SOME PROPERTIES OF SOLUTIONS OF THE HOMOGENEOUS NONLINEAR SECOND ORDER DIFFERENTIAL EQUATIONS

VERONICA ILEA, DIANA OTROCOL, and IOAN A. RUS

Abstract. In this paper we consider the following nonlinear homogeneous second order differential equations, F(x, y, y', y'') = 0. We present for the solutions, $y \in C^2[a, b]$, of this equation, extremal principle, Sturm-type, Nicolescu-type and Butlewski-type separation theorems. Some applications and examples are given. Open problems are also presented.

MSC 2010. 34A12, 34C10, 34A34.

Key words. Homogeneous nonlinear second order differential equation, zeros of solutions, Sturm-type theorem, Nicolescu-type theorem, Butlewski-type theorem, bilocal problem, Cauchy problem, open problem, extremal principle.

1. INTRODUCTION

Let $F \in C([a, b] \times \mathbb{R}^3)$. We consider the following implicit differential equation

(1.1)
$$F(x, y, y', y'') = 0.$$

By definition this equation is homogeneous if the function F is homogeneous with respect to the last three arguments.

In this paper by a solution of the equation (1.1) we understand a function $y \in C^2[a, b]$ which satisfies (1.1). Moreover by a solution we shall understand a nontrivial solution.

The linear case of (1.1) is the following equation

(1.2)
$$y'' + p(x)y' + q(x)y = 0$$

For the equation (1.2) the following properties of the solution are well known (see [10, 11, 12, 7, 3, 13]).

We suppose that p and $q \in C[a, b]$.

THEOREM 1 (Extremal principle). Let q(x) < 0, for all $x \in]a, b[$ and y be a solution of (1.2). Then

(a) if
$$\max\{y(x) \mid x \in [a, b]\} = y(x_0)$$
 and $y(x_0) > 0$ then $x_0 \in \{a, b\}$;

(b) if $\min\{y(x) \mid x \in [a, b]\} = y(x_0)$ and $y(x_0) < 0$ then $x_0 \in \{a, b\}$.

The work of the first author was partially supported by a grant of the Romanian National Authority for Scientific Research, CNCS – UEFISCDI, project number PN-II-ID-PCE-2011-3-0094.

THEOREM 2 (Sturm's separation theorem). If y_1 and y_2 are two linear independent solutions of (1.2), then the zeros of y_1 and y_2 separate each other.

THEOREM 3 (Nicolescu's theorem, [6]). We suppose that q(x) > 0, for all $x \in [a, b]$. If y is a solution of (1.2), then the zeros of y and y' separate each other.

THEOREM 4 (Butlewski's theorem, [1]). We suppose that q(x) > 0, for all $x \in [a, b]$. If y_1 and y_2 are two linear independent solutions of (1.2), the zeros of y'_1 and y'_2 separate each other.

The aim of this paper is to extend the above results to the solutions of (1.1). For some results in this directions see [14], [8] and [9].

2. HOMOGENEOUS NONLINEAR SECOND ORDER DIFFERENTIAL EQUATION: EXAMPLES

EXAMPLE 1. The equation

(2.1)
$$y''^2 + yy'' + y^2 = 0$$

has the only solution y = 0.

EXAMPLE 2. We consider the equation

(2.2)
$$y''^3 + y^3 = 0.$$

This equation is equivalent with the equation y'' + y = 0.

EXAMPLE 3. We consider the equation

(2.3)
$$y''^3 - y^3 = 0.$$

This equation is equivalent with the equation y'' - y = 0.

EXAMPLE 4. We consider the equation

(2.4)
$$y''^2 - y^2 = 0.$$

A function y is a solution of this equation if and only if y is a solution of y'' - y = 0 or of y'' + y = 0.

EXAMPLE 5. (Painlevé (1902), see [4], 6.122). The following equation was studied by Painlevé

(2.5)
$$yy'' - y'^2 + p(x)yy' + q(x)y^2 = 0$$

EXAMPLE 6. (Tonelli (1927), [14]). The following equation was considered by Tonelli

(2.6)
$$(y^2 + y'^2)y'' + p(x)y^3 = 0.$$

EXAMPLE 7.

(2.7)
$$\prod_{k=1}^{m} (y'' + p_k(x)y' + q_k(x)y) = 0$$

We shall use the above examples to exemplify our general results. For other examples of such equations see [4] and [12].

3. EXTREMAL PRINCIPLES

We consider the equation (1.1) with $F \in C([a, b] \times \mathbb{R}^3)$ a homogeneous function with respect to the last three arguments. We have the following extremal principle.

THEOREM 5. We suppose that $F(x, r_1, 0, r_2) \neq 0$, for all $x \in [a, b], r_1 > 0$ and $r_2 \leq 0$. Let y be a solution of (1.1). We have:

- (a) if $\max\{y(x) \mid x \in [a, b]\} = y(x_0)$ and $y(x_0) > 0$ then $x_0 \in \{a, b\}$;
- (b) if $\min\{y(x) \mid x \in [a, b]\} = y(x_0)$ and $y(x_0) < 0$ then $x_0 \in \{a, b\}$.

Proof. (a) Let $x_0 \in]a, b[$ be such that, $y(x_0) > 0$ is the maximum value of y on [a,b]. Since $y \in C^2[a,b]$ we have that $y(x_0) > 0, y'(x_0) = 0, y''(x_0) \leq 0$. From (1.1) we have

$$F(x_0, y(x_0), 0, y''(x_0)) = 0.$$

But in the condition of our theorem the first part of this relation is not equal to zero. So, $x_0 \in \{a, b\}$.

(b) We remark that if y is a solution of (1.1) then, -y is also a solution. We apply (a) for -y.

EXAMPLE 8. We consider the equation

(3.1)
$$y''^{2n+1} + p(x)y'^{2n+1} + q(x)y^{2n+1} = 0, x \in [a, b] \text{ with } n \in \mathbb{N}.$$

If $q(x) < 0, \forall x \in]a, b[$, then we have for the solution of the equation (3.1) the extremal principle given by Theorem 5.

REMARK 1. If $p_k, q_k \in C[a, b]$ and $q_k(x) < 0$, $\forall x \in [a, b]$ and $k = \overline{1, m}$, then the equation (7) satisfies the conditions of Theorem 5.

Now let us consider the bilocal problem

(1.1)
$$F(x, y, y', y'') = 0,$$

(3.2)
$$y(a) = 0, y(b) = 0$$

We have for this problem the following result.

THEOREM 6. We suppose that $F(x, r_1, 0, r_2) \neq 0$, for all $x \in [a, b], r_1 > 0$ and $r_2 \leq 0$. Then the problem (1.1)–(3.2) has the only solution y = 0.

Proof. Follows from Theorem 5.

4. ZEROS OF THE SOLUTION OF (1.1)

Now we consider the following conditions on (1.1):

- (u₀) If y is a solution of (1.1) and for some $x_0 \in [a, b]$, $y(x_0) = 0$ and $y'(x_0) = 0$, then y = 0.
- (u₁) If y_1 and y_2 are solutions of (1.1) and for some $x_0 \in [a, b]$, $y_1(x_0) = y_2(x_0) > 0$ and $y'_1(x_0) = y'_2(x_0)$, then $y_1 = y_2$.

- (u₂) If y is a solution of (1.1) and for some $x_0 \in [a, b], y'(x_0) = 0, y''(x_0) = 0$, then y = 0.
- (u₃) If y_1 and y_2 are solutions of (1.1) and for some $x_0 \in [a, b]$, $y'_1(x_0) = y'_2(x_0) > 0$ and $y''_1(x_0) = y''_2(x_0)$, then $y_1 = y_2$.

By standard arguments we have

LEMMA 1. If y is a solution of (1.1) then condition (u_0) implies that the zeros of y are simple and isolated on [a, b].

LEMMA 2. If y is a solution of (1.1) then condition (u_2) implies that the zeros of y' are simple and isolated on [a, b].

In what follow we also need the following result (see [14], [10], p. 163 and [5]).

LEMMA 3 (Tonelli's Lemma). Let $y_1, y_2 \in C^1[a, b]$ be two functions which satisfy the following conditions:

(i) $y_1(a) = y_1(b) = 0$ and $y_1(x) > 0$ for all $x \in]a, b[;$

(ii) $y_2(x) > 0$ for all $x \in [a, b]$.

Then there exists $\lambda > 0$ and $x_0 \in]a, b[$ such that:

$$y_2(x_0) = \lambda y_1(x_0)$$
 and $y'_2(x_0) = \lambda y'_1(x_0)$.

Using Lemma 3, Tonelli give in [14] the following result.

THEOREM 7 (Sturm-type separation theorem). For the homogeneous equation (1.1) we suppose that it satisfies conditions (u_0) and (u_1) . Then if y_1, y_2 are two linear independent solutions of (1.1) and $x_1, x_2 \in [a, b]$ are two consecutive zeros of y_1 , then y_2 has at least one zero in $[x_1, x_2]$.

Our results are the following.

THEOREM 8 (Nicolescu-type separation theorem). For the homogeneous equation (1.1), we suppose that:

(i) it satisfies condition (u_2) ;

(ii) $F(x, \lambda^2, \lambda, 1) \neq 0$, for all $\lambda \in \mathbb{R}$.

Then, if y is a solution of (1.1), the zeros of y and y' separate each other.

Proof. We consider x_1 and x_2 two consecutive zeros of y'(x). We have to prove that y(x) has at least one zero in the interval (x_1, x_2) .

We suppose that $y(x) \neq 0$, $x \in [x_1, x_2]$. Applying Tonelli's Lemma 3 there exists $x_0 \in (x_1, x_2)$ and $\lambda > 0$ (or < 0) such that

$$y(x_0) = \lambda y'(x_0), \ y'(x_0) = \lambda y''(x_0).$$

So,

(4.1)
$$y'(x_0) = \frac{1}{\lambda}y(x_0), \ y''(x_0) = \frac{1}{\lambda^2}y(x_0).$$

Using (4.1) in $F(x_0, y(x_0), y'(x_0), y''(x_0)) = 0$ we obtain that $(y(x_0) \neq 0)$ $F(x, \lambda^2, \lambda, 1) = 0$, for all $\lambda \in \mathbb{R}$.

4

REMARK 2. Theorem 8 improves Theorem 2 in [8].

REMARK 3. Theorem 8 works for the equation (7) if $p_k, q_k \in C[a, b]$ and $q_k(x) < 0, \ \forall x \in [a, b]$. It also works for the equation (3).

THEOREM 9. (Butlewski-type separation theorem) For the homogeneous equation (1.1), we suppose that it satisfies conditions (u_2) and (u_3) . Then, if y_1 and y_2 are two linear independent solutions of (1.1) and $x_1, x_2 \in [a, b]$ are two consecutive zeros of y'_1 , then y'_2 has at least one zero in $[x_1, x_2]$.

Proof. We consider x_1 and x_2 two consecutive zeros of $y'_1(x)$. We have to prove that $y'_2(x)$ has at least one zero in $[x_1, x_2]$.

We suppose that $y'_2(x) \neq 0$, $x \in [x_1, x_2]$. Applying Tonelli's Lemma 3 there exists $x_0 \in (x_1, x_2)$ and $\lambda > 0$ (or < 0) such that

$$y_2'(x_0) = \lambda y_1'(x_0), \ y_2''(x_0) = \lambda y_1''(x_0).$$

Taking into account (u_2) we have that $y_2(x) = \lambda y_1(x)$ and so we have reached a contradiction.

5. SOME RESEARCH DIRECTIONS

PROBLEM 1. To give sufficient conditions which imply conditions (u_0) and (u_1) .

PROBLEM 2. To give sufficient conditions which imply conditions (u_2) and (u_3) .

PROBLEM 3. In [2] the authors studied the following problem. Let us consider the equation

$$L(y) := y'' + q(x)y = 0$$

with $q \in C[a, b]$. The problem is to study the functional $h : KerL \to \mathbb{R}_+$ defined by $h(y) := \inf\{d(x_1, x_2) | x_1 \text{ and } x_2 \text{ are two consecutive zeros of } y\}$. In [2] the authors prove that

$$\inf\{h(y)|\ y \in KerL\} = \min\{h(y)|\ y \in KerL\} > 0.$$

The problem is to study the above problem for the equation (1.1).

REFERENCES

- BUTLEWSKI, Z., Sur les zéros des intégrales réelles des équations différentielles linéaires, Mathematica, 17 (1941), 85–110.
- [2] FOIAŞ, C., GUSSI, G. and POENARU, V., On the polylocal problem of the second order linear differential equation (in Romanian), Bull. St. Soc. St. Mat. Fiz, 7 (1955), 699–721.
- [3] HARTMAN, P., Ordinary differential equations, J. Wiley and Sons, New York, 1964.
- [4] KAMKE, E., Differentialgleichungen, Lösungsmethoden und Lösungen, Leipzig, 1959.
- [5] MUREŞAN, A.S., Tonelli's Lemma and applications, Carpathian J. Math., 28 (2012), No. 1, 103–110.
- [6] NICOLESCU, M., Sur les théoremes de Sturm, Mathematica, 1 (1929), 111–114.

- [7] REID, W.T., Sturmian theory for ordinary differential equations, Springer, Berlin, 1980.
- [8] RUS, I.A., The properties of zeros of solutions of the second order nonlinear differential equations (in Romanian), Stud. Univ. Babeş-Bolyai Math., Ser. Mathematica-Physica, 1965, 47–50.
- [9] RUS, I.A., Separation theorems for the zeros of some real functions, Mathematica, 27 (1985), 43–46.
- [10] RUS, I.A., Differential equations, integral equations and dinamical systems (in Romanian), Transilvania Press, Cluj-Napoca, 1996.
- [11] SANSONE, G., Equazioni differenziali nel compo reale, Parte prima, Bologna, 1948.
- [12] SANSONE, G., Equazioni differenziali nel compo reale, Parte seconda, Bologna, 1949.
- [13] SWANSON, C.A., Comparison and oscillation theory of linear differential equations, Academic Press, New York, 1968.
- [14] TONELLI, L., Un'osservazione su un teorema di Sturm, Boll. Unione Mat. Ital., 6 (1927), 126–128.

Received March 12, 2015 Accepted April 4, 2015 Babeş-Bolyai University Faculty of Mathematics and Computer Science M. Kogălniceanu St., No. 1 400084 Cluj-Napoca, Romania E-mail: vdarzu@math.ubbcluj.ro E-mail: iarus@math.ubbcluj.ro

"T. Popoviciu" Institute of Numerical Analysis Romanian Academy P.O.Box. 68-1, 400110 Cluj-Napoca, Romania E-mail: dotrocol@ictp.acad.ro