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SOME PROPERTIES OF SOLUTIONS OF THE HOMOGENEOUS
NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

VERONICA ILEA, DIANA OTROCOL, and IOAN A. RUS

Abstract. In this paper we consider the following nonlinear homogeneous sec-
ond order differential equations, F (x, y, y′, y′′) = 0. We present for the solutions,
y ∈ C2[a, b], of this equation, extremal principle, Sturm-type, Nicolescu-type
and Butlewski-type separation theorems. Some applications and examples are
given. Open problems are also presented.
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1. INTRODUCTION

Let F ∈ C([a, b]×R3). We consider the following implicit differential equa-
tion

(1.1) F (x, y, y′, y′′) = 0.

By definition this equation is homogeneous if the function F is homogeneous
with respect to the last three arguments.

In this paper by a solution of the equation (1.1) we understand a function
y ∈ C2[a, b] which satisfies (1.1). Moreover by a solution we shall understand
a nontrivial solution.

The linear case of (1.1) is the following equation

(1.2) y′′ + p(x)y′ + q(x)y = 0.

For the equation (1.2) the following properties of the solution are well known
(see [10, 11, 12, 7, 3, 13]).

We suppose that p and q ∈ C[a, b].

Theorem 1 (Extremal principle). Let q(x) < 0, for all x ∈]a, b[ and y be a
solution of (1.2). Then

(a) if max{y(x)| x ∈ [a, b]} = y(x0) and y(x0) > 0 then x0 ∈ {a, b};
(b) if min{y(x)| x ∈ [a, b]} = y(x0) and y(x0) < 0 then x0 ∈ {a, b}.
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Theorem 2 (Sturm’s separation theorem). If y1 and y2 are two linear
independent solutions of (1.2), then the zeros of y1 and y2 separate each other.

Theorem 3 (Nicolescu’s theorem, [6]). We suppose that q(x) > 0, for all
x ∈ [a, b]. If y is a solution of (1.2), then the zeros of y and y′ separate each
other.

Theorem 4 (Butlewski’s theorem, [1]). We suppose that q(x) > 0, for all
x ∈ [a, b]. If y1 and y2 are two linear independent solutions of (1.2), the zeros
of y′1 and y′2 separate each other.

The aim of this paper is to extend the above results to the solutions of (1.1).
For some results in this directions see [14], [8] and [9].

2. HOMOGENEOUS NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION:

EXAMPLES

Example 1. The equation

(2.1) y′′2 + yy′′ + y2 = 0

has the only solution y = 0.

Example 2. We consider the equation

(2.2) y′′3 + y3 = 0.

This equation is equivalent with the equation y′′ + y = 0.

Example 3. We consider the equation

(2.3) y′′3 − y3 = 0.

This equation is equivalent with the equation y′′ − y = 0.

Example 4. We consider the equation

(2.4) y′′2 − y2 = 0.

A function y is a solution of this equation if and only if y is a solution of
y′′ − y = 0 or of y′′ + y = 0.

Example 5. (Painlevé (1902), see [4], 6.122). The following equation was
studied by Painlevé

(2.5) yy′′ − y′2 + p(x)yy′ + q(x)y2 = 0.

Example 6. (Tonelli (1927), [14]). The following equation was considered
by Tonelli

(2.6) (y2 + y′2)y′′ + p(x)y3 = 0.

Example 7.

(2.7)
m∏
k=1

(y′′ + pk(x)y′ + qk(x)y) = 0

We shall use the above examples to exemplify our general results.
For other examples of such equations see [4] and [12].
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3. EXTREMAL PRINCIPLES

We consider the equation (1.1) with F ∈ C([a, b] × R3) a homogeneous
function with respect to the last three arguments. We have the following
extremal principle.

Theorem 5. We suppose that F (x, r1, 0, r2) 6= 0, for all x ∈ [a, b], r1 > 0
and r2 ≤ 0. Let y be a solution of (1.1). We have:

(a) if max{y(x)| x ∈ [a, b]} = y(x0) and y(x0) > 0 then x0 ∈ {a, b};
(b) if min{y(x)| x ∈ [a, b]} = y(x0) and y(x0) < 0 then x0 ∈ {a, b}.

Proof. (a) Let x0 ∈]a, b[ be such that, y(x0) > 0 is the maximum value of
y on [a, b]. Since y ∈ C2[a, b] we have that y(x0) > 0, y′(x0) = 0, y′′(x0) ≤ 0.
From (1.1) we have

F (x0, y(x0), 0, y
′′(x0)) = 0.

But in the condition of our theorem the first part of this relation is not equal
to zero. So, x0 ∈ {a, b}.

(b) We remark that if y is a solution of (1.1) then, −y is also a solution.
We apply (a) for −y. �

Example 8. We consider the equation

(3.1) y′′2n+1 + p(x)y′2n+1 + q(x)y2n+1 = 0, x ∈ [a, b] with n ∈ N.

If q(x) < 0, ∀x ∈]a, b[, then we have for the solution of the equation (3.1) the
extremal principle given by Theorem 5.

Remark 1. If pk, qk ∈ C[a, b] and qk(x) < 0, ∀x ∈ [a, b] and k = 1,m, then
the equation (7) satisfies the conditions of Theorem 5.

Now let us consider the bilocal problem

(1.1) F (x, y, y′, y′′) = 0,

(3.2) y(a) = 0, y(b) = 0.

We have for this problem the following result.

Theorem 6. We suppose that F (x, r1, 0, r2) 6= 0, for all x ∈ [a, b], r1 > 0
and r2 ≤ 0. Then the problem (1.1)–(3.2) has the only solution y = 0.

Proof. Follows from Theorem 5. �

4. ZEROS OF THE SOLUTION OF (1.1)

Now we consider the following conditions on (1.1):

(u0) If y is a solution of (1.1) and for some x0 ∈ [a, b], y(x0) = 0 and
y′(x0) = 0, then y = 0.

(u1) If y1 and y2 are solutions of (1.1) and for some x0 ∈ [a, b], y1(x0) =
y2(x0) > 0 and y′1(x0) = y′2(x0), then y1 = y2.
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(u2) If y is a solution of (1.1) and for some x0 ∈ [a, b], y′(x0) = 0, y′′(x0) =
0, then y = 0.

(u3) If y1 and y2 are solutions of (1.1) and for some x0 ∈ [a, b], y′1(x0) =
y′2(x0) > 0 and y′′1(x0) = y′′2(x0), then y1 = y2.

By standard arguments we have

Lemma 1. If y is a solution of (1.1) then condition (u0) implies that the
zeros of y are simple and isolated on [a, b].

Lemma 2. If y is a solution of (1.1) then condition (u2) implies that the
zeros of y′ are simple and isolated on [a, b].

In what follow we also need the following result (see [14], [10], p. 163 and
[5]).

Lemma 3 (Tonelli’s Lemma). Let y1, y2 ∈ C1[a, b] be two functions which
satisfy the following conditions:

(i) y1(a) = y1(b) = 0 and y1(x) > 0 for all x ∈]a, b[;
(ii) y2(x) > 0 for all x ∈ [a, b].

Then there exists λ > 0 and x0 ∈]a, b[ such that:

y2(x0) = λy1(x0) and y′2(x0) = λy′1(x0).

Using Lemma 3, Tonelli give in [14] the following result.

Theorem 7 (Sturm-type separation theorem). For the homogeneous equa-
tion (1.1) we suppose that it satisfies conditions (u0) and (u1). Then if y1, y2
are two linear independent solutions of (1.1) and x1, x2 ∈ [a, b] are two con-
secutive zeros of y1, then y2 has at least one zero in [x1, x2].

Our results are the following.

Theorem 8 (Nicolescu-type separation theorem). For the homogeneous
equation (1.1), we suppose that:

(i) it satisfies condition (u2);
(ii) F (x, λ2, λ, 1) 6= 0, for all λ ∈ R.

Then, if y is a solution of (1.1), the zeros of y and y′ separate each other.

Proof. We consider x1 and x2 two consecutive zeros of y′(x). We have to
prove that y(x) has at least one zero in the interval (x1, x2).

We suppose that y(x) 6= 0, x ∈ [x1, x2]. Applying Tonelli’s Lemma 3 there
exists x0 ∈ (x1, x2) and λ > 0 ( or < 0) such that

y(x0) = λy′(x0), y
′(x0) = λy′′(x0).

So,

(4.1) y′(x0) = 1
λy(x0), y

′′(x0) = 1
λ2
y(x0).

Using (4.1) in F (x0, y(x0), y
′(x0), y

′′(x0)) = 0 we obtain that (y(x0) 6= 0)

F (x, λ2, λ, 1) = 0, for all λ ∈ R.
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�

Remark 2. Theorem 8 improves Theorem 2 in [8].

Remark 3. Theorem 8 works for the equation (7) if pk, qk ∈ C[a, b] and
qk(x) < 0, ∀x ∈ [a, b]. It also works for the equation (3).

Theorem 9. (Butlewski-type separation theorem) For the homogeneous equa-
tion (1.1), we suppose that it satisfies conditions (u2) and (u3). Then, if y1
and y2 are two linear independent solutions of (1.1) and x1, x2 ∈ [a, b] are two
consecutive zeros of y′1, then y′2 has at least one zero in [x1, x2].

Proof. We consider x1 and x2 two consecutive zeros of y′1(x). We have to
prove that y′2(x) has at least one zero in [x1, x2].

We suppose that y′2(x) 6= 0, x ∈ [x1, x2]. Applying Tonelli’s Lemma 3 there
exists x0 ∈ (x1, x2) and λ > 0 ( or < 0) such that

y′2(x0) = λy′1(x0), y
′′
2(x0) = λy′′1(x0).

Taking into account (u2) we have that y2(x) = λy1(x) and so we have reached
a contradiction. �

5. SOME RESEARCH DIRECTIONS

Problem 1. To give sufficient conditions which imply conditions (u0) and
(u1).

Problem 2. To give sufficient conditions which imply conditions (u2) and
(u3).

Problem 3. In [2] the authors studied the following problem. Let us con-
sider the equation

L(y) := y′′ + q(x)y = 0

with q ∈ C[a, b]. The problem is to study the functional h : KerL → R+

defined by h(y) := inf{d(x1, x2)| x1 and x2 are two consecutive zeros of y}. In
[2] the authors prove that

inf{h(y)| y ∈ KerL} = min{h(y)| y ∈ KerL} > 0.

The problem is to study the above problem for the equation (1.1).
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