SOME TYPES OF DERIVATIONS ON HILBERT C*-MODULES AND THEIR OPERATOR ALGEBRAS

MOSTAFA KAFIMOGHADAM, ALIREZA JANFADA, and MOHAMADREZA MIRI

Abstract. Let \mathcal{A} be a C^* -algebra and \mathcal{M} be a Hilbert \mathcal{A} -module. In this paper, we show that if \mathcal{A} is commutative and there exist $x_0, y_0 \in \mathcal{M}$ such that $\langle x_0, y_0 \rangle = 1_{\mathcal{A}}$, then every Jordan ternary derivation on \mathcal{M} is a ternary derivation. Moreover, motivated by definition of Jordan *-derivations, we study innerness of the linear mapping J on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$, the C^* -algebra of adjointable operators in Hilbert C^* -modules satisfying $J(T^2) = J(T)T + T^*J(T)$ for all $T \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$. Also, motivated by definition of reverse *-derivations, some necessary conditions for mapping D on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ satisfying $D(TS) = D(S)T^* + S^*D(T)$ for $T \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ to be inner will be established. At the end of this paper, we characterize the linear mappings on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ which behave like mapping D when acting on pairs of elements with compact product.

MSC 2010. 47B47, 47B49.

Key words. Hilbert $C^\ast\text{-modules},$ ternary derivations, Jordan *-derivations, reverse *-derivations, innerness.

1. INTRODUCTION

The notion of Jordan *-derivations were first mentioned in [20]. A linear mapping J of a *-ring \mathcal{R} into itself which satisfies $J(x^2) = J(x)x^* + xJ(x)$ for all $x \in \mathcal{R}$ is called a Jordan *-derivation. The problem of representing quadratic forms by sesquilinear ones is closely connected with the structure of Jordan *-derivations and this was the motivation of this subject, see [21, 22]. The structure of Jordan *-derivations on standard operator algebras was described by Šemrl [19]. Šemrl showed that every Jordan *-derivation of $B(\mathcal{H})$, the algebra of all bounded linear operators on a real Hilbert space \mathcal{H} $(\dim \mathcal{H} > 1)$, is inner. For more information about this subject, we refer to [3, 4, 6, 17, 18]. In [7] Brešar and Vukman studied some algebraic properties of Jordan *-derivations. As a special case of [[7]; Theorem1] we have that every Jordan *-derivation of a complex algebra \mathcal{A} with unit element is inner. Also, they introduced the notion of reverse *-derivations and studied some of its properties. A linear mapping D of a *-algebra \mathcal{A} is called a reverse *-derivation, if $D(xy) = D(y)x^* + yD(x)$ for every $x, y \in \mathcal{A}$.

In this paper, motivated by definition of this notions, we define the notion of reverse **-derivation and Jordan left *-derivation as follows:

A linear mapping D on a *-algebra \mathcal{A} is called a reverse **-derivation if, for all $a, b \in \mathcal{A}$,

$$D(ab) = D(b)a^* + b^*D(a).$$

Trivially, the mapping $a \to ba^* - a^*b$ is a reverse **-derivation, which is called an inner reverse **-derivation.

A linear mapping J on a *-algebra \mathcal{A} is called a Jordan left *-derivation if

$$J(a^2) = J(a)a + a^*J(a)$$

for all $a \in \mathcal{A}$. Clearly, the mapping $a \mapsto ba - a^*b$ is a Jordan left *-derivation which is called an inner Jordan left *-derivation. By a similar process as in [9], one may prove that if J is a Jordan left *-derivation on a *-algebra \mathcal{A} then for every $a, b \in \mathcal{A}$

(1)
$$J(ab+ba) = J(a)b + a^*J(b) + J(b)a + b^*J(a),$$

and since $2aba = a(ab + ba) + (ab + ba)a - (a^2b + ba^2)$, we have

(2)
$$J(aba) = J(a)ba + a^*J(b)a + a^*b^*J(a).$$

Now we recall some preliminaries and elementary properties of Hilbert C^* -modules which will be used in the sequel. Hilbert C^* -modules are generalization of Hilbert spaces, where the field of complex numbers is replaced by a C^* -algebra. This concept was introduced by Kaplansky [11]. A pre-Hilbert C^* -module \mathcal{M} over a C^* -algebra \mathcal{A} , or a pre-Hilbert \mathcal{A} -module, is a left \mathcal{A} -module with an \mathcal{A} -valued inner product $\langle ., . \rangle : \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{A}$ satisfying the following conditions:

- (i) $\langle \lambda x + y, z \rangle = \lambda \langle x, z \rangle + \langle y, z \rangle$, for all $x, y, z \in \mathcal{M}$ and $\lambda \in \mathbb{C}$;
- (ii) $\langle x, x \rangle \ge 0$, and $\langle x, x \rangle = 0$ if and only if x = 0 for $x \in \mathcal{M}$;
- (iii) $\langle ax, y \rangle = a \langle x, y \rangle$, for every $x, y \in \mathcal{M}$ and $a \in \mathcal{A}$;
- (iv) $\langle x, y \rangle^* = \langle y, x \rangle$, for each $x, y \in \mathcal{M}$.

It is well known that $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$ defines a norm on \mathcal{M} . A pre-Hilbert \mathcal{A} -module \mathcal{M} is called a Hilbert C^* -module over \mathcal{A} if it is complete with respect to this norm. For example every Hilbert space is a Hilbert \mathbb{C} -module. The closure of the span of $\{\langle x, y \rangle : x, y \in \mathcal{M}\}$ is denoted by $\langle \mathcal{M}, \mathcal{M} \rangle$ and \mathcal{M} is called full if $\langle \mathcal{M}, \mathcal{M} \rangle = \mathcal{A}$. The concept of an orthogonal basis of a Hilbert C^* -module is introduced by D. Bakić and B. Guljaš in [2]. The Hilbert C^* -module $\mathcal{H}_{\mathcal{A}}$, the direct sum of a countable number of copies of \mathcal{A} , is called standard Hilbert module over \mathcal{A} . If the C^* -algebra \mathcal{A} is unital then $\mathcal{H}_{\mathcal{A}}$ possesses the standard orthogonal basis $\{e_i : i \in \mathbb{N}\}$, where $e_i = (0, ..., 0, 1, 0, ..., 0, ...)$ with the unite at the i-th place.

Let \mathcal{M} be a Hilbert C^* -module. Following [14], a linear mapping $\delta : \mathcal{M} \to \mathcal{M}$ is called

(i) a ternary derivation if

(3)
$$\delta(\langle x, y \rangle z) = \langle \delta(x), y \rangle z + \langle x, \delta(y) \rangle z + \langle x, y \rangle \delta(z)$$

for every $x, y, z \in \mathcal{M}$,

(ii) a Jordan ternary derivation if, for every $x \in \mathcal{M}$,

(4)
$$\delta(\langle x, x \rangle x) = \langle \delta(x), x \rangle x + \langle x, \delta(x) \rangle x + \langle x, x \rangle \delta(x).$$

Abbaspour and Skeide in [1] characterized the generators of dynamical systems on Hilbert modules as those generators of one-parameter groups of Banach space isometries which are ternary derivations.

A JB^* -triple is a complex vector space \mathcal{J} with a continuous mapping $\mathcal{J}^3 \longrightarrow \mathcal{J}$ with $(x, y, z) \longmapsto \{x, y, z\}$ is called a Jordan triple product, which is symmetric and bi-linear in the outer variables and conjugate linear in the middle variable and have the following properties:

- for $x, y, z, u, u \in \mathcal{J}$
- $\{x, y, \{z, u, v\}\} = \{\{x, y, z\}, u, v\} \{z, \{y, x, u\}, v\} + \{z, u, \{x, y, v\}\},\$
- the mapping z → {x, y, z} is hermitian and has non-negative spectrum,
 ||{x, x, x}|| = ||x||³

In [10], Isidro showed that every Hilbert C^* -module is a JB^* -triple with the Jordan triple product $\{x, y, z\} = \frac{1}{2}(\langle x, y \rangle z + \langle z, y \rangle x)$. A well-known lemma of [16] states that for every Jordan derivation D on JB^* -triple \mathcal{J} the equation $D(\{x, y, x\}) = \{D(x), y, x\} + \{x, D(y), x\} + \{x, y, D(x)\}$ holds for all $x, y \in \mathcal{J}$. Hence for every Jordan ternary derivation δ on Hilbert C^{*}-module \mathcal{M} , we have

(5)
$$\delta(\langle x, y \rangle x) = \langle \delta(x), y \rangle x + \langle x, \delta(y) \rangle x + \langle x, y \rangle \delta(x)$$

Herštein [9] showed that every Jordan derivation from a 2-torsion free prime ring into itself is a derivation. Brešar [5] proved that Herštein's result is true for 2-torsion free semiprime rings. In the second section by using equation (5) we show that every Jordan ternary derivation δ on Hilbert C^{*}-module \mathcal{M} with x_0, y_0 which $\langle x_0, y_0 \rangle = 1_{\mathcal{A}}$ is a ternary derivation.

We denote the Banach algebra of all bounded linear \mathcal{A} -module homomorphism (i.e. T(ax) = aT(x)) from \mathcal{M} into itself, which is called operator of \mathcal{M} , by End₄(\mathcal{M}). It is well known that there is no natural involution on this algebra. A linear \mathcal{A} -module homomorphism $T: \mathcal{M} \to \mathcal{M}$ is called adjointable, if there exists a linear \mathcal{A} -module homomorphism $T^*: \mathcal{M} \to \mathcal{M}$ such that $\langle Tx, y \rangle = \langle x, T^*y \rangle$, for all $x, y \in \mathcal{M}$. T^* is called the adjoint of T. It is well-known that in this case T, T^* are bounded. Indeed, the following result holds true.

LEMMA 1.1 ([15]). Let \mathcal{M} be a Hilbert C^* -module over a C^* -algebra \mathcal{A} , and T, S be two mappings from \mathcal{M} into itself such that $\langle Tx, y \rangle = \langle x, Sy \rangle$, for $x, y \in \mathcal{M}$. Then T,S are both belong to $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$.

The set of all adjointable operators in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is denoted by $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ which becomes a C^* -algebra. For any $x, y \in \mathcal{M}$, the operator $\theta_{x,y} : \mathcal{M} \to \mathcal{M}$ defined by $\theta_{x,y}(z) = \langle z, y \rangle x$ is called elementary operator. Let us review some properties of these operators in the following:

- (i) $(\theta_{x,y})^* = \theta_{y,x};$
- (ii) $\theta_{x,y}\theta_{u,v} = \theta_{\langle u,y \rangle x,v} = \theta_{x,\langle y,u \rangle v};$ (iii) For any $T \in \operatorname{End}_{\mathcal{A}}(\mathcal{M})$ and $S \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ we have $T\theta_{x,y} = \theta_{Tx,y}$, and $\theta_{x,y}S = \theta_{x,S^*y};$

(iv) If \mathcal{A} is commutative then for any $a \in \mathcal{A}$, $a\theta_{x,y} = \theta_{ax,y} = \theta_{x,a^*y}$. The linear span of $\{\theta_{x,y} : x, y \in \mathcal{M}\}$ will be denoted by $\Theta(\mathcal{M})$ and $\mathcal{K}(\mathcal{M})$ is used for the closed linear span of $\Theta(\mathcal{M})$. $\mathcal{K}(\mathcal{M})$ is a closed two sided ideal in $End^*_{\mathcal{A}}(\mathcal{M})$ and elements of $\mathcal{K}(\mathcal{M})$ are often called compact operators. Reader can find some properties of Hilbert C^* -modules in [15]. The following lemma is essentially due to Brown [8] also one may see Lemma 2.4.3 of [15] for a direct proof.

LEMMA 1.2. Let \mathcal{A} be a unital C^* -algebra and \mathcal{M} be full Hilbert \mathcal{A} -module. Then there exist x_1, x_2, \ldots, x_k in \mathcal{M} , such that $\sum_{i=1}^k \langle x_i, x_i \rangle = 1_{\mathcal{A}}$.

Identifying algebras on which all derivations are inner is the most important subject in this area. The authors in [12] give some sufficient conditions on which every derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is inner. Also, P.T. Li et al. in [13] prove that if \mathcal{A} is unital and commutative C^* -algebra and \mathcal{M} is a full Hilbert C^* -module over \mathcal{A} then every derivation of C^* -algebra of $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$, is an inner derivation. In this paper, using their ideas on proving innerness of derivations on $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$, we investigate innerness of Jordan left *-derivations on $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ in the third section. In the last section we prove some theorems involving innerness of reverse **-derivations on these spaces. Moreover, we prove that every linear mapping on $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ which behave like a reverse **-derivation at compact product of elements, is a reverse **-derivation.

2. TERNARY DERIVATIONS ON HILBERT C^* -MODULES

Throughout this section, for a linear mapping δ , we define $d_{\delta} : \mathcal{M} \to \mathcal{M}$ by

$$d_{\delta}(\langle x, y \rangle z) = \langle \delta(x), y \rangle z + \langle x, \delta(y) \rangle z + \langle x, y \rangle \delta(z)$$

for all $x, y, z \in \mathcal{M}$. Clearly, the mapping d_{δ} is linear and by equation (5), if δ is a Jordan ternary derivation we have $d_{\delta}(\langle x, y \rangle x) = \delta(\langle x, y \rangle x)$.

THEOREM 2.1. Let \mathcal{A} be a commutative C^* -algebra, let \mathcal{M} be a Hilbert \mathcal{A} module such that there exist $x_0, y_0 \in \mathcal{M}$ that $\langle x_0, y_0 \rangle = 1_{\mathcal{A}}$ and let δ be a
Jordan ternary derivation on \mathcal{M} . Then δ is a ternary derivation.

Proof. It is sufficient to show that $\delta(\langle x, y \rangle z) = d_{\delta}(\langle x, y \rangle z)$. For $x, y, z \in \mathcal{M}$, by replacing x by x + z in equation (5) and by linearity of δ we obtain that

$$\begin{split} \delta(\langle (x+z), y \rangle (x+z)) &= \langle \delta(x+z), y \rangle (x+z) + \langle (x+z), \delta(y) \rangle (x+z) \\ &+ \langle (x+z), y \rangle \delta(x+z) \\ &= d_{\delta}(\langle x, y \rangle x) + d_{\delta}(\langle x, y \rangle z) + d_{\delta}(\langle z, y \rangle x) + d_{\delta}(\langle z, y \rangle z). \end{split}$$

On the other hand, by linearity of δ we get

 $\delta(\langle (x+z), y \rangle (x+z)) = \delta(\langle x, y \rangle x) + \delta(\langle x, y \rangle z) + \delta(\langle z, y \rangle x) + \delta(\langle z, y \rangle z).$

Comparing two expressions, we have

(6) $\delta(\langle x, y \rangle z) + \delta(\langle z, y \rangle x) = d_{\delta}(\langle x, y \rangle z) + d_{\delta}(\langle z, y \rangle x).$

By using $\langle x, y \rangle z$ for x in equation (6) and by commutativity of \mathcal{A} we obtain that $\delta(\langle z, y \rangle \langle x, y \rangle z) + \delta(\langle x, y \rangle \langle z, y \rangle z) = d_{\delta}(\langle x, y \rangle \langle z, y \rangle z) + d_{\delta}(\langle z, y \rangle \langle x, y \rangle z)$. Hence

(7)
$$\delta(\langle x, y \rangle \langle z, y \rangle z) = d_{\delta}(\langle x, y \rangle \langle z, y \rangle z),$$

for all $x, y, z \in \mathcal{M}$. We can take a positive number λ small enough such that $\langle \lambda z + x_0, y_0 \rangle$ is invertible in \mathcal{A} . Put $a := \langle \lambda z + x_0, y_0 \rangle^{-1}$. Replace z by $\lambda z + x_0$ in equation (7) to get $\delta(\langle x, y_0 \rangle \langle \lambda z + x_0, y_0 \rangle (\lambda z + x_0)) = d_{\delta}(\langle x, y_0 \rangle \langle \lambda z + x_0, y_0 \rangle (\lambda z + x_0))$. Substituting ax for x in the last equaliy and using the fact that \mathcal{A} is a commutative C^* -algebra, we obtain for each $x, z \in \mathcal{M}$

$$\delta(\langle x, y_0 \rangle \lambda z) + \delta(\langle x, y_0 \rangle x_0) = d_{\delta}(\langle x, y_0 \rangle \lambda z) + d_{\delta}(\langle x, y_0 \rangle x_0).$$

Replacing z by $\lambda^{-1}(z - x_0)$ we can conclude that

(8)
$$\delta(\langle x, y_0 \rangle z) = d_{\delta}(\langle x, y_0 \rangle z).$$

Again, for $y \in \mathcal{M}$, we can take a positive number μ small enough such that $\langle \mu y + y_0, x_0 \rangle$ is invertible in \mathcal{A} . Denote $b := \langle \mu y + y_0, x_0 \rangle^{-1}$. Then $\langle b(\mu y + y_0), x_0 \rangle = e_{\mathcal{A}}$. So we can replace y_0 by $b(\mu y + y_0)$. By the equality (8), we have

$$\delta(\langle x, b(\mu y + y_0) \rangle z) = d_{\delta}(\langle x, b(\mu y + y_0) \rangle z).$$

By substituting x by $(b^*)^{-1}x$ and since $\delta(\langle x, y_0 \rangle z) = d_{\delta}(\langle x, y_0 \rangle z)$, we have $\delta(\langle x, y \rangle z) = d_{\delta}(\langle x, y \rangle z)$ for all $x, y, z \in \mathcal{M}$. It means that δ is a ternary derivation.

3. JORDAN LEFT *-DERIVATIONS ON $END^*_{\mathcal{A}}(\mathcal{M})$

The main result of this section is stated as follows.

THEOREM 3.1. Let \mathcal{A} be a unital and commutative C^* -algebra and \mathcal{M} be a Hilbert \mathcal{A} -module with two elements z, x such that $\langle z, x \rangle = 1_{\mathcal{A}}$. If every \mathcal{A} module homomorphism Jordan left *-derivation on $\Theta(\mathcal{M})$ is inner then any \mathcal{A} -module homomorphism Jordan left *-derivation on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ is inner.

Proof. Let J be a \mathcal{A} -module homomorphism Jordan left *-derivation on $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$. First we show that J is a Jordan left *-derivation on $\Theta(\mathcal{M})$. For this, we show that $J(\theta_{w,y}) \in \Theta(\mathcal{M})$, for each $w, y \in \mathcal{M}$. Since $\langle z, x \rangle = 1_{\mathcal{A}}$, we have

$$J(\theta_{z,x}) = J(\theta_{z,x}\theta_{z,x}) = J(\theta_{z,x})\theta_{z,x} + \theta_{x,z}J(\theta_{z,x}).$$

Since $\Theta(\mathcal{M})$ is two sided ideal in $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ we get $J(\theta_{z,x}) \in \Theta(\mathcal{M})$. Also, by (1) we have

$$J(\theta_{w,y}) + J(\theta_{\langle w,y\rangle z,x}) = J(\theta_{w,y} + \theta_{\langle w,y\rangle z,x})$$

= $J(\theta_{w,x}\theta_{z,y} + \theta_{z,y}\theta_{w,x})$
= $J(\theta_{w,x})\theta_{z,y} + \theta_{x,w}J(\theta_{z,y}) + J(\theta_{z,y})\theta_{w,x}$
+ $\theta_{y,z}J(\theta_{w,x})$.

Since J is \mathcal{A} -module homomorphism, $J\left(\theta_{\langle w,y\rangle z,x}\right) = \langle w,y\rangle J(\theta_{z,x})$ which together with the last relations imply that $J\left(\theta_{w,y}\right) \in \Theta(\mathcal{M})$ for each $w, y \in \mathcal{M}$. Since $\Theta(\mathcal{M})$ is the linear span of $\{\theta_{w,y} : w, y \in \mathcal{M}\}$, thus $J(\Theta(\mathcal{M})) \subseteq \Theta(\mathcal{M})$. By the assumption that every derivation of $\Theta(\mathcal{M})$ is inner, there exists $T \in \Theta(\mathcal{M})$ such that $J\left(\theta_{w,y}\right) = T\theta_{w,y} - \theta_{y,w}T$ for all $w, y \in \mathcal{M}$. Now for each $S \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ and $y \in \mathcal{M}$, by the equation (2) we obtain

$$T\theta_{y,x}S\theta_{y,x} - \theta_{x,y}S^*\theta_{x,y}T = T\theta_{y,S^*x}\theta_{y,x} - \theta_{x,y}\theta_{S^*x,y}T$$

$$= T\theta_{\theta_{y,S^*x}(y),x} - \theta_{x,\theta_{y,S^*x}(y)}T$$

$$= J\left(\theta_{\theta_{y,S^*x}(y),x}\right)$$

$$= J\left(\theta_{y,x}S\theta_{y,x}\right)$$

$$= J\left(\theta_{y,x}S\theta_{y,x} + \theta_{x,y}J\left(S\right)\theta_{y,x} + \theta_{x,y}S^*J\left(\theta_{y,x}\right)$$

$$= T\theta_{y,x}S\theta_{y,x} - \theta_{x,y}TS\theta_{y,x} + \theta_{x,y}J\left(S\right)\theta_{y,x}$$

$$+ \theta_{x,y}S^*T\theta_{y,x} - \theta_{x,y}S^*\theta_{x,y}T.$$

Therefore

$$\theta_{x,y} \left(J\left(S\right) + S^*T - TS \right) \theta_{y,x} = 0.$$

So $\theta_{x,y}(J(S) + S^*T - TS) \theta_{y,x}(z) = 0$ and since $\langle z, x \rangle = 1_{\mathcal{A}}$, we obtain that for each $y \in \mathcal{M}$,

$$\theta_{x,y} \left(J\left(S\right) + S^*T - TS \right) \left(y\right) = 0.$$

Hence $\langle (J(S) + S^*T - TS)(y), y \rangle x = 0.$ So $\langle (J(S) + S^*T - TS)(y), y \rangle \langle z, x \rangle = 0$ which implies that for $y \in \mathcal{M}$ $\langle (J(S) + S^*T - TS)(y), y \rangle = 0.$

Therefore $J(S) = TS - S^*T$.

REMARK 3.1. In the previous theorem we need two elements $z, x \in \mathcal{M}$ such that $\langle z, x \rangle = 1_{\mathcal{A}}$. There exist many examples of such Hilbert \mathcal{A} -modules. For instance, unital C^* -algebras, Hilbert spaces, and $\mathcal{H}_{\mathcal{A}}$, where \mathcal{A} is a unital C^* -algebra have this property. Trivially, a Hilbert \mathcal{A} -module over a unital C^* -algebra with an orthogonal basis $\{e_i : i \in I\}$ has this property, since in this space, by definition, $\langle e_j, e_j \rangle = 1_{\mathcal{A}}$.

Although, there are Hilbert C^* -modules over even a unital C^* -algebra which does not satisfies this property. As an example let $\mathcal{A} = C[0, 1]$, the space of all complex valued continuous functions on [0, 1] and let $\mathcal{M} = l^2(C_0(0, 1])$, over the C^* -algebra \mathcal{A} , where $C_0(0, 1]$ is the space of all complex valued continuous functions f on (0, 1] with f(0) = 0. Obviously, for any $(f_j)_{j \in \mathbb{N}}, (g_j)_{j \in \mathbb{N}} \in \mathcal{M},$ $\langle (f_j)_{j \in \mathbb{N}}, (g_j)_{j \in \mathbb{N}} \rangle (0) = 0$ which implies that the mentioned property does not hold on \mathcal{M} .

COROLLARY 3.1. Let \mathcal{A} be a unital and commutative C^* -algebra and \mathcal{M} be a Hilbert \mathcal{A} -module with an orthogonal basis $\{e_i : i \in I\}$. If every \mathcal{A} -module homomorphism Jordan left *-derivation on $\Theta(\mathcal{M})$ is inner then any \mathcal{A} -module homomorphism Jordan left *-derivation on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ is inner.

49

4. REVERSE **-DERIVATIONS ON $END^*_{\mathcal{A}}(\mathcal{M})$

Before the main results of this section, we prove the following theorem.

THEOREM 4.1. Let \mathcal{A} be a unital C^* -algebra and \mathcal{M} be a full Hilbert \mathcal{A} module, then every reverse **-derivation on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ is spatial (i.e. it is
inner but T may not belong to $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$).

Proof. Let D be an arbitrary reverse **-derivation of $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$. By Lemma 1.2, there exist x_1, x_2, \ldots, x_m in \mathcal{M} , such that $\sum_{i=1}^m \langle x_i, x_i \rangle = 1_{\mathcal{A}}$. Define $T : \mathcal{M} \longrightarrow \mathcal{M}$ by

$$Ty = \sum_{i=1}^{m} D(\theta_{x_i,y}) x_i, \quad y \in \mathcal{M}.$$

Clearly, T is a well-defined additive mapping. For each $S \in \text{End}^*_{\mathcal{A}}(\mathcal{M})$ and $y \in \mathcal{M}$ we have

$$TSy = \sum_{i=1}^{m} D(\theta_{x_i,y}S^*)x_i$$

=
$$\sum_{i=1}^{m} D(S^*)\theta_{y,x_i}(x_i) + \sum_{i=1}^{m} SD(\theta_{x_i,y})(x_i)$$

=
$$\sum_{i=1}^{m} D(S^*)(\langle x_i, x_i \rangle y) + STy.$$

So $D(S^*) = TS - ST$. Hence for every $S \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ we obtain that

$$D(S) = TS^* - S^*T$$

which completes the proof.

Now, we assume that \mathcal{A} is commutative and we will prove that every *- \mathcal{A} module homomorphism (i.e. a linear mapping with the property that $D(aT) = a^*D(T)$, for $a \in \mathcal{A}$) reverse **-derivation of $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ is inner.

THEOREM 4.2. Let \mathcal{A} be a unital and commutative C^* -algebra and \mathcal{M} be a full Hilbert \mathcal{A} -module. Then every *- \mathcal{A} -module homomorphism reverse **derivation on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ is inner reverse **-derivation.

Proof. Let D be an arbitrary *- \mathcal{A} -module homomorphism which reverses **-derivation of $\operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$.

By Lemma 1.2 there exist $x_1, x_2, ..., x_m$ in \mathcal{M} such that $\sum_{i=1}^m \langle x_i, x_i \rangle = 1_{\mathcal{A}}$. Define $T : \mathcal{M} \longrightarrow \mathcal{M}$ by

$$Ty = \sum_{i=1}^{m} D(\theta_{x_i,y}) x_i, \quad y \in \mathcal{M}.$$

Obviously, T is a well-defined additive mapping. On the other hand, D is *-A-module homomorphism. Therefore, for $a \in A$, we have

$$T(ay) = \sum_{i=1}^{m} D(\theta_{x_i,ay}) x_i$$
$$= \sum_{i=1}^{m} D(a^* \theta_{x_i,y}) x_i = aT(y),$$

which implies that T is \mathcal{A} -module homomorphism.

Now, for each $B \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$, we have

$$TBy = \sum_{i=1}^{m} D(\theta_{x_i, By}) x_i = \sum_{i=1}^{m} D(\theta_{x_i, y} B^*) x_i$$
$$= \sum_{i=1}^{m} D(B^*) \theta_{y, x_i}(x_i) + \sum_{i=1}^{m} BD(\theta_{x_i, y}) x_i$$
$$= D(B^*) y + BTy.$$

Hence $D(B) = TB^* - B^*T$.

We are going to show that T is adjointable. For proving this, define $S : \mathcal{M} \to \mathcal{M}$ by $Sy = -\sum_{i=1}^{m} D(\theta_{y,x_i})^* x_i$. It is enough to show that for each $w, y \in \mathcal{M}, \langle w, Sy \rangle = \langle Tw, y \rangle$. First note that

$$D(\theta_{y,x_i}) = D(\sum_{k=1}^{m} \theta_{y,x_k} \theta_{x_k,x_i})$$

=
$$\sum_{k=1}^{m} (D(\theta_{x_k,x_i}) \theta_{x_k,y} + \theta_{x_i,x_k} D(\theta_{y,x_k}))$$

=
$$\sum_{k=1}^{m} \theta_{D(\theta_{x_k,x_i})x_k,y} + \sum_{k=1}^{m} \theta_{x_i,D(\theta_{y,x_k})^*x_k}$$

=
$$\theta_{Tx_i,y} - \theta_{x_i,Sy}.$$

So $D(\theta_{y,x_i}) = \theta_{Tx_i,y} - \theta_{x_i,Sy}$ for $y \in \mathcal{M}$.

On the other hand,

$$D(\theta_{y,x_i}) = T\theta_{x_i,y} - \theta_{x_i,y}T = \theta_{Tx_i,y} - \theta_{x_i,y}T$$

which implies that $\theta_{x_i,Sy} = \theta_{x_i,y}T$. So for each $w \in \mathcal{M}$ we have $\langle w, Sy \rangle x_i = \langle Tw, y \rangle x_i$. Now using $\sum_{i=1}^m \langle x_i, x_i \rangle = 1_A$ we get $\langle w, Sy \rangle = \langle Tw, y \rangle$, for each $w, y \in \mathcal{M}$. Therefore $T \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$ and D is inner. \Box

THEOREM 4.3. Let \mathcal{A} be a unital C^* -algebra and let \mathcal{M} be a Hilbert \mathcal{A} module and $x, z \in \mathcal{M}$ be such that $\langle z, x \rangle = 1_{\mathcal{A}}$. Suppose that D is a linear mapping on $\operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ such that $D(AB) = D(B)A^* + B^*D(A)$, for each pair $A, B \in \operatorname{End}^*_{\mathcal{A}}(\mathcal{M})$ with $AB \in \mathcal{K}(\mathcal{M})$. Then D is a reverse **-derivation.

$$D(\theta_{x,y}A) = D(A)\theta_{y,x} + A^*D(\theta_{x,y}).$$

Let $A, B \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$. For any $y \in \mathcal{M}$, we obtain

$$D(\theta_{x,y}AB) = D(AB)\theta_{y,x} + B^*A^*D(\theta_{x,y}).$$

On the other hand,

$$D(\theta_{x,y}AB) = D(B)\theta_{A^*y,x} + B^*D(\theta_{x,A^*y})$$

= $D(B)A^*\theta_{y,x} + B^*D(\theta_{x,y}A)$
= $D(B)A^*\theta_{y,x} + B^*D(A)\theta_{y,x} + B^*A^*D(\theta_{x,y}).$

Hence by comparing two last equations we have

$$D(AB)\theta_{y,x} = D(B)A^*\theta_{y,x} + B^*D(A)\theta_{y,x}.$$

Now, by acting the two side of this equation on z, we get

$$D(AB)(y) = D(B)A^*(y) + B^*D(A)(y)$$

for $y \in \mathcal{M}$ and $A, B \in \operatorname{End}_{\mathcal{A}}^*(\mathcal{M})$. Therefore D is a reverse **-derivation. \Box

REFERENCES

- ABBASPOUR, GH. and SKEIDE, A., Generators of dynamical systems on Hilbert modules, Commun. Stoch. Anal., 1 (2007), 193–207.
- [2] BAKIĆ, D. and GULJAŠ, B., Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. (Szeged), 68 (2002), 249–269.
- [3] BATTYÁNYI, P., On the range of a Jordan *-derivation, Comment. Math. Univ. Carolin., 37 (1996), 659–665.
- [4] BATTYÁNYI, P., Jordan *-derivations with respect to the Jordan product, Publ. Math. Debrecen, 48 (1996), 327–338.
- [5] BREŠAR, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988), 1003-1006.
- [6] BREŠAR, M. and ZALAR, B., On the structure of Jordan *-derivations, Colloq. Math., 53 (1992), 163–171.
- [7] BREŠAR, M. and VUKMAN, J., On some additive mappings in rings with involution, Aequationes Math., 38 (1989), 178–185.
- BROWN, L.G., Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math., 71 (1977), 335–348.
- [9] HERŠTEIN, I.N., Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104–1110.
- [10] ISIDRO, J.M., Holomorphic automorphisms of the unit balls of Hilbert C^{*}-modules, Glasgow Math. J., 45 (2003), 249–262.
- [11] KAPLANSKY, I., Modules over operator algebras, Amer. J. Math., 75 (1953), 839–858.
- [12] KAFIMOGHADAM, M., MIRI, M. and JANFADA, A.R., A note on derivations on the algebra of operators in Hilbert C*-modules, Mediterr. J. Math., 13 (2016), 1167–1175.
- [13] LI, P.T., HAN, D.G. and TANG, W.S., Derivations on the algebra of operators in Hilbert C^{*}-modules, Acta Math. Sinica, 28 (2012), 1615–1622.
- [14] LIU, X. and XU, T.Z., Automatic continuity of derivations of Hilbert C^{*}-modules, J. Baoji College Arts Sci. Nat. Sci., 2 (1995), 14–17.

- [15] MANUILOV, V.M. and TROITSKY, E.V., Hilbert C^{*}-modules, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 226 (2005).
- [16] MOSLEHIAN, M.S. and NAJATI, A. Jordan (ϕ, ψ) -derivations in JB^{*}-triples, Commun. Korean Math. Soc., **26** (2011), 585–589.
- [17] MOLNÁR, L. and ŠEMRL, P., Local Jordan *-derivation of standard operator algebras, Proc. Amer. Soc., 125 (1997), 447–454.
- [18] MOLNÁR, L., On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolin., 35 (1994), 691–695.
- [19] ŠEMRL, P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120 (1994), 515–518.
- [20] ŠEMRL, P., On Jordan *-derivations and an application, Colloq. Math., 59 (1990), 241–251.
- [21] ŠEMRL, P., Quadratic functional and Jordan *-derivations, Studia Math., 97 (1991), 157–165.
- [22] ZALAR, B., Jordan *-derivation pairs and quadratic functional on modules over *-ring, Aequationes Math., 54 (1997), 31–43.

Received January 4, 2015 Accepted July 5, 2016 University of Birjand Department of Mathematics Birjand, P. O. Box 414 Birjand 9717851367, Iran E-mail: mkafimoghadam@yahoo.com E-mail: mkafimoghadam@birjand.ac.ir E-mail: ajanfada@birjand.ac.ir E-mail: mrmiri@birjand.ac.ir