LIPSCHITZ APPROXIMATION OF THE n-QUADRATIC FUNCTIONAL EQUATIONS

ISMAIL NIKOUFAR

Abstract

Stability of functional equations is a classical problem proposed by Ulam. Stability of some functional equations are verified in Lipschitz and L^{p} spaces. In this paper, we prove stability of the n-quadratic functional equations in Lipschitz spaces.

MSC 2010. 39B82, 39B52.
Key words. n-quadratic functional equation, Lipschitz space, stability.

1. INTRODUCTION

The study of stability problems for functional equations concerning the stability of group homomorphisms was raised by a question of Ulam [18] and affirmatively was answered for Banach spaces by Hyers [5]. The stability problems of several functional equations have been extensively investigated by a number of authors and there are many interesting results concerning this problem. A large list of references can be found, for example, in the papers $[1,2,6,7,12,13]$. A stability problem for the following quadratic functional equation

$$
\begin{equation*}
f(x+y)+f(x-y)=2 f(x)+2 f(y) \tag{1}
\end{equation*}
$$

was solved by Skof [15] for functions $f: E_{1} \longrightarrow E_{2}$, where E_{1} is a normed space and E_{2} a Banach space. For other type of quadratic mapping we refer the readers to see [11]. Czerwik et al. proved the Hyers-Ulam-Rassias stability of the quadratic functional equation (1) in normed and Lipschitz spaces (cf. $[3,4])$. The stability type problems for some functional equations were also studied in Lipschitz spaces $[16,17,10]$. The general solution and the stability of the following 2 -variable quadratic functional equation

$$
f(x+z, y+w)+f(x-z, y-w)=2 f(x, y)+2 f(z, w)
$$

is established in complete normed spaces [2]. We applied this form of 2-variable quadratic functional equations to establish quartic functional equations in Lipschitz spaces (see [8, 9]). Ravi et al. [14] discussed the general solution and the stability of the 3 -variable quadratic functional equation

$$
f(x+y, z+w, u+v)+f(x-y, z-w, u-v)=2 f(x, z, u)+2 f(y, w, v)
$$

We introduce the n-variable quadratic functional equation as follows:

$$
\begin{align*}
f\left(x_{1}+y_{1}, \ldots, x_{n}+y_{n}\right) & +f\left(x_{1}-y_{1}, \ldots, x_{n}-y_{n}\right) \\
& =2 f\left(x_{1}, \ldots, x_{n}\right)+2 f\left(y_{1}, \ldots, y_{n}\right) . \tag{2}
\end{align*}
$$

Lipschitz spaces have a rich algebra structure and various universal properties. These algebras present many opportunities for future research. One may find some of open problems in this area in chapter 7 of [19].

Throughout this paper G is an abelian group and W a vector space. Let $f: G^{n} \rightarrow W$ be a function. We say that f is n-quadratic, if f satisfies (2). Let $\mathbb{T}(W)$ be a collection of subsets of W. We denote by $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ the subset of all functions $f: G^{n} \longrightarrow W$ such that $\operatorname{Im} f \subset B$ for some $B \in \mathbb{T}(W)$. The family $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ is a vector space and contains all constant functions. We denote by $C B(W)$ the family of all closed balls with center at zero. This family admits a left invariant mean (briefly LIM), if the subset $\mathbb{T}(W)$ is linearly invariant, in the sense that $A+B \in \mathbb{T}(W)$ for all $A, B \in \mathbb{T}(W)$ and $x+\alpha A \in$ $\mathbb{T}(W)$ for all $x \in W, \alpha \in \mathbb{R}, A \in \mathbb{T}(W)$, and there exists a linear operator $\Omega: \mathbb{M}\left(G^{n}, \mathbb{T}(W)\right) \longrightarrow W$ such that
(i) if $\operatorname{Im} f \subset A$ for some $A \in \mathbb{T}(W)$, then $\Omega[f] \in A$,
(ii) if $f \in \mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ and $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$, then $\Omega\left[f^{a_{1}, \ldots, a_{n}}\right]=\Omega[f]$,
where $f^{a_{1}, \ldots, a_{n}}\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)$.
Let $\mathbf{d}: G^{n} \times G^{n} \longrightarrow \mathbb{T}(W)$ be a set-valued function such that

$$
\mathbf{d}\left(\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right),\left(u_{1}+a_{1}, \ldots, u_{n}+a_{n}\right)\right)=\mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
$$

for all $\left(a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. We say that $f: G^{n} \longrightarrow W$ is d-Lipschitz if

$$
f\left(x_{1}, \ldots, x_{n}\right)-f\left(u_{1}, \ldots, u_{n}\right) \in \mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. In particular, when $\left(G^{n}, d\right)$ is a metric group and W a normed space, we define the function $\mu_{f}: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$to be a module of continuity of the function $f: G^{n} \longrightarrow W$ if for all $\delta>0$ and all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$ the condition $d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) \leq \delta$ implies $\left\|f\left(x_{1}, \ldots, x_{n}\right)-f\left(u_{1}, \ldots, u_{n}\right)\right\| \leq \mu_{f}(\delta)$. A function $f: G^{n} \longrightarrow W$ is called Lipschitz function if it satisfies the condition

$$
\begin{equation*}
\left\|f\left(x_{1}, \ldots, x_{n}\right)-f\left(u_{1}, \ldots, u_{n}\right)\right\| \leq \operatorname{Ld}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right), \tag{3}
\end{equation*}
$$

where $L>0$ is a constant and $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. We consider $\operatorname{Lip}\left(G^{n}, W\right)$ to be the Lipschitz space consisting of all bounded Lipschitz functions with the norm

$$
\|f\|_{L i p}:=\max \left\{\|f\|_{\infty}, \mathrm{P}(f)\right\},
$$

where $\|.\|_{\infty}$ is the supremum norm and

$$
\mathrm{P}(f)=\sup \left\{\frac{\left\|f\left(x_{1}, \ldots, x_{n}\right)-f\left(u_{1}, \ldots, u_{n}\right)\right\|}{d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)}:\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n},\right.
$$

$$
\begin{equation*}
\left.\left(x_{1}, \ldots, x_{n}\right) \neq\left(u_{1}, \ldots, u_{n}\right)\right\} . \tag{4}
\end{equation*}
$$

Let $\left(G^{n},+\right)$ be an abelian group. We say that a metric d on $\left(G^{n},+\right)$ is invariant under translation if it satisfies the following condition

$$
d\left(\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right),\left(u_{1}+a_{1}, \ldots, u_{n}+a_{n}\right)\right)=d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
$$

for all $\left(a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. A metric τ on $G^{n} \times G^{n}$ is called a product metric if it is an invariant metric and the following condition holds

$$
\begin{aligned}
\tau\left(\left(a_{1}, \ldots, a_{n}, x_{1}, \ldots, x_{n}\right)\right. & \left.,\left(a_{1}, \ldots, a_{n}, u_{1}, \ldots, u_{n}\right)\right) \\
& =\tau\left(\left(x_{1}, \ldots, x_{n}, a_{1}, \ldots, a_{n}\right),\left(u_{1}, \ldots, u_{n}, a_{1}, \ldots, a_{n}\right)\right) \\
& =d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$.
In this paper, we establish the stability of the n-quadratic functional equations in Lipschitz spaces.

2. STABILITY IN LIPSCHITZ SPACES

In this section, for the sake of a simplified writing and for a given function $f: G^{n} \longrightarrow W$, we define $\Pi_{n}: G^{n} \times G^{n} \longrightarrow W$ to be the n-variable quadratic difference of f as

$$
\begin{aligned}
\Pi_{n}\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{n}\right) & :=2 f\left(x_{1}, \ldots, x_{n}\right)+2 f\left(u_{1}, \ldots, u_{n}\right) \\
& -f\left(x_{1}+u_{1}, \ldots, x_{n}+u_{n}\right)-f\left(x_{1}-u_{1}, \ldots, x_{n}-u_{n}\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. We also define the diagonal set on G as

$$
\Delta(G):=\left\{(x, \ldots, x) \in G^{n}: x \in G\right\} .
$$

Theorem 2.1. Suppose that the family $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ admits LIM. For a function $f: G^{n} \longrightarrow W$, if $\Pi_{n}\left(r_{1}, \ldots, r_{n} ; \cdot, \ldots, \cdot\right): G^{n} \longrightarrow W$ is \boldsymbol{d}-Lipschitz for all $\left(r_{1}, \ldots, r_{n}\right) \in G^{n}$, then there exists an n-quadratic function Q such that $f-Q$ is $\frac{1}{2} d$-Lipschitz.

Proof. The family $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ admits LIM and so there exists a linear operator

$$
\Omega: \mathbb{M}\left(G^{n}, \mathbb{T}(W)\right) \longrightarrow W
$$

such that
(i) $\Omega[\mathrm{F}] \in A$ for some $A \in \mathbb{T}(W)$,
(ii) if for $\left(u_{1}, \ldots, u_{n}\right) \in G^{n}, \mathrm{~F}^{u_{1}, \ldots, u_{n}}: G^{n} \longrightarrow W$ is defined by

$$
\mathrm{F}^{u_{1}, \ldots, u_{n}}\left(r_{1}, \ldots, r_{n}\right):=\mathrm{F}\left(r_{1}+u_{1}, \ldots, r_{n}+u_{n}\right)
$$

for every $\left(r_{1}, \ldots, r_{n}\right) \in G^{n}$, then $\Omega[\mathrm{F}]=\Omega\left[\mathrm{F}^{u_{1}, \ldots, u_{n}}\right]$ and $\mathrm{F}^{u_{1}, \ldots, u_{n}} \in$ $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$.
Define the function $\mathrm{F}_{a_{1}, \ldots, a_{n}}: G^{n} \longrightarrow W$ by

$$
\begin{aligned}
\mathrm{F}_{a_{1}, \ldots, a_{n}}\left(x_{1}, \ldots, x_{n}\right) & :=\frac{1}{2} f\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right) \\
& +\frac{1}{2} f\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right)-f\left(x_{1}, \ldots, x_{n}\right)
\end{aligned}
$$

for all $\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$. We have

$$
\begin{aligned}
\mathrm{F}_{a_{1}, \ldots, a_{n}}\left(x_{1}, \ldots, x_{n}\right)= & \frac{1}{2} f\left(x_{1}+a_{1}, \ldots, x_{n}+a_{n}\right)+\frac{1}{2} f\left(x_{1}-a_{1}, \ldots, x_{n}-a_{n}\right) \\
& -f\left(x_{1}, \ldots, x_{n}\right)-f\left(a_{1}, \ldots, a_{n}\right) \\
& -\frac{1}{2} f\left(x_{1}, \ldots, x_{n}\right)-\frac{1}{2} f\left(x_{1}, \ldots, x_{n}\right)+f\left(x_{1}, \ldots, x_{n}\right) \\
& +f(0, \ldots, 0)+f\left(a_{1}, \ldots, a_{n}\right)-f(0, \ldots, 0) \\
= & \frac{1}{2} \Pi_{n}\left(x_{1}, \ldots, x_{n} ; 0, \ldots, 0\right)-\frac{1}{2} \Pi_{n}\left(x_{1}, \ldots, x_{n} ; a_{1}, \ldots, a_{n}\right) \\
& +f\left(a_{1}, \ldots, a_{n}\right)-f(0, \ldots, 0)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(a_{1}, \ldots, a_{n}\right) \in G^{n}$. Then, $\operatorname{Im} \mathrm{F}_{a_{1}, \ldots, a_{n}} \subset B$ and $B \in \mathbb{T}(W)$, where $B:=\frac{1}{2} \mathbf{d}\left((0, \ldots, 0),\left(a_{1}, \ldots, a_{n}\right)\right)+f\left(a_{1}, \ldots, a_{n}\right)-f(0, \ldots, 0)$. This demonstrate that $\mathrm{F}_{a_{1}, \ldots, a_{n}} \in \mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$. Note that $\mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ contains constant functions. By using property (i) of Ω, we conclude that if $f: G^{n} \longrightarrow W$ is constant, i.e., $f\left(x_{1}, \ldots, x_{n}\right)=C \in W$ for $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$, then $\Omega[f]=C$.

Consider $Q: G^{n} \longrightarrow W$ defined by $Q\left(x_{1}, \ldots, x_{n}\right):=\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}\right]$ for each $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$. We will prove that $f-Q$ is $\frac{1}{2} \mathbf{d}$-Lipschitz. For this, we define, for every $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$, the constant function $C_{x_{1}, \ldots, x_{n}}: G^{n} \longrightarrow W$ by $C_{x_{1}, \ldots, x_{n}}\left(u_{1}, \ldots, u_{n}\right):=f\left(x_{1}, \ldots, x_{n}\right)$ for all $\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Then,

$$
\begin{aligned}
\left(f\left(x_{1}, \ldots, x_{n}\right)\right. & \left.-Q\left(x_{1}, \ldots, x_{n}\right)\right)-\left(f\left(u_{1}, \ldots, u_{n}\right)-Q\left(u_{1}, \ldots, u_{n}\right)\right) \\
& =\left(\Omega\left[C_{x_{1}, \ldots, x_{n}}\right]-\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}\right]\right)-\left(\Omega\left[C_{u_{1}, \ldots, u_{n}}\right]-\Omega\left[\mathrm{F}_{u_{1}, \ldots, u_{n}}\right]\right) \\
& =\Omega\left[C_{x_{1}, \ldots, x_{n}}-\mathrm{F}_{x_{1}, \ldots, x_{n}}\right]-\Omega\left[C_{u_{1}, \ldots, u_{n}}-\mathrm{F}_{u_{1}, \ldots, u_{n}}\right] \\
& =\Omega\left[\frac{1}{2} \Pi_{n}\left(\cdot, \ldots, \cdot ; x_{1}, \ldots, x_{n}\right)-\frac{1}{2} \Pi_{n}\left(\cdot, \ldots, \cdot ; u_{1}, \ldots, u_{n}\right)\right]
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. By the \mathbf{d}-Lipschitz property of Π_{n} and property (i) of Ω we see that
$\Omega\left[\frac{1}{2} \Pi_{n}\left(\cdot, \ldots, \cdot ; x_{1}, \ldots, x_{n}\right)-\frac{1}{2} \Pi_{n}\left(\cdot, \ldots, \cdot ; u_{1}, \ldots, u_{n}\right)\right] \in \frac{1}{2} \mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)$
for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Therefore

$$
\begin{aligned}
\left(f\left(x_{1}, \ldots, x_{n}\right)\right. & \left.-Q\left(x_{1}, \ldots, x_{n}\right)\right) \\
& -\left(f\left(u_{1}, \ldots, u_{n}\right)-Q\left(u_{1}, \ldots, u_{n}\right)\right) \in \frac{1}{2} \mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$, i.e., $f-Q$ is a $\frac{1}{2} \mathbf{d}$-Lipschitz function. We have

$$
2 Q\left(x_{1}, \ldots, x_{n}\right)+2 Q\left(u_{1}, \ldots, u_{n}\right)=2 \Omega\left[\mathrm{~F}_{x_{1}, \ldots, x_{n}}\right]+2 \Omega\left[\mathrm{~F}_{u_{1}, \ldots, u_{n}}\right] .
$$

Property (ii) of Ω ensures

$$
\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}\right]=\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}^{u_{1}, \ldots, u_{n}}\right], \Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}\right]=\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}^{-u_{1}, \ldots, u_{n}}\right]
$$

for $\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Hence

$$
\begin{aligned}
2 Q\left(x_{1}, \ldots, x_{n}\right)+2 Q\left(u_{1}, \ldots, u_{n}\right) & =2 \Omega\left[\mathrm{~F}_{x_{1}, \ldots, x_{n}}\right]+2 \Omega\left[\mathrm{~F}_{u_{1}, \ldots, u_{n}}\right] \\
& =\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}^{u_{1}}\right]+\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}, \ldots, u_{n}}^{-u_{n}}\right]+2 \Omega\left[\mathrm{~F}_{u_{1}, \ldots, u_{n}}\right]
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
& \Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}^{u_{1}, u_{n}}\left(r_{1}, \ldots, r_{n}\right)\right]+\Omega\left[\mathrm{F}_{x_{1}, \ldots, x_{n}}^{-u_{1}, u_{n}}\left(r_{1}, \ldots, r_{n}\right)\right]+2 \Omega\left[\mathrm{~F}_{u_{1}, \ldots, u_{n}}\left(r_{1}, \ldots, r_{n}\right)\right] \\
& =\Omega\left[\frac{1}{2} f\left(r_{1}+x_{1}+u_{1}, \ldots, r_{n}+x_{n}+u_{n}\right)+\frac{1}{2} f\left(r_{1}-x_{1}+u_{1}, \ldots, r_{n}-x_{n}+u_{n}\right)\right. \\
& \left.-f\left(r_{1}+u_{1}, \ldots, r_{n}+u_{n}\right)\right] \\
& +\Omega\left[\frac{1}{2} f\left(r_{1}+x_{1}-u_{1}, \ldots, r_{n}+x_{n}-u_{n}\right)+\frac{1}{2} f\left(r_{1}-x_{1}-u_{1}, \ldots, r_{n}-x_{n}-u_{n}\right)\right. \\
& \left.-f\left(r_{1}-u_{1}, \ldots, r_{n}-u_{n}\right)\right] \\
& +\Omega\left[f\left(r_{1}+u_{1}, \ldots, r_{n}+u_{n}\right)+f\left(r_{1}-u_{1}, \ldots, r_{n}-u_{n}\right)-2 f\left(r_{1}, \ldots, r_{n}\right)\right] \\
& =Q\left(x_{1}+u_{1}, \ldots, x_{n}+u_{n}\right)+Q\left(x_{1}-u_{1}, \ldots, x_{n}-u_{n}\right) .
\end{aligned}
$$

This shows that Q is n-quadratic.
Remark 2.1. Consider $Q_{1}: G \longrightarrow E$ given by $Q_{1}(x):=Q(x, \ldots, x)$. The function $f-Q$ is $\frac{1}{2} \mathbf{d}$-Lipschitz and so is $(f-Q)_{\mid \Delta(G)}$. This implies that the function $f_{\mid \Delta(G)}-Q_{1}$ is $\frac{1}{2} \mathbf{d}$-Lipschitz. The following equality exhibits that Q_{1} is quadratic.

$$
\begin{aligned}
Q_{1}(x+y)+Q_{(x-y)} & =Q(x+y, \ldots, x+y)+Q(x-y, \ldots, x-y) \\
& =2 Q(x, \ldots, x)+2 Q(y, \ldots, y) \\
& =2 Q_{1}(x)+2 Q_{1}(y) .
\end{aligned}
$$

Corollary 2.1. Under the hypotheses of Theorem 2.1, if $\operatorname{Im} \Pi_{n} \subset A$ for some $A \in \mathbb{T}(W)$, then $\operatorname{Im}(f-Q) \subset \frac{1}{2} A$.

Proof. We know that

$$
\operatorname{Im}\left(\frac{1}{2} \Pi_{n}\left(x_{1}, \ldots, x_{n} ; \cdot, \ldots, \cdot\right)\right) \subset \operatorname{Im}\left(\frac{1}{2} \Pi_{n}\right) \subset \frac{1}{2} A
$$

and so $\frac{1}{2} \Pi_{n}\left(x_{1}, \ldots, x_{n} ; \cdot, \ldots, \cdot\right) \in \mathbb{M}\left(G^{n}, \mathbb{T}(W)\right)$ for all $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$. By property (i) of Ω, we have

$$
f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)=\Omega\left[\frac{1}{2} \Pi_{n}\left(\cdot, \ldots, \cdot ; x_{1}, \ldots, x_{n}\right)\right] \in \frac{1}{2} A
$$

for all $\left(x_{1}, \ldots, x_{n}\right) \in G^{n}$. Consequently, $\operatorname{Im}(f-Q) \subset \frac{1}{2} A$.
Theorem 2.2. Let $\left(G^{n},+, d, \tau\right)$ be a product metric and W a normed space. Suppose that the family $\mathbb{M}\left(G^{n}, C B(W)\right)$ admits LIM.
(i) If $f: G^{n} \longrightarrow W$ is a function, then there exists an n-quadratic function $Q: G \longrightarrow W$ such that $\mu_{\Pi_{n}}=2 \mu_{f-Q}$.
(ii) If $\Pi_{n} \in \mathbb{M}\left(G^{n} \times G^{n}, C B(W)\right)$, then there exists an n-quadratic function Q such that

$$
\|f-Q\|_{\infty} \leq \frac{1}{2}\left\|\Pi_{n}\right\|_{\infty} .
$$

(iii) If $\Pi_{n} \in \operatorname{Lip}\left(G^{n} \times G^{n}, W\right)$, then there exists an n-quadratic function Q such that

$$
\left.\|f-Q\|_{L i p} \leq \frac{1}{2} \right\rvert\,\left\|\Pi_{n}\right\|_{L i p} .
$$

Proof. (i) Let $\varphi: G^{n} \times G^{n} \longrightarrow \mathbb{R}^{+}$be a positive real-valued function defined by

$$
\varphi\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right):=\inf \left\{\mu_{\Pi_{n}}(\delta): d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) \leq \delta\right\}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Define the set-valued function $\mathbf{d}: G^{n} \times$ $G^{n} \longrightarrow C B(W)$ by

$$
\mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right):=\varphi\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) B(0,1)
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$, where $B(0,1)$ is the unit closed ball in W. Since $\mu_{\Pi_{n}}$ is the module of continuity of Π_{n}, then

$$
\begin{aligned}
& \left\|\Pi_{n}\left(r_{1}, \ldots, r_{n} ; x_{1}, \ldots, x_{n}\right)-\Pi_{n}\left(r_{1}, \ldots, r_{n} ; u_{1}, \ldots, u_{n}\right)\right\| \\
& \quad \leq \inf \left\{\mu_{\Pi_{n}}(\delta): \tau\left(\left(r_{1}, \ldots, r_{n}, x_{1}, \ldots, x_{n}\right),\left(r_{1}, \ldots, r_{n}, u_{1}, \ldots, u_{n}\right)\right) \leq \delta\right\} \\
& \quad=\inf \left\{\mu_{\Pi_{n}}(\delta): d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) \leq \delta\right\} \\
& \quad=\varphi\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Hence $\Pi_{n}\left(r_{1}, \ldots, r_{n} ; \cdot, \ldots, \cdot\right)$ is d-Lipschitz and so Theorem 2.1 implies there exists an n-quadratic function $Q: G^{n} \longrightarrow W$ such that $f-Q$ is $\frac{1}{2} d$-Lipschitz. Thus,

$$
\begin{aligned}
\left(f\left(x_{1}, \ldots, x_{n}\right)\right. & \left.-Q\left(x_{1}, \ldots, x_{n}\right)\right) \\
& -\left(f\left(u_{1}, \ldots, u_{n}\right)-Q\left(u_{1}, \ldots, u_{n}\right)\right) \in \frac{1}{2} \mathbf{d}\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. So,

$$
\begin{aligned}
\|\left(f\left(x_{1}, \ldots, x_{n}\right)\right. & \left.-Q\left(x_{1}, \ldots, x_{n}\right)\right)-\left(f\left(u_{1}, \ldots, u_{n}\right)-Q\left(u_{1}, \ldots, u_{n}\right)\right) \| \\
& \leq \frac{1}{2} \varphi\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) \\
& =\frac{1}{2} \inf \left\{\mu_{\Pi_{n}}(\delta): d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right) \leq \delta\right\}
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Consequently, $\mu_{f-Q}=\frac{1}{2} \mu_{\Pi_{n}}$.
(ii) Assume that $\Pi_{n} \in \mathbb{M}\left(G^{n} \times G^{n}, C B(W)\right)$. Then, $\operatorname{Im} \Pi_{n} \subset\left\|\Pi_{n}\right\|_{\infty} B(0,1)$. In view of Corollary 2.1, we conclude that $\operatorname{Im}(f-Q) \subset \frac{1}{2}\left\|\Pi_{n}\right\|_{\infty} B(0,1)$ and hence $\|f-Q\|_{\infty} \leq \frac{1}{2}\left\|\Pi_{n}\right\|_{\infty}$.
(iii) Define the function $\omega: \mathbb{R}^{+} \longrightarrow \mathbb{R}^{+}$by $\omega(t):=\mathrm{P}\left(\Pi_{n}\right) t$ for all $t \in \mathbb{R}^{+}$. Since $\Pi_{n} \in \operatorname{Lip}\left(G^{n} \times G^{n}, W\right)$, we conclude that

$$
\begin{aligned}
\| \Pi_{n}\left(r_{1}, \ldots, r_{n} ; a_{1}, \ldots, a_{n}\right) & -\Pi_{n}\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{n}\right) \| \\
& \leq \mathrm{P}\left(\Pi_{n}\right) \tau\left(\left(r_{1}, \ldots, r_{n}, a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(r_{1}, \ldots, r_{n}\right),\left(a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. Applying now the definition of ω, we get

$$
\begin{aligned}
\| \Pi_{n}\left(r_{1}, \ldots, r_{n} ; a_{1}, \ldots, a_{n}\right) & -\Pi_{n}\left(x_{1}, \ldots, x_{n} ; u_{1}, \ldots, u_{n}\right) \| \\
& \leq \omega\left(\tau\left(\left(r_{1}, \ldots, r_{n}, a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{n}\right)\right)\right)
\end{aligned}
$$

for all $\left(r_{1}, \ldots, r_{n}\right),\left(a_{1}, \ldots, a_{n}\right),\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. It follows that ω is the module of continuity of Π_{n} and so by part (i) there exists an n-quadratic function $Q: G^{n} \longrightarrow W$ such that $\mu_{f-Q}=\frac{1}{2} \omega$. We have

$$
\begin{aligned}
\|\left(f\left(x_{1}, \ldots, x_{n}\right)-Q\left(x_{1}, \ldots, x_{n}\right)\right) & -\left(f\left(u_{1}, \ldots, u_{n}\right)-Q\left(u_{1}, \ldots, u_{n}\right)\right) \| \\
& \leq \mu_{f-Q}\left(d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)\right) \\
& =\frac{1}{2} \omega\left(d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)\right) \\
& =\frac{1}{2} \mathrm{P}\left(\Pi_{n}\right) d\left(\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right)\right)
\end{aligned}
$$

for all $\left(x_{1}, \ldots, x_{n}\right),\left(u_{1}, \ldots, u_{n}\right) \in G^{n}$. This entails that $f-Q$ is Lipschitz and

$$
\begin{equation*}
\mathrm{P}(f-Q) \leq \frac{1}{2} \mathrm{P}\left(\Pi_{n}\right) . \tag{5}
\end{equation*}
$$

Since $\Pi_{n} \in \operatorname{Lip}\left(G^{n} \times G^{n}, W\right), \Pi_{n}$ is bounded and $\operatorname{Im} \Pi_{n}$ is contained in the closed ball with center at zero and radius for some $r>0$. Therefore $\Pi_{n} \in$ $\mathbb{M}\left(G^{n} \times G^{n}, C B(W)\right)$. In view of (ii), the function $f-Q$ is bounded and hence $f-Q \in \operatorname{Lip}\left(G^{n}, W\right)$. Using (ii) and (5), we find that

$$
\|f-Q\|_{L i p}=\max \left\{\|f-Q\|_{\infty}, \mathrm{P}(f-Q)\right\} \leq \frac{1}{2} \max \left\{\left\|\Pi_{n}\right\|_{\infty}, \mathrm{P}\left(\Pi_{n}\right)\right\}=\frac{1}{2}\left\|\Pi_{n}\right\|_{L i p} .
$$

This ends the proof.

REFERENCES

[1] Baak, C., Boo, D.-H., and Rassias, Th.M., Generalized additive mapping in Banach modules and isomorphisms between C*-algebras, J. Math. Anal. Appl., 314 (2006), 150161.
[2] Bae, J.-H. and Park, W.-G., A functional equation originating from quadratic forms, J. Math. Anal. Appl., 326 (2007), 1142-1148.
[3] Czerwik, S. and Dlutek, K., Stability of the quadratic functional equation in Lipschitz spaces, J. Math. Anal. Appl., 293 (2004), 79-88.
[4] Czerwik, S., On the stability of the quadratic mapping in normed spaces, Abh. Math. Semin. Univ. Hambg., 62 (1992), 59-64.
[5] Hyers, D.H., On the stability of the linear functional equation, Proc. Natl. Acad. Sci., 27 (1941), 222-224.
[6] Jung, S.M., Rassias, Th.M., and Mortici, C., On a functional equation of trigonometric type, Appl. Math. Comput., 252 (2015), 294-303.
[7] Jung, S.M. and Rassias, Th.M., A linear functional equation of third order associated to the Fibonacci numbers, Abstr. Appl. Anal., 2014 (2014), Article ID 137466, 1-7.
[8] Nikoufar, I., Quartic functional equations in Lipschitz spaces, Rend. Circ. Mat. Palermo, 64, (2015), 171-176.
[9] Nikoufar, I., Erratum to "Quartic functional equations in Lipschitz spaces", to appear in Rend. Circ. Mat. Palermo, 2016.
[10] Ebadian, A., Ghobadipour, N., Nikoufar, I., and Gordji, M., Approximation of the Cubic Functional Equations in Lipschitz Spaces, Anal. Theory Appl., 30 (2014), 354-362.
[11] Park, C.-G. and Rassias, Th. M., Hyers-Ulam stability of a generalized Apollonius type quadratic mapping, J. Math. Anal. Appl., 322, 371-381.
[12] Prastaro, A. and Th.M. Rassias, On Ulam stability in the geometry of PDEs, In: Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, Boston, London, 2003, 139-147.
[13] Rassias, Th. M., Solution of a functional equation problem of Steven Butler, Octogon Math. Mag. 12 (2004), 152-153.
[14] Ravi, K. and Arunkumar, M., Stability of a 3-variable quadratic functional equation, J. Qual. Measurement Anal., 4, 2008, 97-107.
[15] Skof, F., Local properties and approximations of operators, Rend. Sem. Mat. Fis. Milano, 53, (1983), 113-129.
[16] Tabor, J., Lipschitz stability of the Cauchy and Jensen equations, Results Math., 32 (1997), 133-144.
[17] Tabor, J., Superstability of the Cauchy, Jensen and Isometry Equations, Results Math., 35 (1999), 355-379.
[18] Ulam, S. M., A Collection of the Mathematical Problems, Interscience Publication, New York, 1940.
[19] Weaver, N., Lipschitz Algebras, World Scientific, Singapore, 1999.

Received April 2, 2015
Accepted January 4, 2016

Payame Noor University
Department of Mathematics
P.O. Box 19395-3697 Tehran

Iran
E-mail: nikoufar@pnu.ac.ir

