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∗-TOPOLOGY AND #-TOPOLOGY

ZBIGNIEW DUSZY�SKI

Abstract. A new topology τ# on X, via an ideal I, is introduced and inves-
tigated. τ# lies between τ# ∩ τ and τ∗ properly, in general. Decompositions
of ∗-continuity and #r-continuity are obtained � in particular, continuity and
δ-continuity.
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1. INTRODUCTION AND PRELIMINARIES

Let (X, τ) be a topological space on which no separation axioms are imposed.
If S ⊂ X then the interior and the closure of S in (X, τ) are denoted by
int(S) (or intτ (S)) and cl(S) (or clτ (S)), respectively. A set S is called regular
open (resp., regular closed) in (X, τ) if S = int(cl(S)) (resp., S = cl(int(S))).
An S ⊂ X is said to be α-open [19] (resp,. semi-open [14], preopen [16], b-
open [2], β-open [1]) in (X, τ), if S ⊂ int(cl(int(S))) (resp. S ⊂ cl(int(S)),
S ⊂ int(cl(S)), S ⊂ int(cl(S)) ∪ cl(int(S)), S ⊂ cl(int(cl(S)))).

The collection of all regular open (resp., α-open, semi-open, preopen, b-open,
β-open) subsets of (X, τ) is denoted by RO(X, τ) (resp., α(X, τ), SO(X, τ),
PO(X, τ), BO(X, τ), β(X, τ)).

A subset S of (X, τ) is said to be g-closed [15] (resp., rg-closed [23], αg∗-closed
[17], sg∗-closed [25, 28, 22], pg∗-closed, bg∗-closed, βg∗-closed [17]) if cl(S) ⊂ U
whenever S ⊂ U and U ∈ τ (resp., U ∈ RO(X, τ), U ∈ α(X, τ), U ∈ SO(X, τ),
U ∈ PO(X, τ), U ∈ BO(X, τ), U ∈ β(X, τ)). We remark that an sg∗-closed
set is called ω-closed in [25] and ĝ-closed in [28].

The collection of all g-closed (resp., rg-closed, αg∗-closed, sg∗-closed, pg∗-
closed, bg∗-closed, βg∗-closed) subsets of (X, τ) is denoted by g(X, τ) (resp.,
rg(X, τ), αg(X, τ), sg(X, τ), pg(X, τ), bg(X, τ), βg(X, τ)). The family of all
closed subsets of (X, τ) we denote by c(τ), and the family of all semi-closed
subsets S of (X, τ) (int(cl(S)) ⊂ S) [4] will be denoted by SC(X, τ).

Recall that the δ-closure of a subset S in (X, τ) is de�ned by {x ∈ X :
S∩ int(cl(U)) 6= ∅ for all U ∈ τ such that x ∈ U} =: clδ(S) [29]. If S = clδ(S),
then S is called δ-closed. The complement of a δ-closed set (to X) is called
δ-open. For each space (X, τ) the family of all δ-open sets form a topology τδ
on X [29]. Recall the following basic fact: τδ = τs (on (X, τ)) [29], where τs
is the so-called semi-regularization of τ , that is τs is a smaller topology on X
with the family RO(X, τ) as a base for it.
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An ideal I on a topological space (X, τ) is a non-empty collection of subsets
of X, which satis�es two conditions: (1) A ∈ I and B ⊂ A implies B ∈ I,
(2) A,B ∈ I imply A∪B ∈ I. If in a topological space (X, τ) we set an ideal I,
then the structure (X, τ, I) is called ideal topological space (or an ideal space).
One type of topology via ideals has been de�ned by three independent authors:
Vaidyanathaswamy (1945) [26, 27], Hashimoto (1976) [9], Hamlett, Rose and
Jankovi¢ (1990) [8, 11]. We recall this type of topology in the following fashion.
First, for a subset S of (X, τ, I) we de�ne the set S∗(I, τ) = {x ∈ X : S ∩U /∈
I for every U ∈ τ with x ∈ U} which is called the local function of S with
respect to I and τ [13]. When there is no ambiguity we simply write S∗. The
following properties for local function are known.

Lemma 1.1 ([11, 27]). Let (X, τ, I) be an ideal space and S, S1, S2 ⊂ X.
Then the following hold:

(1) S1 ⊂ S2 implies S∗1 ⊂ S∗2 ,
(2) S∗ = cl(S∗) ⊂ cl(S),
(3) (S∗)∗ ⊂ S∗,
(4) (S1 ∪ S2)∗ = S∗1 ∪ S∗2 .

We now de�ne an operator cl∗(S) for S ⊂ X: cl∗(S) := S ∪ S∗ [26, 27].
Using some properties from Lemma 1.1, one can prove that cl∗(·) ful�ls the
Kuratowski closure operator axioms. Thus it determines a topology on X
called ∗-topology, which is �ner than τ . For ∗-topology we use denotation τ∗.
The collection of all ∗-closed subsets of X (cl∗(S) = S) is denoted by c(τ∗).

A subfamily FX of the power set P(X), X 6= ∅, is called a minimal structure
(brie�y, m-structure) [24] on X if ∅, X ∈ FX . In the sequel m-structures will be
denoted by F. It is known that for some m-structures the following inclusion
relationships hold:

RO(X, τ) ⊂ τ ⊂ α(X, τ) ⊂ SO(X, τ) ⊂ BO(X, τ) ⊂ β(X, τ)

and

α(X, τ) ⊂ PO(X, τ) ⊂ BO(X, τ).

All above inclusions are proper, in general.

2. ∗-CLOSED SETS

Let (X, τ, I) be an ideal space and let F be an arbitrarily chosen m-structure
on X. De�nitions 2.1 and 2.2 generalize the well-known notions of locally
closed [7] (brie�y, LC) subsets in (X, τ) and g-closed subsets in it.

Definition 2.1. A subset A of (X, τ, I) is said to be ∗-I-F-locally closed
(brie�y, ∗-I-F-LC) if A = U ∩ V , where U ∈ F and V ∈ c(τ∗).

Obviously, this de�nition also generalizes the known notions of strongly-lo-
cally closed [10] or weakly-I-LC [12] sets.
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Definition 2.2. A subset A of (X, τ, I) is said to be ∗-I-gF-closed if
cl∗(A) ⊂ U , whenever A ⊂ U ∈ F.

We remark that equivalently: A is ∗-I-gF-closed if A∗ ⊂ U whenever A ⊂
U ∈ F. De�nition 2.2 generalizes such notions as Ig-closed [5] or Irg-closed [18]
sets. The family of all ∗-I-F-LC (resp. ∗-I-gF-closed subsets of (X, τ, I) we
denote by ∗-I-F-LC(X, τ) (resp. ∗-I-gF(X, τ)).

Lemma 2.1. If A is ∗-closed, then A ∈ ∗-I-F-LC(X, τ) ∩ ∗-I-gF(X, τ).

Proof. Obvious. �

Lemma 2.2. If A ∈ ∗-I-F-LC(X, τ) ∩ ∗-I-gF(X, τ), then A is ∗-closed.

Proof. Since A ∈ ∗-I-F-LC(X, τ), there exist U ∈ F and V ∈ c(τ∗) such
that A = U ∩ V . Then A ⊂ V and hence cl∗(A) ⊂ cl∗(V ) = V . So, A∗ ⊂ V .
But A ∈ ∗-I-gF(X, τ). Thus A∗ ⊂ U for U ∈ F with A ⊂ U . Consequently,
A∗ ⊂ U ∩ V = A and cl∗(A) = A. Therefore A ∈ c(τ∗). �

Theorem 2.1. Let F1,F2 ⊂ P(X) be arbitrary m-structures on X such that
F1 ⊃ F2. Then the following statements are equivalent for any A ⊂ X:

(1) A is ∗-closed;
(2) A ∈ ∗-I-F1-LC(X, τ) ∩ ∗-I-gF1(X, τ);
(3) A ∈ ∗-I-F1-LC(X, τ) ∩ ∗-I-gF2(X, τ);
(4) A ∈ ∗-I-F2-LC(X, τ) ∩ ∗-I-gF1(X, τ);
(5) A ∈ ∗-I-F2-LC(X, τ) ∩ ∗-I-gF2(X, τ).

Proof. (1)⇔(2) follows from Lemmas 2.1 and 2.2. Implications (2)⇒(3)⇒(5)
and (2)⇒(4)⇒(5) are obvious. (1)⇔(5) follows from Lemmas 2.1 and 2.2. �

Using Theorem 2.1 and, respectively, m-structures from Section 1, one
can obtain various equivalent conditions for a set being ∗-closed. We will
put as F: β(X, τ), BO(X, τ), SO(X, τ), PO(X, τ), α(X, τ), τ , RO(X, τ) in
∗-I-F-LC(X, τ), and in ∗-I-gF(X, τ) we will use, respectively, the following
symbols: (F =) β, b, s, p, α, τ, rτ .

Theorem 2.2. For A ⊂ X the following statements are equivalent:

(1) A is ∗-closed;
(21) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gβ(X, τ);
(22) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gb(X, τ);
(23) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gs(X, τ);
(24) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gp(X, τ);
(25) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gα(X, τ);
(26) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-gτ (X, τ);
(27) A ∈ ∗-I-β-LC(X, τ) ∩ ∗-I-grτ (X, τ);
(31) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-gb(X, τ);
(32) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-gs(X, τ);
(33) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-gp(X, τ);
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(34) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-gα(X, τ);
(35) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-gτ (X, τ);
(36) A ∈ ∗-I-b-LC(X, τ) ∩ ∗-I-grτ (X, τ);
(41) A ∈ ∗-I-s-LC(X, τ) ∩ ∗-I-gs(X, τ);
(42) A ∈ ∗-I-s-LC(X, τ) ∩ ∗-I-gα(X, τ);
(43) A ∈ ∗-I-s-LC(X, τ) ∩ ∗-I-gτ (X, τ);
(44) A ∈ ∗-I-s-LC(X, τ) ∩ ∗-I-grτ (X, τ);
(51) A ∈ ∗-I-p-LC(X, τ) ∩ ∗-I-gp(X, τ);
(52) A ∈ ∗-I-p-LC(X, τ) ∩ ∗-I-gα(X, τ);
(53) A ∈ ∗-I-p-LC(X, τ) ∩ ∗-I-gτ (X, τ);
(54) A ∈ ∗-I-p-LC(X, τ) ∩ ∗-I-grτ (X, τ);
(61) A ∈ ∗-I-α-LC(X, τ) ∩ ∗-I-gα(X, τ);
(62) A ∈ ∗-I-α-LC(X, τ) ∩ ∗-I-gτ (X, τ);
(63) A ∈ ∗-I-α-LC(X, τ) ∩ ∗-I-grτ (X, τ);
(71) A ∈ ∗-I-τ -LC(X, τ) ∩ ∗-I-gτ (X, τ) [10, Theorem 2.5];
(72) A ∈ ∗-I-τ -LC(X, τ) ∩ ∗-I-grτ (X, τ);
(8) A ∈ ∗-I-rτ -LC(X, τ) ∩ ∗-I-grτ (X, τ) [10, Theorem 2.6(3)].

The remaining cases are left to the reader.

3. #-TOPOLOGY

In this section we introduce a new topology on (X, τ) via ideals. For a subset
S ⊂ X we de�ne a set S#(I, τ) as follows:

S#(I, τ) =
{
x ∈ X : S ∩ int(cl(U)) /∈ I for every U ∈ τ with x ∈ U

}
.

For S#(I, τ) we use the notation S# (if there is no risk of confusion). In
Lemma 3.2 below we list some properties of the operator ( · )#.

Recall a generalization (due to Noiri and the author) of some well-known
fact (for the �open� case):

Lemma 3.1. [6, 21] Let (X, τ) be an arbitrary space. If either S1 ∈ SO(X, τ)∪
SC(X, τ) or S2 ∈ SO(X, τ) ∪ SC(X, τ), then

(1) int(cl(S1 ∩ S2)) = int(cl(S1)) ∩ int(cl(S2)).

Lemma 3.2. Let (X, τ, I) be an ideal space and S, S1, S2 ⊂ X be arbitrary.
Then the following hold:

(1) S1 ⊂ S2 implies S#
1 ⊂ S

#
2 ;

(2) (S#)# ⊂ S#;

(3) (S1 ∪ S2)# = S#
1 ∪ S

#
2 ;

(4) S# = cl(S#);
(5) S# ⊂ (cl(S))# ⊂ clδ(S);
(6) cl(S#) ⊂ cl(S) for every S ∈ PO(X, τ);
(7) (cl(S))# ⊂ cl(S) for every S ∈ PO(X, τ).
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Proof. (1) Obvious.
(2) Suppose there exists a point x such that x ∈ (S#)# and x /∈ S#. Then,

by de�nition of operation (·)#, we have S# ∩ int(cl(U)) /∈ I for any U ∈ τ
with x ∈ U . On the other hand, there exists a V ∈ τ with x ∈ V such that
S ∩ int(cl(V ) ∈ I. Hence, for U = V we get ∅ 6= S# ∩ int(cl(V )) ∈ I. Let
y ∈ S# ∩ int(cl(V )). Then y ∈ S# and y ∈ int(cl(V )) = W . So, we have
S ∩ int(cl(W )) /∈ I, that is S ∩ int(cl(V )) /∈ I. This contradiction establishes
our inclusion.

(3) Let x ∈ (S1 ∪ S2)# be an arbitrarily chosen point. Then S1 ∪ S2) ∩
int(cl(U)) /∈ I for each U ∈ τ with x ∈ U . So, we have [S1∩ int(cl(U))]∪ [S2∩
int(cl(U))] /∈ I which implies S1∩int(cl(U)) /∈ I or S2∩int(cl(U)) /∈ I�in the
opposite case one gets (S1 ∪ S2) ∩ int(cl(U)) ∈ I, a contradiction. Therefore

we obtain that x ∈ S#
1 ∪ S

#
2 .

Let now x ∈ S#
1 ∪ S

#
2 be arbitrary. So, x ∈ S#

1 or x ∈ S#
2 . Thus for

any U ∈ τ with x ∈ U , S1 ∩ int(cl(U)) /∈ Ior, for any V ∈ τ with x ∈ V ,
S2∩ int(cl(V )) /∈ I. Therefore [S1∩ int(cl(U))]∪ [S2∩ int(cl(V ))] /∈ I, and for

U = V we get (S1∪S2)∩int(cl(U)) /∈ I, which shows that S#
1 ∪S

#
2 ⊂ (S1∪S2)#.

(4) We shall show that cl(S#) ⊂ S#. Suppose there exists a point x ∈ X
with x ∈ cl(S#) and x /∈ S#. Hence, for any V ∈ τ with x ∈ V , S# ∩ V 6= ∅
and for a certain V1 ∈ τ with x ∈ V1, S ∩ int(cl(V1)) ∈ I. Let y ∈ S# ∩ V1.
Thus y ∈ V1 and S ∩ int(cl(U)) /∈ I for each U ∈ τ with y ∈ U . For U = V1
one has S ∩ int(cl(V1)) /∈ I, a contradiction.

(5) Inclusion S# ⊂ (cl(S))# is obvious by (1). Let x ∈ (cl(S))# be arbitrary.
Then int(cl(U)) ∩ cl(S) /∈ I for any U ∈ τ with x ∈ U . We get cl

[
S ∩

int(cl(U))
]
/∈ I. It cannot be S ∩ int(cl(U)) = ∅, since cl(∅) = ∅ ∈ I.

Therefore S ∩ int(cl(U)) 6= ∅, which shows that x ∈ clδ(S).
(6) Suppose x ∈ cl(S#) and x /∈ cl(S). Hence, there exists a V1 ∈ τ

with x ∈ V1 such that S ∩ V1 = ∅. Using Lemma 3.1 we obtain int(cl(S)) ∩
int(cl(V1)) = ∅ and since S ∈ PO(X, τ), S∩ int(cl(V1)) = ∅ ∈ I. On the other
hand, S# ∩ U 6= ∅ for any U ∈ τ with x ∈ U . Let U = V1 and y ∈ S# ∩ V1,
that is S ∩ int(cl(V1)) /∈ I. Consequently our inclusion holds.

(7) Let x ∈ (cl(S))# and x /∈ cl(S). Then for a certain V1 ∈ τ with x ∈ V1
we have V1 ∩ S = ∅. Obviously, by Lemma 3.1, int(cl(V1)) ∩ int(cl(S)) =
∅ and since S ∈ PO(X, τ), int(cl(V1)) ∩ S = ∅ ∈ I. On the other hand,
int(cl(U)) ∩ cl(S) /∈ I for each U ∈ τ with x ∈ U . So, we get for U = V1,
cl
[
S ∩ int(cl(V1))

]
/∈ I. Simultaneously, by int(cl(V1)) ∩ S = ∅, we have

cl
[
int(cl(V1)) ∩ S

]
= ∅ ∈ I. This contradicts our inclusion. �

Corollary 3.1. Let (X, τ, I) be an ideal space. If
(a) S ∈ PO(X, τ) and
(b) int(cl(S)) ⊂ int(cl(S#)) = int(S#), then

(1) cl(S) = cl(S#),
(2) cl(S) = (cl(S))#.
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Proof. (1) In virtue of Lemma 3.2 (6), it is enough to prove cl(S) ⊂ cl(S#).
Suppose x ∈ cl(S) and x /∈ cl(S#). From x /∈ cl(S#) we infer that there exists
a V1 ∈ τ with x ∈ V1 such that V1 ∩S# = ∅. Making use of Lemma 3.1 we get
int(cl(V1))∩ int(cl(S#)) = ∅. By assumptions, V1 ∩ S = ∅. But x ∈ cl(S) and
so V1 ∩ S 6= ∅. A contradiction.

(2) By Lemma 3.2, items (4) and (5), we have

cl(S#) ⊂ (cl(S))# ⊂ clδ(S).

Using (1) of Lemma 3.2 one gets

cl(S) ⊂ (cl(S))# ⊂ clδ(S).

Then
cl(S) ⊂ cl(S) ∩ (cl(S))# ⊂ cl(S) ∩ clδ(S) = cl(S),

and consequently cl(S) = cl(S) ∩ (cl(S))#. Thus cl(S) ⊂ (cl(S))# and, by
Lemma 3.2 (7), cl(S) = (cl(S))#. �

We de�ne now operator cl#( · ) on (X, τ, I) as follows:

cl#(S) = S ∪ S# for each S ⊂ X.

Corollary 3.2. Let (X, τ, I) be an ideal space. Under conditions (a) and

(b) of Corollary 3.1 we have cl#(S) = cl(S) = cl#(cl(S)).

Proof. Using Lemma 2.2(4) and Corollary 3.1 (1) we get what follows:

cl#(S) = S ∪ S# = S ∪ cl(S#) = S ∪ cl(S) = cl(S).

By Corollary 3.1 (2) we have cl#(cl(S)) = cl(S) ∪ (cl(S))# = cl(S). �

Theorem 3.1. Let (X, τ, I) be an ideal space. Then the operator cl#( · )
ful�lls the Kuratowski closure axioms.

Proof. [K.1] cl#(∅) = ∅. Obvious.

[K.2] S ⊂ cl#(S) for each S ⊂ X. Obvious.

[K.3] cl#(cl#(S)) = cl#(S) for each S ⊂ X. We calculate as follows (using

Lemma 3.2, (2)& (3)): cl#(cl#(S)) = cl#(S ∪ S#) = (S ∪ S#) ∪ (S ∪ S#)# =

(S ∪ S#) ∪ (S# ∪ (S#)#) = S ∪ S# ∪ (S#)# = S ∪ S# = cl#(S).

[K.4] cl#(S1∪S2) = cl#(S1)∪ cl#(S2). By Lemma 3.2 (3), cl#(S1∪S2) =
(S1 ∪ S2) ∪ (S1 ∪ S2)# = (S1 ∪ S2) ∪ (S#

1 ∪ S
#
2 ) = cl#(S1) ∪ cl#(S2). �

Thus cl#( · ) is a Kuratowski closure operator on X and thus it determines a
topology τ#(I, τ) on X, which we call #-topology. For the sake of brevity we
denote this topology as τ# (if there is no risk of confusion). By Lemma 3.2 (5)

we have S# ⊂ clδ(S). Thus cl
#(S) = S ∪ S# ⊂ clδ(S) for every S ⊂ X. Also,

directly from respective de�nitions we have S∗ ⊂ S#. So, cl∗(S) ⊂ cl#(S) for
each S ⊂ X. Using a known fact: τ1 ⊂ τ2 i� clτ2(S) ⊂ clτ1(S) for S ⊂ X, we
infer that for any ideal space (X, τ, I) the following inclusions hold:

τδ ⊂ τ# ⊂ τ∗.
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There exists an ideal space for which the above inclusions are proper, as the
following example shows.

Example 3.1. Let X = {a, b, c, d}, τ =
{
∅, X, {b}, {b, c, d}

}
and I ={

∅, {c}, {d}, {c, d}
}
.

(a) We have {a, d}∗ = {a} and hence cl∗({a, d}) = {a, d}. Consequently,
int∗({b, c}) = X \ cl∗({a, d}) = {b, c}. Thus {b, c} ∈ τ∗.

(b) {a, b}# = X since for every U ∈ τ , intτ (clτ (U)) = X. It shows that

int#({b, c}) = X \ cl#({a, d}) = ∅ and consequently {b, c} /∈ τ#.
(c) We have {c, d}# = ∅, because {c, d} ∈ I. Hence, int#({a, b}) = X \

cl#({c, d}) = {a, b}. Therefore {a, b} ∈ τ# \ τ ({∅, X} = τδ ( τ).

(a), (b) and (c) show that for this ideal space, τδ ( τ# ( τ∗. Observe,
moreover, that {a}# = X, hence int#({b, c, d}) = ∅. Therefore, {b, c, d} ∈
τ \ τ#. It shows that in general, there is no inclusion relationship between τ
and τ# (cf. (c)).

Example 3.1 leads to the following theorem.

Theorem 3.2. There exists an ideal space (X, τ, I) for which the following
statements hold:

1) τδ ( τ# ∩ τ ;
2) there exist sets S1, S2 ⊂ X with S1 ∈ τ# \ τ and S2 ∈ τ \ τ#;
3) τ# ∩ τ ( τ ( τ∗;
4) τ# ∩ τ ( τ# ( τ∗.

Proof. For 1), observe that {b, c} ∈ τ#∩ τ \ τδ. For 3), check that {b, c, d} ∈
τ \ (τ#∩ τ) and {a, b} ∈ τ∗ \ τ . For 2) and 4) we refer straight to Example 3.1.

�

A natural question, in the context, is: for what types of open subsets S of
(X, τ, I) there is always S ∈ τ#?

Theorem 3.3. Let (X, τ, 〉) be an ideal space. If S is clopen (in (X, τ)) and
X \ S ⊂ intτ ((X \ S)#), then S ∈ τ#.

Proof. Since S is clopen, X \ S = int(cl(X \ S)). Also, int(cl(X \ S)) ⊂
int(cl((X \S)#)) by our second assumption and Lemma 3.2 (4). Hence, by the
use of Corollary 3.2 we calculate as follows:

S = int(S) = X \ cl(X \ S) = X \ cl#(X \ S) = int#(S).

So, S ∈ τ#. �

We �nish this section by the observation that two ideal spaces (X, τ1, I),
(X, τ2, I), where τ1 6= τ2, may generate the same #-topology, i.e. τ#1 (I, τ1) =
τ#2 (I, τ2)�see the following example.
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Example 3.2. Let X = {a, b}, I = {∅, X}, τ1 =
{
∅, X, {a}

}
and τ2 ={

∅, X, {b}
}
. We get that τ#1 = {∅, X} = τ#2 : calculations are left to the

reader.

Problem 1. Are there two ideal spaces (X, τ, I1), (X, τ, I2), with I1 6= I2,
such that τ#(I1, τ) = τ#(I2, τ)?

4. #-CLOSED SETS

The content of this section is analogous to that of Section 2, with the dif-
ference that it concerns #-topology. Let (X, τ, I) be an ideal space and F be
an m-structure on X.

Definition 4.1. A subset A of (X, τ, I) is said to be #-I-F-locally closed
(brie�y: #-I-F-LC) if A = U ∩ V , where U ∈ F and V ∈ c(τ#).

Definition 4.2. A subset A of (X, τ, I) is said to be #-I-gF-closed, if
cl#((A) ⊂ U whenever A ⊂ U and U ∈ F.

Equivalently, we have: A is #-I-gF-closed if A# ⊂ U whenever A ⊂ U and
U ∈ {. The family of all #-I-F-LC (resp. #-I-gF-closed) subsets of (X, τ, I)
we denote by #-I-F-LC(X, τ) (resp. #-I-gF(X, τ)).

Lemma 4.1. If A is #-closed, then A ∈ #-I-F-LC(X, τ) ∩#-I-gF(X, τ).

Proof. A = X ∩A, where X ∈ F. For A ⊂ U , U ∈ F, cl#(A) ⊂ U . �

Lemma 4.2. If A ∈ #-I-F-LC(X, τ) ∩#-I-gF(X, τ), then A is #-closed.

Proof. Similar to that for Lemma 2.2. �

Theorem 4.1. Let F1,F2 ⊂ P(X) be m-structures on X with F1 ⊃ F2.
Then the following are equivalent for each A ⊂ X:

(1′) A is #-closed;
(2′) A ∈ #-I-F1-LC(X, τ) ∩#-I-gF1(X, τ);
(3′) A ∈ #-I-F1-LC(X, τ) ∩#-I-gF2(X, τ);
(4′) A ∈ #-I-F2-LC(X, τ) ∩#-I-gF1(X, τ);
(5′) A ∈ #-I-F2-LC(X, τ) ∩#-I-gF2(X, τ).

Proof. Compare the proof of Theorem 2.1. �

As in Theorem 2.2 of the second section, using the families F, respectively,
β(X, τ), BO(X, τ), SO(X, τ), PO(X, τ), α(X, τ), τ , RO(X, τ), one may ob-
tain Theorem 4.2 for the # case.

It is enough to replace in Theorem 2.2 the pre�xes ∗ with #. Since there
are too many statements that are included in Theorem 4.2, we list only those
we have dropped in Theorem 2.2 (for the ∗ case).

Theorem 4.2. Let A ⊂ X. The following statements are equivalent:

(1′) A is #-closed;



34 Z. Duszyski 9

(2′1) A ∈ #-I-β-LC(X, τ) ∩#-I-gβ(X, τ);
(2′2) A ∈ #-I-β-LC(X, τ) ∩#-I-gb(X, τ);

(cases (2′3) until (8′) are omitted)

(9′1) A ∈ #-I-b-LC(X, τ) ∩#-I-gβ(X, τ);
(9′2) A ∈ #-I-s-LC(X, τ) ∩#-I-gβ(X, τ);
(9′3) A ∈ #-I-p-LC(X, τ) ∩#-I-gβ(X, τ);
(9′4) A ∈ #-I-α-LC(X, τ) ∩#-I-gβ(X, τ);
(9′5) A ∈ #-I-τ -LC(X, τ) ∩#-I-gβ(X, τ);
(9′6) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gβ(X, τ);
(10′1) A ∈ #-I-s-LC(X, τ) ∩#-I-gb(X, τ);
(10′2) A ∈ #-I-p-LC(X, τ) ∩#-I-gb(X, τ);
(10′3) A ∈ #-I-α-LC(X, τ) ∩#-I-gb(X, τ);
(10′4) A ∈ #-I-τ -LC(X, τ) ∩#-I-gb(X, τ);
(10′5) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gb(X, τ);
(11′1) A ∈ #-I-α-LC(X, τ) ∩#-I-gs(X, τ);
(11′2) A ∈ #-I-τ -LC(X, τ) ∩#-I-gs(X, τ);
(12′1) A ∈ #-I-α-LC(X, τ) ∩#-I-gp(X, τ);
(12′2) A ∈ #-I-τ -LC(X, τ) ∩#-I-gp(X, τ);
(12′3) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gp(X, τ);
(13′1) A ∈ #-I-τ -LC(X, τ) ∩#-I-gα(X, τ);
(13′2) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gα(X, τ);
(13′3) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gτ (X, τ);
(14′) A ∈ #-I-rτ -LC(X, τ) ∩#-I-gτ (X, τ).

5. DECOMPOSITIONS OF CONTINUITY

Definition 5.1. A map f : (X, τ, I)→ (Y, σ) is said to be ∗-continuous [10,
De�nition 3.1] (resp. #-continuous) on X if f−1(F ) ∈ c(τ∗) (resp. f−1(F ) ∈
c(τ#)) for each F ∈ c(σ).

In order to consider applications of some particular cases, it will be conve-
nient to use the following de�nition.

Definition 5.2. A map f : (X, τ, I) → (Y, σ) is said to be #r-continuous
on X if f−1(F ) ∈ c(τ#) for any F ∈ RC(Y, σ).

The following corollary is obvious.

Corollary 5.1. A map f : (X, τ, I) → (Y, σ) is ∗-continuous (resp., #-
continuous, #r-continuous) on X if f−1(V ) ∈ τ∗ (resp., f−1(V ) ∈ τ#, f−1(V ) ∈
τ#) for each V ∈ σ (resp., V ∈ σ, V ∈ RO(Y, σ)).

The key theorems to obtain many decomposition results concerning conti-
nuities from De�nitions 5.1 and 5.2 are Theorems 2.1 and 4.1.

First, we should de�ne the respective notions of continuity, some of which
are known from literature. Let F be an m-structure.
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Definition 5.3. (a) A function f : (X, τ, I) → (Y, σ) will be called ∗-I-
F-LC (resp., ∗-I-gF)-continuous on X, if f−1(F ) ∈ ∗-I-F-LC(X, τ) (resp.,
f−1(F ) ∈ ∗-I-gF(X, τ)) for every F ∈ c(σ).

(b) A function f : (X, τ, I) → (Y, σ) will be called #-I-F-LC (resp., #-I-
gF)-continuous onX, if, for each F ∈ c(σ), we have f−1(F ) ∈ #-I-F-LC(X, τ)
(resp., f−1(F ) ∈ #-I-gF(X, τ)).

(c) A function f : (X, τ, I)→ (Y, σ) will be called #r-I-F-LC (resp., #r-I-
gF)-continuous onX, if, for each F ∈ RC(Y, σ), the following relation f−1(F ) ∈
#-I-F-LC(X, τ) (resp., f−1(F ) ∈ #-I-gF(X, τ)) holds true.

Translating some of the above generalized notions via ideals (De�nitions 5.1,
5.2, and 5.3) to the usual case (I = {∅}), one obtains that ∗-continuity is a
continuity and #r-continuity is δ-continuity [20, Theorem 2.2]. Also, ∗-I-
gF-continuity (Ig-continuity in [10]) is a g-continuity [3]; ∗-I-grτ -continuity
(Irg-continuity in [10]) is an rg-continuity [23]; ∗-I-rτ -LC-continuity (strong-
I-LC-continuity in [10]) is a strong-LC continuity [10]. For known examples
of decompositions of ∗-continuity and continuity the reader is advised to see
[10, Theorem 3.7 and Corollary 3.8], respectively.

Using Theorems 2.1 and ?? we establish a series of decompositions of ∗-
continuity and #r-continuity, respectively.

Theorem 5.1. Let (X, τ, I) be an ideal space and (Y, σ) be a topological
space. Let F1 ⊂ F2 be arbitrary m-structures on X. Then the following are
equivalent for any f : (X, τ, I)→ (Y, σ)

(1∗) f is ∗-continuous;
(2∗) f is ∗-I-F1-LC-continuous and ∗-I-gF1-continuous;
(3∗) f is ∗-I-F1-LC-continuous and ∗-I-gF2-continuous;
(4∗) f is ∗-I-F2-LC-continuous and ∗-I-gF1-continuous;
(5∗) f is ∗-I-F2-LC-continuous and ∗-I-gF2-continuous.

Theorem 5.2. Under the same assumptions as in Theorem 5.1, the follow-
ing are equivalent:

(1#r) f is #r-continuous;
(2#r) f is #r-I-F1-LC-continuous and #r-I-gF1-continuous;
(3#r) f is #r-I-F1-LC-continuous and #r-I-gF2-continuous;
(4#r) f is #r-I-F2-LC-continuous and #r-I-gF1-continuous;
(5#r) f is #r-I-F2-LC-continuous and #r-I-gF2-continuous.

For I = {∅} we give below some examples of decompositions of continuity
and δ-continuity. We set rτ, b, s, p for RO(X, τ), BO(X, τ), SO(X, τ), and
PO(X, τ), respectively.

Corollary 5.2. Let (X, τ, I = {∅}) be an ideal space, (Y, σ) a topological
space. For any function f : (X, τ, I) → (Y, σ) the following statements are
equivalent:

(1∗) f is continuous;
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(2∗) f is ∗-{∅}-p-LC-continuous and ∗-{∅}-grτ -continuous;
(3∗) f is ∗-{∅}-s-LC-continuous and ∗-{∅}-gs-continuous;
(4∗) f is ∗-{∅}-b-LC-continuous and ∗-{∅}-gp-continuous.

We suggest the reader to compare items (2∗), (3∗), and (4∗) with statements
(54), (41), and (33) of Theorem 2.2, respectively.

Corollary 5.3. Under the same assumptions as in Corollary 5.2 the fol-
lowing are equivalent:

(1#r) f is δ-continuous;
(2#r) f is ∗-{∅}-s-LC-continuous and #r-{∅}-gb-continuous;
(3#r) f is ∗-{∅}-τ -LC-continuous and #r-{∅}-gs-continuous;
(4#r) f is ∗-{∅}-τ -LC-continuous and #r-{∅}-gp-continuous.

Compare (10′1), (11
′
2) and (12′2) of Theorem 4.2 with (2#r), (3#r) and (4#r),

respectively.

Remark 5.1. In connection to known notions (see Section 1) one can ob-
serve that in Corollary 5.2, f is ∗-{∅}-grτ -continuous (resp., ∗-{∅}-gs-continuous;
∗-{∅}-gp-continuous) if for each F ∈ c(σ), the preimage f−1(F ) is rg-closed
(resp., sg∗-closed; pg∗-closed).
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