
− 1− p1

10
=

1− p1
10

implies that Tx ∈ S. Now, for y1, y2 ∈ S
|Ty1(t)− Ty2(t)| ≤ |p(t)||y1(t− τ)− y2(t− τ)|

+K1

∫ ∞
t

m∑
i=1

qi(s)|y1(s− σi)− y2(s− σi)|ds

≤ p1||y1 − y2||+K1||y1 − y2||

[∫ ∞
t

m∑
i=1

qi(s)ds

]

<

(
p1 +

1− p1
5

)
||y1 − y2||,

that is, ||Ty1−Ty2|| ≤ µ||y1− y2||, that is, T is a contraction mapping, where

µ = 1+4p1
5 < 1. Since S is complete and T is a contraction on S, then by the

Banach’s fixed point theorem T has a unique fixed point on
[
1−p1
10 , 1

]
. Hence

Tx = x and

x(t) =


x(t3 + ρ), for t ∈ [t3, t3 + ρ]

−p(t)x(t− τ) + 1+4p1
5 + F (t)

+
∫∞
t

∑m
i=1 qi(s)H(x(s− σi))ds, for t ≥ t3 + ρ

is a bounded positive solution of the equation (1) on
[
1−p1
10 , 1

]
. This completes

the proof of the theorem. �

Remark 4.1. Theorems similar to Theorem 4.1 can be proved in other
ranges of p(t).

5. SUMMARY

It is worth noticing that both unforced and forced equations (1) and (2)
are studied keeping in view assumptions (A1) – (A15). The results concerning
equations (1) and (2) are completely oscillatory due to the analysis corporated
here. Of course, the forcing term can be considered to (1).
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