SOME TYPES OF DERIVATIONS ON HILBERT C*-MODULES AND THEIR OPERATOR ALGEBRAS

MOSTAFA KAFIMOGHADAM, ALIREZA JANFADA, and MOHAMADREZA MIRI

Abstract

Let \mathcal{A} be a C^{*}-algebra and \mathcal{M} be a Hilbert \mathcal{A}-module. In this paper, we show that if \mathcal{A} is commutative and there exist $x_{0}, y_{0} \in \mathcal{M}$ such that $\left\langle x_{0}, y_{0}\right\rangle=1_{\mathcal{A}}$, then every Jordan ternary derivation on \mathcal{M} is a ternary derivation. Moreover, motivated by definition of Jordan *-derivations, we study innerness of the linear mapping J on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$, the C^{*}-algebra of adjointable operators in Hilbert C^{*}-modules satisfying $J\left(T^{2}\right)=J(T) T+T^{*} J(T)$ for all $T \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$. Also, motivated by definition of reverse $*$-derivations, some necessary conditions for mapping D on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ satisfying $D(T S)=D(S) T^{*}+S^{*} D(T)$ for $T \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ to be inner will be established. At the end of this paper, we characterize the linear mappings on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ which behave like mapping D when acting on pairs of elements with compact product.

MSC 2010. 47B47, 47B49.
Key words. Hilbert C^{*}-modules, ternary derivations, Jordan *-derivations, reverse $*$-derivations, innerness.

1. INTRODUCTION

The notion of Jordan $*$-derivations were first mentioned in [20]. A linear mapping J of a $*$-ring \mathcal{R} into itself which satisfies $J\left(x^{2}\right)=J(x) x^{*}+x J(x)$ for all $x \in \mathcal{R}$ is called a Jordan $*$-derivation. The problem of representing quadratic forms by sesquilinear ones is closely connected with the structure of Jordan *-derivations and this was the motivation of this subject, see [21, 22]. The structure of Jordan *-derivations on standard operator algebras was described by Šemrl [19]. Šemrl showed that every Jordan *-derivation of $\mathrm{B}(\mathcal{H})$, the algebra of all bounded linear operators on a real Hilbert space \mathcal{H} ($\operatorname{dim} \mathcal{H}>1$), is inner. For more information about this subject, we refer to $[3,4,6,17,18]$. In [7] Brešar and Vukman studied some algebraic properties of Jordan *-derivations. As a special case of [[7]; Theorem1] we have that every Jordan $*$-derivation of a complex algebra \mathcal{A} with unit element is inner. Also, they introduced the notion of reverse $*$-derivations and studied some of its properties. A linear mapping D of a $*$-algebra \mathcal{A} is called a reverse $*$-derivation, if $D(x y)=D(y) x^{*}+y D(x)$ for every $x, y \in \mathcal{A}$.

In this paper, motivated by definition of this notions, we define the notion of reverse $* *$-derivation and Jordan left $*$-derivation as follows:

A linear mapping D on a $*$-algebra \mathcal{A} is called a reverse $* *$-derivation if, for all $a, b \in \mathcal{A}$,

$$
D(a b)=D(b) a^{*}+b^{*} D(a) .
$$

Trivially, the mapping $a \rightarrow b a^{*}-a^{*} b$ is a reverse $* *$-derivation, which is called an inner reverse $* *$-derivation.

A linear mapping J on a $*$-algebra \mathcal{A} is called a Jordan left $*$-derivation if

$$
J\left(a^{2}\right)=J(a) a+a^{*} J(a)
$$

for all $a \in \mathcal{A}$. Clearly, the mapping $a \mapsto b a-a^{*} b$ is a Jordan left $*$-derivation which is called an inner Jordan left $*$-derivation. By a similar process as in [9], one may prove that if J is a Jordan left $*$-derivation on a $*$-algebra \mathcal{A} then for every $a, b \in \mathcal{A}$

$$
\begin{equation*}
J(a b+b a)=J(a) b+a^{*} J(b)+J(b) a+b^{*} J(a) \tag{1}
\end{equation*}
$$

and since $2 a b a=a(a b+b a)+(a b+b a) a-\left(a^{2} b+b a^{2}\right)$, we have

$$
\begin{equation*}
J(a b a)=J(a) b a+a^{*} J(b) a+a^{*} b^{*} J(a) \tag{2}
\end{equation*}
$$

Now we recall some preliminaries and elementary properties of Hilbert C^{*} modules which will be used in the sequel. Hilbert C^{*}-modules are generalization of Hilbert spaces, where the field of complex numbers is replaced by a C^{*}-algebra. This concept was introduced by Kaplansky [11]. A pre-Hilbert C^{*}-module \mathcal{M} over a C^{*}-algebra \mathcal{A}, or a pre-Hilbert \mathcal{A}-module, is a left \mathcal{A} module with an \mathcal{A}-valued inner product $\langle.,\rangle:. \mathcal{M} \times \mathcal{M} \longrightarrow \mathcal{A}$ satisfying the following conditions:
(i) $\langle\lambda x+y, z\rangle=\lambda\langle x, z\rangle+\langle y, z\rangle$, for all $x, y, z \in \mathcal{M}$ and $\lambda \in \mathbb{C}$;
(ii) $\langle x, x\rangle \geq 0$, and $\langle x, x\rangle=0$ if and only if $x=0$ for $x \in \mathcal{M}$;
(iii) $\langle a x, y\rangle=a\langle x, y\rangle$, for every $x, y \in \mathcal{M}$ and $a \in \mathcal{A}$;
(iv) $\langle x, y\rangle^{*}=\langle y, x\rangle$, for each $x, y \in \mathcal{M}$.

It is well known that $\|x\|=\|\langle x, x\rangle\|^{\frac{1}{2}}$ defines a norm on \mathcal{M}. A pre-Hilbert \mathcal{A}-module \mathcal{M} is called a Hilbert C^{*}-module over \mathcal{A} if it is complete with respect to this norm. For example every Hilbert space is a Hilbert \mathbb{C}-module. The closure of the span of $\{\langle x, y\rangle: x, y \in \mathcal{M}\}$ is denoted by $\langle\mathcal{M}, \mathcal{M}\rangle$ and \mathcal{M} is called full if $\langle\mathcal{M}, \mathcal{M}\rangle=\mathcal{A}$. The concept of an orthogonal basis of a Hilbert C^{*} module is introduced by D . Bakić and B . Guljaš in [2]. The Hilbert C^{*}-module $\mathcal{H}_{\mathcal{A}}$, the direct sum of a countable number of copies of \mathcal{A}, is called standard Hilbert module over \mathcal{A}. If the C^{*}-algebra \mathcal{A} is unital then $\mathcal{H}_{\mathcal{A}}$ possesses the standard orthogonal basis $\left\{e_{i}: i \in \mathbb{N}\right\}$, where $e_{i}=(0, \ldots, 0,1,0, \ldots, 0, \ldots)$ with the unite at the i-th place.

Let \mathcal{M} be a Hilbert C^{*}-module. Following [14], a linear mapping $\delta: \mathcal{M} \rightarrow$ \mathcal{M} is called
(i) a ternary derivation if

$$
\begin{equation*}
\delta(\langle x, y\rangle z)=\langle\delta(x), y\rangle z+\langle x, \delta(y)\rangle z+\langle x, y\rangle \delta(z) \tag{3}
\end{equation*}
$$

for every $x, y, z \in \mathcal{M}$,
(ii) a Jordan ternary derivation if, for every $x \in \mathcal{M}$,

$$
\begin{equation*}
\delta(\langle x, x\rangle x)=\langle\delta(x), x\rangle x+\langle x, \delta(x)\rangle x+\langle x, x\rangle \delta(x) \tag{4}
\end{equation*}
$$

Abbaspour and Skeide in [1] characterized the generators of dynamical systems on Hilbert modules as those generators of one-parameter groups of Banach space isometries which are ternary derivations.

A $J B^{*}$-triple is a complex vector space \mathcal{J} with a continuous mapping $\mathcal{J}^{3} \longrightarrow \mathcal{J}$ with $(x, y, z) \longmapsto\{x, y, z\}$ is called a Jordan triple product, which is symmetric and bi-linear in the outer variables and conjugate linear in the middle variable and have the following properties:

- for $x, y, z, u, u \in \mathcal{J}$
$\{x, y,\{z, u, v\}\}=\{\{x, y, z\}, u, v\}-\{z,\{y, x, u\}, v\}+\{z, u,\{x, y, v\}\}$,
- the mapping $z \rightarrow\{x, y, z\}$ is hermitian and has non-negative spectrum,
- $\|\{x, x, x\}\|=\|x\|^{3}$

In [10], Isidro showed that every Hilbert C^{*}-module is a $J B^{*}$-triple with the Jordan triple product $\{x, y, z\}=\frac{1}{2}(\langle x, y\rangle z+\langle z, y\rangle x)$. A well-known lemma of [16] states that for every Jordan derivation D on $J B^{*}$-triple \mathcal{J} the equation $D(\{x, y, x\})=\{D(x), y, x\}+\{x, D(y), x\}+\{x, y, D(x)\}$ holds for all $x, y \in \mathcal{J}$. Hence for every Jordan ternary derivation δ on Hilbert C^{*}-module \mathcal{M}, we have

$$
\begin{equation*}
\delta(\langle x, y\rangle x)=\langle\delta(x), y\rangle x+\langle x, \delta(y)\rangle x+\langle x, y\rangle \delta(x) . \tag{5}
\end{equation*}
$$

Herštein [9] showed that every Jordan derivation from a 2 -torsion free prime ring into itself is a derivation. Brešar [5] proved that Herštein's result is true for 2 -torsion free semiprime rings. In the second section by using equation (5) we show that every Jordan ternary derivation δ on Hilbert C^{*}-module \mathcal{M} with x_{0}, y_{0} which $\left\langle x_{0}, y_{0}\right\rangle=1_{\mathcal{A}}$ is a ternary derivation.

We denote the Banach algebra of all bounded linear \mathcal{A}-module homomorphism (i.e. $T(a x)=a T(x)$) from \mathcal{M} into itself, which is called operator of \mathcal{M}, by $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$. It is well known that there is no natural involution on this algebra. A linear \mathcal{A}-module homomorphism $T: \mathcal{M} \rightarrow \mathcal{M}$ is called adjointable, if there exists a linear \mathcal{A}-module homomorphism $T^{*}: \mathcal{M} \rightarrow \mathcal{M}$ such that $\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle$, for all $x, y \in \mathcal{M} . T^{*}$ is called the adjoint of T. It is well-known that in this case T, T^{*} are bounded. Indeed, the following result holds true.

Lemma 1.1 ([15]). Let \mathcal{M} be a Hilbert C^{*}-module over a C^{*}-algebra \mathcal{A}, and T, S be two mappings from \mathcal{M} into itself such that $\langle T x, y\rangle=\langle x, S y\rangle$, for $x, y \in \mathcal{M}$. Then T, S are both belong to $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$.

The set of all adjointable operators in $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is denoted by $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ which becomes a C^{*}-algebra. For any $x, y \in \mathcal{M}$, the operator $\theta_{x, y}: \mathcal{M} \rightarrow \mathcal{M}$ defined by $\theta_{x, y}(z)=\langle z, y\rangle x$ is called elementary operator. Let us review some properties of these operators in the following:
(i) $\left(\theta_{x, y}\right)^{*}=\theta_{y, x}$;
(ii) $\theta_{x, y} \theta_{u, v}=\theta_{\langle u, y\rangle x, v}=\theta_{x,\langle y, u\rangle v}$;
(iii) For any $T \in \operatorname{End}_{\mathcal{A}}(\mathcal{M})$ and $S \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ we have $T \theta_{x, y}=\theta_{T x, y}$, and $\theta_{x, y} S=\theta_{x, S^{*} y} ;$
(iv) If \mathcal{A} is commutative then for any $a \in \mathcal{A}, a \theta_{x, y}=\theta_{a x, y}=\theta_{x, a^{*} y}$. The linear span of $\left\{\theta_{x, y}: x, y \in \mathcal{M}\right\}$ will be denoted by $\Theta(\mathcal{M})$ and $\mathcal{K}(\mathcal{M})$ is used for the closed linear span of $\Theta(\mathcal{M})$. $\mathcal{K}(\mathcal{M})$ is a closed two sided ideal in $E n d_{\mathcal{A}}^{*}(\mathcal{M})$ and elements of $\mathcal{K}(\mathcal{M})$ are often called compact operators. Reader can find some properties of Hilbert C^{*}-modules in [15]. The following lemma is essentially due to Brown [8] also one may see Lemma 2.4.3 of [15] for a direct proof.

Lemma 1.2. Let \mathcal{A} be a unital C^{*}-algebra and \mathcal{M} be full Hilbert \mathcal{A}-module. Then there exist $x_{1}, x_{2}, \ldots, x_{k}$ in \mathcal{M}, such that $\sum_{i=1}^{k}\left\langle x_{i}, x_{i}\right\rangle=1_{\mathcal{A}}$.

Identifying algebras on which all derivations are inner is the most important subject in this area. The authors in [12] give some sufficient conditions on which every derivation on $\operatorname{End}_{\mathcal{A}}(\mathcal{M})$ is inner. Also, P.T. Li et al. in [13] prove that if \mathcal{A} is unital and commutative C^{*}-algebra and \mathcal{M} is a full Hilbert C^{*}-module over \mathcal{A} then every derivation of C^{*}-algebra of $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$, is an inner derivation. In this paper, using their ideas on proving innerness of derivations on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$, we investigate innerness of Jordan left $*$-derivations on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ in the third section. In the last section we prove some theorems involving innerness of reverse $* *$-derivations on these spaces. Moreover, we prove that every linear mapping on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ which behave like a reverse **-derivation at compact product of elements, is a reverse $* *$-derivation.

2. TERNARY DERIVATIONS ON HILBERT C^{*}-MODULES

Throughout this section, for a linear mapping δ, we define $d_{\delta}: \mathcal{M} \rightarrow \mathcal{M}$ by

$$
d_{\delta}(\langle x, y\rangle z)=\langle\delta(x), y\rangle z+\langle x, \delta(y)\rangle z+\langle x, y\rangle \delta(z)
$$

for all $x, y, z \in \mathcal{M}$. Clearly, the mapping d_{δ} is linear and by equation (5), if δ is a Jordan ternary derivation we have $d_{\delta}(\langle x, y\rangle x)=\delta(\langle x, y\rangle x)$.

Theorem 2.1. Let \mathcal{A} be a commutative C^{*}-algebra, let \mathcal{M} be a Hilbert \mathcal{A} module such that there exist $x_{0}, y_{0} \in \mathcal{M}$ that $\left\langle x_{0}, y_{0}\right\rangle=1_{\mathcal{A}}$ and let δ be a Jordan ternary derivation on \mathcal{M}. Then δ is a ternary derivation.

Proof. It is sufficient to show that $\delta(\langle x, y\rangle z)=d_{\delta}(\langle x, y\rangle z)$. For $x, y, z \in \mathcal{M}$, by replacing x by $x+z$ in equation (5) and by linearity of δ we obtain that

$$
\begin{aligned}
\delta(\langle(x+z), y\rangle(x+z))= & \langle\delta(x+z), y\rangle(x+z)+\langle(x+z), \delta(y)\rangle(x+z) \\
& +\langle(x+z), y\rangle \delta(x+z) \\
= & d_{\delta}(\langle x, y\rangle x)+d_{\delta}(\langle x, y\rangle z)+d_{\delta}(\langle z, y\rangle x)+d_{\delta}(\langle z, y\rangle z) .
\end{aligned}
$$

On the other hand, by linearity of δ we get

$$
\delta(\langle(x+z), y\rangle(x+z))=\delta(\langle x, y\rangle x)+\delta(\langle x, y\rangle z)+\delta(\langle z, y\rangle x)+\delta(\langle z, y\rangle z) .
$$

Comparing two expressions, we have

$$
\begin{equation*}
\delta(\langle x, y\rangle z)+\delta(\langle z, y\rangle x)=d_{\delta}(\langle x, y\rangle z)+d_{\delta}(\langle z, y\rangle x) . \tag{6}
\end{equation*}
$$

By using $\langle x, y\rangle z$ for x in equation (6) and by commutativity of \mathcal{A} we obtain that $\delta(\langle z, y\rangle\langle x, y\rangle z)+\delta(\langle x, y\rangle\langle z, y\rangle z)=d_{\delta}(\langle x, y\rangle\langle z, y\rangle z)+d_{\delta}(\langle z, y\rangle\langle x, y\rangle z)$. Hence

$$
\begin{equation*}
\delta(\langle x, y\rangle\langle z, y\rangle z)=d_{\delta}(\langle x, y\rangle\langle z, y\rangle z) \tag{7}
\end{equation*}
$$

for all $x, y, z \in \mathcal{M}$. We can take a positive number λ small enough such that $\left\langle\lambda z+x_{0}, y_{0}\right\rangle$ is invertible in \mathcal{A}. Put $a:=\left\langle\lambda z+x_{0}, y_{0}\right\rangle^{-1}$. Replace z by $\lambda z+x_{0}$ in equation (7) to get $\delta\left(\left\langle x, y_{0}\right\rangle\left\langle\lambda z+x_{0}, y_{0}\right\rangle\left(\lambda z+x_{0}\right)\right)=d_{\delta}\left(\left\langle x, y_{0}\right\rangle\langle\lambda z+\right.$ $\left.\left.x_{0}, y_{0}\right\rangle\left(\lambda z+x_{0}\right)\right)$. Substituting $a x$ for x in the last equaliy and using the fact that \mathcal{A} is a commutative C^{*}-algebra, we obtain for each $x, z \in \mathcal{M}$

$$
\delta\left(\left\langle x, y_{0}\right\rangle \lambda z\right)+\delta\left(\left\langle x, y_{0}\right\rangle x_{0}\right)=d_{\delta}\left(\left\langle x, y_{0}\right\rangle \lambda z\right)+d_{\delta}\left(\left\langle x, y_{0}\right\rangle x_{0}\right)
$$

Replacing z by $\lambda^{-1}\left(z-x_{0}\right)$ we can conclude that

$$
\begin{equation*}
\delta\left(\left\langle x, y_{0}\right\rangle z\right)=d_{\delta}\left(\left\langle x, y_{0}\right\rangle z\right) \tag{8}
\end{equation*}
$$

Again, for $y \in \mathcal{M}$, we can take a positive number μ small enough such that $\left\langle\mu y+y_{0}, x_{0}\right\rangle$ is invertible in \mathcal{A}. Denote $b:=\left\langle\mu y+y_{0}, x_{0}\right\rangle^{-1}$. Then $\langle b(\mu y+$ $\left.\left.y_{0}\right), x_{0}\right\rangle=e_{\mathcal{A}}$. So we can replace y_{0} by $b\left(\mu y+y_{0}\right)$. By the equality (8), we have

$$
\delta\left(\left\langle x, b\left(\mu y+y_{0}\right)\right\rangle z\right)=d_{\delta}\left(\left\langle x, b\left(\mu y+y_{0}\right)\right\rangle z\right)
$$

By substituting x by $\left(b^{*}\right)^{-1} x$ and since $\delta\left(\left\langle x, y_{0}\right\rangle z\right)=d_{\delta}\left(\left\langle x, y_{0}\right\rangle z\right)$, we have $\delta(\langle x, y\rangle z)=d_{\delta}(\langle x, y\rangle z)$ for all $x, y, z \in \mathcal{M}$. It means that δ is a ternary derivation.

3. JORDAN LEFT $*$-DERIVATIONS ON END ${ }_{\mathcal{A}}^{*}(\mathcal{M})$

The main result of this section is stated as follows.
Theorem 3.1. Let \mathcal{A} be a unital and commutative C^{*}-algebra and \mathcal{M} be a Hilbert \mathcal{A}-module with two elements z, x such that $\langle z, x\rangle=1_{\mathcal{A}}$. If every \mathcal{A} module homomorphism Jordan left $*$-derivation on $\Theta(\mathcal{M})$ is inner then any \mathcal{A}-module homomorphism Jordan left $*$-derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is inner.

Proof. Let J be a \mathcal{A}-module homomorphism Jordan left $*$-derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$. First we show that J is a Jordan left $*$-derivation on $\Theta(\mathcal{M})$. For this, we show that $J\left(\theta_{w, y}\right) \in \Theta(\mathcal{M})$, for each $w, y \in \mathcal{M}$. Since $\langle z, x\rangle=1_{\mathcal{A}}$, we have

$$
J\left(\theta_{z, x}\right)=J\left(\theta_{z, x} \theta_{z, x}\right)=J\left(\theta_{z, x}\right) \theta_{z, x}+\theta_{x, z} J\left(\theta_{z, x}\right)
$$

Since $\Theta(\mathcal{M})$ is two sided ideal in $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ we get $J\left(\theta_{z, x}\right) \in \Theta(\mathcal{M})$. Also, by (1) we have

$$
\begin{aligned}
J\left(\theta_{w, y}\right)+J\left(\theta_{\langle w, y\rangle z, x}\right)= & J\left(\theta_{w, y}+\theta_{\langle w, y\rangle z, x}\right) \\
= & J\left(\theta_{w, x} \theta_{z, y}+\theta_{z, y} \theta_{w, x}\right) \\
= & J\left(\theta_{w, x}\right) \theta_{z, y}+\theta_{x, w} J\left(\theta_{z, y}\right)+J\left(\theta_{z, y}\right) \theta_{w, x} \\
& +\theta_{y, z} J\left(\theta_{w, x}\right)
\end{aligned}
$$

Since J is \mathcal{A}-module homomorphism, $J\left(\theta_{\langle w, y\rangle z, x}\right)=\langle w, y\rangle J\left(\theta_{z, x}\right)$ which together with the last relations imply that $J\left(\theta_{w, y}\right) \in \Theta(\mathcal{M})$ for each $w, y \in \mathcal{M}$. Since $\Theta(\mathcal{M})$ is the linear span of $\left\{\theta_{w, y}: w, y \in \mathcal{M}\right\}$, thus $J(\Theta(\mathcal{M})) \subseteq \Theta(\mathcal{M})$. By the assumption that every derivation of $\Theta(\mathcal{M})$ is inner, there exists $T \in$ $\Theta(\mathcal{M})$ such that $J\left(\theta_{w, y}\right)=T \theta_{w, y}-\theta_{y, w} T$ for all $w, y \in \mathcal{M}$. Now for each $S \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ and $y \in \mathcal{M}$, by the equation (2) we obtain

$$
\begin{aligned}
T \theta_{y, x} S \theta_{y, x}-\theta_{x, y} S^{*} \theta_{x, y} T & =T \theta_{y, S^{*} x} \theta_{y, x}-\theta_{x, y} \theta_{S^{*} x, y} T \\
& =T \theta_{\theta_{y, S^{*} x}(y), x}-\theta_{x, \theta_{y, S^{*} x}(y)} T \\
& =J\left(\theta_{\theta_{y, S^{*} x}(y), x}\right) \\
& =J\left(\theta_{y, x} S \theta_{y, x}\right) \\
& =J\left(\theta_{y, x}\right) S \theta_{y, x}+\theta_{x, y} J(S) \theta_{y, x}+\theta_{x, y} S^{*} J\left(\theta_{y, x}\right) \\
& =T \theta_{y, x} S \theta_{y, x}-\theta_{x, y} T S \theta_{y, x}+\theta_{x, y} J(S) \theta_{y, x} \\
& +\theta_{x, y} S^{*} T \theta_{y, x}-\theta_{x, y} S^{*} \theta_{x, y} T
\end{aligned}
$$

Therefore

$$
\theta_{x, y}\left(J(S)+S^{*} T-T S\right) \theta_{y, x}=0
$$

So $\theta_{x, y}\left(J(S)+S^{*} T-T S\right) \theta_{y, x}(z)=0$ and since $\langle z, x\rangle=1_{\mathcal{A}}$, we obtain that for each $y \in \mathcal{M}$,

$$
\theta_{x, y}\left(J(S)+S^{*} T-T S\right)(y)=0
$$

Hence $\left\langle\left(J(S)+S^{*} T-T S\right)(y), y\right\rangle x=0$.
So $\left\langle\left(J(S)+S^{*} T-T S\right)(y), y\right\rangle\langle z, x\rangle=0$ which implies that for $y \in \mathcal{M}$

$$
\left\langle\left(J(S)+S^{*} T-T S\right)(y), y\right\rangle=0
$$

Therefore $J(S)=T S-S^{*} T$.
Remark 3.1. In the previous theorem we need two elements $z, x \in \mathcal{M}$ such that $\langle z, x\rangle=1_{\mathcal{A}}$. There exist many examples of such Hilbert \mathcal{A}-modules. For instance, unital C^{*}-algebras, Hilbert spaces, and $\mathcal{H}_{\mathcal{A}}$, where \mathcal{A} is a unital C^{*}-algebra have this property. Trivially, a Hilbert \mathcal{A}-module over a unital C^{*}-algebra with an orthogonal basis $\left\{e_{i}: i \in I\right\}$ has this property, since in this space, by definition, $\left\langle e_{j}, e_{j}\right\rangle=1_{\mathcal{A}}$.

Although, there are Hilbert C^{*}-modules over even a unital C^{*}-algebra which does not satisfies this property. As an example let $\mathcal{A}=C[0,1]$, the space of all complex valued continuous functions on $[0,1]$ and let $\mathcal{M}=l^{2}\left(C_{0}(0,1]\right)$, over the C^{*}-algebra \mathcal{A}, where $C_{0}(0,1]$ is the space of all complex valued continuous functions f on $(0,1]$ with $f(0)=0$. Obviously, for any $\left(f_{j}\right)_{j \in \mathbb{N}},\left(g_{j}\right)_{j \in \mathbb{N}} \in \mathcal{M}$, $\left\langle\left(f_{j}\right)_{j \in \mathbb{N}},\left(g_{j}\right)_{j \in \mathbb{N}}\right\rangle(0)=0$ which implies that the mentioned property does not hold on \mathcal{M}.

Corollary 3.1. Let \mathcal{A} be a unital and commutative C^{*}-algebra and \mathcal{M} be a Hilbert \mathcal{A}-module with an orthogonal basis $\left\{e_{i}: i \in I\right\}$. If every \mathcal{A}-module homomorphism Jordan left $*$-derivation on $\Theta(\mathcal{M})$ is inner then any \mathcal{A}-module homomorphism Jordan left $*$-derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is inner.

4. REVERSE $* *$-DERIVATIONS ON $\operatorname{END}_{\mathcal{A}}^{*}(\mathcal{M})$

Before the main results of this section, we prove the following theorem.
Theorem 4.1. Let \mathcal{A} be a unital C^{*}-algebra and \mathcal{M} be a full Hilbert \mathcal{A} module, then every reverse $* *$-derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is spatial (i.e. it is inner but T may not belong to $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$).

Proof. Let D be an arbitrary reverse $* *$-derivation of $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$. By Lemma 1.2 , there exist $x_{1}, x_{2}, \ldots, x_{m}$ in \mathcal{M}, such that $\sum_{i=1}^{m}\left\langle x_{i}, x_{i}\right\rangle=1_{\mathcal{A}}$. Define $T: \mathcal{M} \longrightarrow \mathcal{M}$ by

$$
T y=\sum_{i=1}^{m} D\left(\theta_{x_{i}, y}\right) x_{i}, \quad y \in \mathcal{M}
$$

Clearly, T is a well-defined additive mapping. For each $S \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ and $y \in \mathcal{M}$ we have

$$
\begin{aligned}
T S y & =\sum_{i=1}^{m} D\left(\theta_{x_{i}, y} S^{*}\right) x_{i} \\
& =\sum_{i=1}^{m} D\left(S^{*}\right) \theta_{y, x_{i}}\left(x_{i}\right)+\sum_{i=1}^{m} S D\left(\theta_{x_{i}, y}\right)\left(x_{i}\right) \\
& =\sum_{i=1}^{m} D\left(S^{*}\right)\left(\left\langle x_{i}, x_{i}\right\rangle y\right)+S T y
\end{aligned}
$$

So $D\left(S^{*}\right)=T S-S T$. Hence for every $S \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ we obtain that

$$
D(S)=T S^{*}-S^{*} T
$$

which completes the proof.
Now, we assume that \mathcal{A} is commutative and we will prove that every $*-\mathcal{A}$ module homomorphism (i.e. a linear mapping with the property that $D(a T)=$ $a^{*} D(T)$, for $\left.a \in \mathcal{A}\right)$ reverse $* *$-derivation of $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is inner.

THEOREM 4.2. Let \mathcal{A} be a unital and commutative C^{*}-algebra and \mathcal{M} be a full Hilbert \mathcal{A}-module. Then every $*-\mathcal{A}$-module homomorphism reverse ${ }^{* *}$ derivation on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ is inner reverse $* *$-derivation.

Proof. Let D be an arbitrary $*-\mathcal{A}$-module homomorphism which reverses **-derivation of $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$.

By Lemma 1.2 there exist $x_{1}, x_{2}, \ldots, x_{m}$ in \mathcal{M} such that $\sum_{i=1}^{m}\left\langle x_{i}, x_{i}\right\rangle=1_{\mathcal{A}}$. Define $T: \mathcal{M} \longrightarrow \mathcal{M}$ by

$$
T y=\sum_{i=1}^{m} D\left(\theta_{x_{i}, y}\right) x_{i}, \quad y \in \mathcal{M}
$$

Obviously, T is a well-defined additive mapping. On the other hand, D is $*-\mathcal{A}$-module homomorphism. Therefore, for $a \in \mathcal{A}$, we have

$$
\begin{aligned}
T(a y) & =\sum_{i=1}^{m} D\left(\theta_{x_{i}, a y}\right) x_{i} \\
& =\sum_{i=1}^{m} D\left(a^{*} \theta_{x_{i}, y}\right) x_{i}=a T(y)
\end{aligned}
$$

which implies that T is \mathcal{A}-module homomorphism.
Now, for each $B \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$, we have

$$
\begin{aligned}
T B y=\sum_{i=1}^{m} D\left(\theta_{x_{i}, B y}\right) x_{i} & =\sum_{i=1}^{m} D\left(\theta_{x_{i}, y} B^{*}\right) x_{i} \\
& =\sum_{i=1}^{m} D\left(B^{*}\right) \theta_{y, x_{i}}\left(x_{i}\right)+\sum_{i=1}^{m} B D\left(\theta_{x_{i}, y}\right) x_{i} \\
& =D\left(B^{*}\right) y+B T y .
\end{aligned}
$$

Hence $D(B)=T B^{*}-B^{*} T$.
We are going to show that T is adjointable. For proving this, define S : $\mathcal{M} \rightarrow \mathcal{M}$ by $S y=-\sum_{i=1}^{m} D\left(\theta_{y, x_{i}}\right)^{*} x_{i}$. It is enough to show that for each $w, y \in \mathcal{M},\langle w, S y\rangle=\langle T w, y\rangle$. First note that

$$
\begin{aligned}
D\left(\theta_{y, x_{i}}\right) & =D\left(\sum_{k=1}^{m} \theta_{y, x_{k}} \theta_{x_{k}, x_{i}}\right) \\
& =\sum_{k=1}^{m}\left(D\left(\theta_{x_{k}, x_{i}}\right) \theta_{x_{k}, y}+\theta_{x_{i}, x_{k}} D\left(\theta_{y, x_{k}}\right)\right) \\
& =\sum_{k=1}^{m} \theta_{D\left(\theta_{x_{k}, x_{i}}\right) x_{k}, y}+\sum_{k=1}^{m} \theta_{x_{i}, D\left(\theta_{y, x_{k}}\right)^{*} x_{k}} \\
& =\theta_{T x_{i}, y}-\theta_{x_{i}, S y .} .
\end{aligned}
$$

So $D\left(\theta_{y, x_{i}}\right)=\theta_{T x_{i}, y}-\theta_{x_{i}, S y}$ for $y \in \mathcal{M}$.
On the other hand,

$$
D\left(\theta_{y, x_{i}}\right)=T \theta_{x_{i}, y}-\theta_{x_{i}, y} T=\theta_{T x_{i}, y}-\theta_{x_{i}, y} T
$$

which implies that $\theta_{x_{i}, S y}=\theta_{x_{i}, y} T$. So for each $w \in \mathcal{M}$ we have $\langle w, S y\rangle x_{i}=$ $\langle T w, y\rangle x_{i}$. Now using $\sum_{i=1}^{m}\left\langle x_{i}, x_{i}\right\rangle=1_{A}$ we get $\langle w, S y\rangle=\langle T w, y\rangle$, for each $w, y \in \mathcal{M}$. Therefore $T \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ and D is inner.

Theorem 4.3. Let \mathcal{A} be a unital C^{*}-algebra and let \mathcal{M} be a Hilbert \mathcal{A} module and $x, z \in \mathcal{M}$ be such that $\langle z, x\rangle=1_{\mathcal{A}}$. Suppose that D is a linear mapping on $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ such that $D(A B)=D(B) A^{*}+B^{*} D(A)$, for each pair $A, B \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ with $A B \in \mathcal{K}(\mathcal{M})$. Then D is a reverse $* *$-derivation.

Proof. Since $\mathcal{K}(\mathcal{M})$ is two sided ideal in $\operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$, we have $\theta_{x, y} A \in \mathcal{K}(\mathcal{M})$, for $A \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$ and $y \in \mathcal{M}$. So by hypothesis for $y \in \mathcal{M}$ and $A \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$

$$
D\left(\theta_{x, y} A\right)=D(A) \theta_{y, x}+A^{*} D\left(\theta_{x, y}\right) .
$$

Let $A, B \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$. For any $y \in \mathcal{M}$, we obtain

$$
D\left(\theta_{x, y} A B\right)=D(A B) \theta_{y, x}+B^{*} A^{*} D\left(\theta_{x, y}\right) .
$$

On the other hand,

$$
\begin{aligned}
D\left(\theta_{x, y} A B\right) & =D(B) \theta_{A^{*} y, x}+B^{*} D\left(\theta_{x, A^{*} y}\right) \\
& =D(B) A^{*} \theta_{y, x}+B^{*} D\left(\theta_{x, y} A\right) \\
& =D(B) A^{*} \theta_{y, x}+B^{*} D(A) \theta_{y, x}+B^{*} A^{*} D\left(\theta_{x, y}\right)
\end{aligned}
$$

Hence by comparing two last equations we have

$$
D(A B) \theta_{y, x}=D(B) A^{*} \theta_{y, x}+B^{*} D(A) \theta_{y, x}
$$

Now, by acting the two side of this equation on z, we get

$$
D(A B)(y)=D(B) A^{*}(y)+B^{*} D(A)(y)
$$

for $y \in \mathcal{M}$ and $A, B \in \operatorname{End}_{\mathcal{A}}^{*}(\mathcal{M})$. Therefore D is a reverse $* *$-derivation.

REFERENCES

[1] Abbaspour, Gh. and Skeide, A., Generators of dynamical systems on Hilbert modules, Commun. Stoch. Anal., 1 (2007), 193-207.
[2] Bakić, D. and Guljaš, B., Hilbert C^{*}-modules over C^{*}-algebras of compact operators, Acta Sci. Math. (Szeged), 68 (2002), 249-269.
[3] Battyányi, P., On the range of a Jordan *-derivation, Comment. Math. Univ. Carolin., 37 (1996), 659-665.
[4] Battyányi, P., Jordan *-derivations with respect to the Jordan product, Publ. Math. Debrecen, 48 (1996), 327-338.
[5] Brešar, M., Jordan derivations on semiprime rings, Proc. Amer. Math. Soc., 104 (1988), 1003-1006.
[6] Brešar, M. and Zalar, B., On the structure of Jordan *-derivations, Colloq. Math., 53 (1992), 163-171.
[7] Brešar, M. and Vukman, J., On some additive mappings in rings with involution, Aequationes Math., 38 (1989), 178-185.
[8] Brown, L.G., Stable isomorphism of hereditary subalgebras of C^{*}-algebras, Pacific J. Math., 71 (1977), 335-348.
[9] Herštein, I.N., Jordan derivations of prime rings, Proc. Amer. Math. Soc., 8 (1957), 1104-1110.
[10] Isidro, J.M., Holomorphic automorphisms of the unit balls of Hilbert C^{*}-modules, Glasgow Math. J., 45 (2003), 249-262.
[11] Kaplansky, I., Modules over operator algebras, Amer. J. Math., 75 (1953), 839-858.
[12] Kafimoghadam, M., Miri, M. and Janfada, A.R., A note on derivations on the algebra of operators in Hilbert $C *$-modules, Mediterr. J. Math., 13 (2016), 1167-1175.
[13] Li, P.T., Han, D.G. and TANG, W.S., Derivations on the algebra of operators in Hilbert C^{*}-modules, Acta Math. Sinica, 28 (2012), 1615-1622.
[14] Liu, X. and Xu, T.Z., Automatic continuity of derivations of Hilbert C^{*}-modules, J. Baoji College Arts Sci. Nat. Sci., 2 (1995), 14-17.
[15] Manuilov, V.M. and Troitsky, E.V., Hilbert C^{*}-modules, Transl. Math. Monogr., Amer. Math. Soc., Providence, RI, 226 (2005).
[16] Moslehian, M.S. and Najati, A. Jordan (ϕ, ψ)-derivations in $J B^{*}$-triples, Commun. Korean Math. Soc., 26 (2011), 585-589.
[17] Molnár, L. and Šemrl, P., Local Jordan *-derivation of standard operator algebras, Proc. Amer. Soc., 125 (1997), 447-454.
[18] Molnár, L., On the range of a normal Jordan *-derivation, Comment. Math. Univ. Carolin., 35 (1994), 691-695.
[19] Semrl, P., Jordan *-derivations of standard operator algebras, Proc. Amer. Math. Soc., 120 (1994), 515-518.
[20] Šemrl, P., On Jordan *-derivations and an application, Colloq. Math., 59 (1990), 241-251.
[21] Semrl, P., Quadratic functional and Jordan *-derivations, Studia Math., 97 (1991), 157-165.
[22] Zalar, B., Jordan *-derivation pairs and quadratic functional on modules over *-ring, Aequationes Math., 54 (1997), 31-43.

Received January 4, 2015
Accepted July 5, 2016

> University of Birjand
> Department of Mathematics
> Birjand, P. O. Box 414
> Birjand 9717851367, Iran
> E-mail: mkafimoghadam@yahoo.com
> E-mail: mkafimoghadam@birjand.ac.ir
> E-mail: ajanfada@birjand.ac.ir
> E-mail: mrmiri@birjand.ac.ir

