SEMIREGULAR MODULES RELATIVE TO A PRERADICAL

TAYYEBEH AMOUZEGAR

Abstract. Let τ_M be a preradical on the category $\sigma[M]$ for some module M. A module $N \in \sigma[M]$ is called τ_M -semiregular in $\sigma[M]$ if for all $n \in N$, there exists a decomposition $N = A \oplus B$ such that A is a projective submodule of nR and $nR \cap B \subseteq \tau_M(N)$. We prove that if $N \in \sigma[M]$ is a projective module, then N is τ_M -semiregular if and only if N is finitely τ_M -supplemented and that $\tau_M(N)$ is quasi finitely strongly lifting (for short QFSL) if and only if every finitely generated submodule of $N/\tau_M(N)$ is a direct summand and $\tau_M(N)$ is QFSL. Furthermore, it is shown that if $N \in \sigma[M]$ is a τ_M -semiregular module, then N is finitely refinable if and only if every submodule of $\tau_M(N)$ is QFSL in N if and only if every finitely generated submodule of $\tau_M(N)$ is DM in N.

MSC 2010. 16D10, 16D80, 16D40.

Key words. τ_M -semiregular modules; projective modules, τ_M -supplement submodules, finitely generated submodules.

1. INTRODUCTION

Throughout this paper R will denote an associative ring with identity, M a unitary right R-module. The notation $N \leq^{\oplus} M$ denotes that N is a direct summand of M. For a module N, $\operatorname{Rad}(N)$, $\operatorname{Soc}(N)$, and $Z_M(N)$ are the radical, the socle and the sum of the M-singular submodules of N, respectively.

Let $M \in \text{Mod-}R$. By $\sigma[M]$ we mean the full subcategory of Mod-R whose objects are submodules of M-generated modules.

A functor τ_M from $\sigma[M]$ to itself is called a *preradical* on $\sigma[M]$ if it satisfies the following properties:

(i) $\tau_M(N)$ is a submodule of N, for every $N \in \sigma[M]$;

(ii) If $f: N' \to N$ is a homomorphism in $\sigma[M]$, then $f(\tau_M(N')) \leq \tau_M(N)$ and $\tau_M(f)$ is the restriction of f to $\tau_M(N')$.

Throughout the paper τ_M will be a preradical on $\sigma[M]$. In case M = R, we write $\tau(N)$ instead of $\tau_M(N)$. Note that if K is a summand of $N \in \sigma[M]$, then $K \cap \tau_M(N) = \tau_M(K)$. Rad, Soc, and Z_M are preradicals on $\sigma[M]$.

Many authors work with various extensions of semiregular modules (see [2, 3, 9, 11, 14]). In [10], Nicholson and Yousif introduced *I*-semiregular rings for an ideal *I* of a ring *R*. Alkan and Özcan generalized in [2] this concept to modules and defined *F*-semiregular modules for a submodule *F* of a module *N*. In this paper we define τ_M -semiregular modules in $\sigma[M]$ for any preradical τ_M , by taking $\tau_M(N)$ as a fully invariant submodule of *N*. A module $N \in \sigma[M]$ is called τ_M -semiregular in $\sigma[M]$ if for all $n \in N$, there exists a decomposition $N = A \oplus B$ such that *A* is a projective submodule of nR and $nR \cap B \subseteq \tau_M(N)$.

If $\sigma[M] = \text{Mod-}R$, then it is said that N is τ -semiregular. In this note, we investigate some properties of such modules. We show that if $M = A \oplus B$ is a module over a local ring R, then M is τ -semiregular if and only if both of Aand B are τ -semiregular. We prove that if $N \in \sigma[M]$ is a projective module, then N is τ_M -semiregular if and only if N is finitely τ_M -supplemented and that $\tau_M(N)$ is QFSL if and only if every finitely generated submodule of $N/\tau_M(N)$ is a direct summand and $\tau_M(N)$ is QFSL. It is shown that if $N \in \sigma[M]$ is a τ_M semiregular module, then N is finitely refinable if and only if every submodule of $\tau_M(N)$ is QFSL in N if and only if every finitely generated submodule of $\tau_M(N)$ is DM in N.

2. τ_M -SEMIREGULAR MODULES

A module $N \in \sigma[M]$ is called τ_M -semiregular in $\sigma[M]$ if for all $n \in N$, there exists a decomposition $N = A \oplus B$ such that A is a projective submodule of nR and $nR \cap B \subseteq \tau_M(N)$.

LEMMA 2.1. The following conditions are equivalent for a module $N \in \sigma[M]$:

(1) N is τ_M -semiregular.

(2) For any finitely generated submodule K of N, there exists a homomorphism g from N to K such that $g^2 = g$, gM is projective and $(1-g)K \leq \tau_M(N)$.

(3) For any finitely generated submodule K of N, there exists a decomposition $N = A \oplus B$ such that A is a projective submodule of K and $K \cap B \subseteq \tau_M(N)$.

(4) For any finitely generated submodule K of N, K can be written as $K = A \oplus S$ where A is a projective summand of N and $S \subseteq \tau_M(N)$.

Proof. The assertions follow from [2, Theorem 2.3].

PROPOSITION 2.1. Every direct summand of a τ_M -semiregular module in $\sigma[M]$ is τ_M -semiregular.

Proof. Let $N \in \sigma[M]$ be a τ_M -semiregular module and $K \leq^{\oplus} N$. If $k \in K$, then N has a decomposition $N = A \oplus B$ such that A is a projective submodule of kR and $kR \cap B \subseteq \tau_M(N)$. It follows that $K = A \oplus (K \cap B)$ and $kR \cap (K \cap B) \leq kR \cap B \subseteq \tau_M(N)$. Thus $kR \cap (K \cap B) \subseteq \tau_M(K)$. Therefore K is τ_M -semiregular.

Like in [4], a submodule $K \subseteq N \in \sigma[M]$ is called τ_M -supplement provided there exists some $U \subseteq N$ such that N = U + K and $U \cap K \subseteq \tau_M(K)$.

PROPOSITION 2.2. Let $N \in \sigma[M]$ be a τ_M -semiregular module. If N = X+Y such that $Y \leq^{\oplus} N$ and $X \cap Y$ is cyclic, then Y contains a τ_M -supplement of X in N.

Proof. Since N is τ_M -semiregular, and $X \cap Y$ is cyclic, we have, by Lemma 2.1, $X \cap Y = A \oplus B$, where A is a projective summand of N and $B \subseteq \tau_M(N)$. Since $Y \leq^{\oplus} N$, we have $B \subseteq \tau_M(Y)$. Write $Y = A \oplus A'$. It follows that $X \cap Y = A \oplus (X \cap Y \cap A') = A \oplus (X \cap A')$. Let $\pi : A \oplus A' \to A'$ be the natural projection. It follows that $X \cap A' = \pi(A \oplus (X \cap A')) = \pi(X \cap Y) = \pi(A \oplus B) = \pi(B)$ hence $X \cap A' \subseteq \tau_M(A')$, and that N = X + Y = X + A + A' = X + A'. Therefore A' is a τ_M -supplement of X in N that is contained in Y.

LEMMA 2.2. Let $N \in \sigma[M]$ be a τ_M -semiregular module. Then every indecomposable cyclic submodule C of N is either contained in $\tau_M(N)$ or a projective summand of N.

Proof. By Lemma 2.1, we have $C = A \oplus B$ such that A is a projective summand of N in $\sigma[M]$ and $B \subseteq \tau_M(N)$. Since C is indecomposable, we have either C = A or C = B.

If M has a largest submodule, i.e. a proper submodule which contains all other proper submodules, then M is called a *local* module. A ring is a *local* ring if and only if R_R (or $_RR$) is a local module.

COROLLARY 2.1. Let M be a module over a local ring R. If M is τ -semiregular, then every cyclic submodule is either contained in $\tau(M)$ or a projective summand of M.

Proof. The proof follows from Lemma 2.2, and the fact that every cyclic module over a local ring is a local module. \Box

THEOREM 2.1. Let $M = A \oplus B$ be a module over a local ring R. Then M is τ -semiregular if and only if both of A and B are τ -semiregular.

Proof. Let C be an arbitrary cyclic submodule of M. Then C = (a + b)R, where $a \in A$ and $b \in B$. Since A and B are τ -semiregular, then we have nothing to prove whenever a = 0 or b = 0. Now to avoid trivially we may consider C is not contained in $\tau(M)$. Since $(a+b)R \leq aR + bR$, we have aR or bR is not contained in $\tau(M)$. Without loss of generality we may assume aRis not contained in $\tau(M)$, hence it is not contained in $\tau(A)$. By Corollary 2.1, aR is a projective summand of A. Since $aR \oplus bR = (a+b)R + bR$, we have, by [8, 4.47], that there exists $K \leq (a+b)R$ such that $aR \oplus bR = K \oplus bR$. It follows that $(a + b)R = K \oplus [(a + b)R \cap bR]$. Since C is a local module, and C is not contained in bR, we have that C = K. Now we show that K is a projective summand of M. It is clear that $aR \oplus B = K + B$, and so $K \cap B = K \cap (K \oplus bR) \cap B = (aR \oplus bR) \cap B \cap K = bR \cap K = 0.$ As $aR \leq \oplus A$, we have $K \oplus B = aR \oplus B \leq^{\oplus} M$ and so $C = K \leq^{\oplus} M$. On the other hand, since $aR \oplus bR = K \oplus bR$, $aR \cong K$. Thus K is projective. The converse follows from Proposition 2.1. \square

Let M be a module. A preradical τ_M on $\sigma[M]$ is called a *left exact preradical* if for any submodule K of $N \in \sigma[M]$, $\tau_M(K) = K \cap \tau_M(N)$ (see [13]). For example, Soc and Z_M are left exact preradicals on $\sigma[M]$. LEMMA 2.3. Let τ_M be a left exact preradical on $\sigma[M]$. Then the following are equivalent:

(1) Every injective module is τ_M -semiregular in $\sigma[M]$;

(2) Every module is τ_M -semiregular in $\sigma[M]$.

Proof. (1) \Rightarrow (2) Let N be a module in $\sigma[M]$ and K a finitely generated submodule of N. Since \hat{N} , the M-injective hull of N, is τ_M -semiregular by (1), there is a decomposition $K = A \oplus B$ such that A is a projective summand of \hat{N} in $\sigma[M]$ and $B \leq \tau_M(\hat{N})$. Then A is a projective summand of N in $\sigma[M]$ and $B \leq N \cap \tau_M(\hat{N}) = \tau_M(N)$. Thus N is τ_M -semiregular in $\sigma[M]$.

 $(2) \Rightarrow (1)$ is clear.

13

We mention that the proof of Lemma 2.3 is similar to [12, Lemma 3.1].

If M is a Noetherian injective cogenerator in $\sigma[M]$, then it is called a *Noetherian Quasi-Frobenius* or *QF-module* [14].

COROLLARY 2.2. Let M be a finitely generated self-projective module which is a selfgenerator in $\sigma[M]$. If M is a Noetherian QF-module, then every module in $\sigma[M]$ is Z_M -semiregular in $\sigma[M]$.

Proof. Let $N \in \sigma[M]$ be injective in $\sigma[M]$. Then N is projective in $\sigma[M]$ from [14, 48.14]. By [7, Theorem 3.11], $Z_M(M) = \operatorname{Rad}(M)$. Since N is Mgenerated and projective in $\sigma[M]$, N is isomorphic to a summand of $M^{(\Lambda)}$ for an index set Λ . This implies that $Z_M(N) = \operatorname{Rad}(N)$. Again by [14, 48.14], M is perfect in $\sigma[M]$. Then N is semiperfect in $\sigma[M]$ by [14, 43.8]. Hence N is Z_M -semiregular. By Lemma 2.3, every module in $\sigma[M]$ is Z_M -semiregular in $\sigma[M]$.

A module $N \in \sigma[M]$ is called *(finitely)* τ_M -supplemented if each of its (finitely generated) submodules has a τ_M -supplement in N. It is clear that a τ_M -semiregular module is finitely τ_M -supplemented.

PROPOSITION 2.3. Let $N \in \sigma[M]$ be a projective finitely τ_M -supplemented module and assume that every τ_M -supplement submodule is a direct summand of N. Then N is τ_M -semiregular.

Proof. Let U be a finitely generated submodule of N. Then there exists a submodule K of N such that $U \cap K \subseteq \tau_M(K)$ and N = K + U. Hence K is a direct summand of N and since N = K + U and N is projective, it follows that $N = K \oplus A$ such that $A \subseteq U$. Then $U = A \oplus (K \cap U)$ and so N is τ_M -semiregular.

Let U be a submodule of a module $N \in \sigma[M]$. U is called *(finitely) strongly lifting* in N if for every (finitely generated) submodule A of N whenever $N/U = (A+U)/U \oplus (B+U)/U$, then N has a decomposition $N = P \oplus Q$ such that $P \subseteq A$, (A+U)/U = (P+U)/U and (B+U)/U = (Q+U)/U [11]. The submodule U is called *quasi (finitely) strongly lifting* in N or briefly QSL (QFSL) if whenever (A+U)/U is a direct summand of N/U (and A is a

finitely generated submodule of N), then N has a direct summand P such that $P \subseteq A$ and P + U = A + U [1].

PROPOSITION 2.4. Consider the following conditions for a module $N \in \sigma[M]$.

(1) N is τ_M -semiregular.

(2) (i) Every finitely generated submodule of N/τ_M(N) is a direct summand.
(ii) τ_M(N) is finitely strongly lifting.

Then $(1) \Rightarrow (2)(i)$. If N is projective, then $(1) \Rightarrow (2)(ii)$. If N is projective and, for every summand K of N, there exists a decomposition $N = A \oplus B$ such that $A \subseteq K \cap \tau_M(N)$ and $B \cap K \cap \tau_M(N) + L \neq N$ for any proper submodule L of N/L singular, then $(2) \Rightarrow (1)$.

Proof. The assertions follow from [2, Theorem 2.12].

PROPOSITION 2.5. Let $N \in \sigma[M]$ be a τ_M -semiregular module. Then $\tau_M(N)$ is QFSL in N.

Proof. Let $N/\tau_M(N) = [K + \tau_M(N)/\tau_M(N)] \oplus L/\tau_M(N)$ for a finitely generated submodule K of N and a submodule L of N. Since N is τ_M semiregular, there exists a decomposition $N = A \oplus B$ where A is a projective submodule of K and $B \cap K \subseteq \tau_M(N)$. Thus $K = A \oplus (B \cap K)$ and so $A + \tau_M(N) = K + \tau_M(N)$.

THEOREM 2.2. Let $N \in \sigma[M]$ be a projective module. Then the following statements are equivalent:

(1) N is τ_M -semiregular;

(2) N is finitely τ_M -supplemented and $\tau_M(N)$ is QFSL;

(3) Every finitely generated submodule of $N/\tau_M(N)$ is a direct summand and $\tau_M(N)$ is QFSL.

Proof. The implications $(1) \Rightarrow (2) \Rightarrow (3)$ are clear.

 $(3) \Rightarrow (1) \text{ Let } U \text{ be a finitely generated submodule of } N. \text{ By } (3), \text{ we have } N/\tau_M(N) = [U + \tau_M(N)/\tau_M(N)] \oplus [K/\tau_M(N)] \text{ for a submodule } K \text{ and so there exists a decomposition } N = A \oplus B \text{ such that } A \subseteq U, A + \tau_M(N) = U + \tau_M(N). \text{ Since } \tau_M(N) = \tau_M(A) \oplus \tau_M(B), \text{ it follows that } U \cap B \subseteq (U + \tau_M(N)) \cap (B + \tau_M(N)) = (A + \tau_M(N)) \cap (B + \tau_M(N)) = [(A + \tau_M(B)) \cap B] + \tau_M(A) = \tau_M(N). \text{ Hence } U \cap B \subseteq \tau_M(N) \cap B \subseteq \tau_M(B) \text{ and so } N \text{ is } \tau_M\text{-semiregular.}$

In [3], a proper submodule K of N is called DM in N if there exists a direct summand S of N such that $S \subseteq K$ and N = S + X whenever N = K + X for a submodule X of N. A module $N \in \sigma[M]$ is said to be *finitely refinable* if, whenever N = A + B for a finitely generated submodule A and a submodule B, there exists a direct summand C of N such that $C \subseteq A$ and N = C + B(see [6]).

THEOREM 2.3. Let $N \in \sigma[M]$ be a module. Consider the following conditions: (1) N is finitely refinable.

(2) Every submodule of $\tau_M(N)$ is QFSL in N.

(3) Every finitely generated submodule of $\tau_M(N)$ is DM in N.

Then $(1) \Rightarrow (2) \Rightarrow (3)$. If N is τ_M -semiregular, then $(3) \Rightarrow (1)$.

Proof. (1) \Rightarrow (2) Let H be a submodule of $\tau_M(N)$ and $(L+H)/H \oplus K/H = N/H$ for a finitely generated submodule L and a submodule K of N. Then L+K=N and so there exists a direct summand S of N such that S+K=N and $S \subseteq L$. Hence $(S+H)/H \oplus K/H = (L+H)/H \oplus K/H$ and so S+H = L+H.

 $(2) \Rightarrow (3)$ Let K be a finitely generated submodule of $\tau_M(N)$ such that N = K + L for a submodule L. Then $K/(K \cap L)$ is a direct summand of $N/(K \cap L)$. Thus there exists a direct summand S of N such that $S \subseteq K$ and $S + (K \cap L) = K$. Then S + L = N and so K is DM in N.

(3) \Rightarrow (1) Assume that every finitely generated submodule of $\tau_M(N)$ is DM in N. Let K be a finitely generated submodule of N and N = K + L for a submodule L. Then $K = A \oplus (K \cap B)$ such that $N = A \oplus B$ and $K \cap B \subseteq \tau_M(B)$, since N is τ_M -semiregular. It follows that $N = A + (K \cap B) + L$ and so $B = (K \cap B) + [(A + L) \cap B]$. Since every finitely generated submodule of $\tau_M(B)$ is DM in B by [3, Lemma 3.2], there exists a direct summand C of B such that $B = [(A + L) \cap B] + C$ and $C \subseteq K \cap B$ and so $A \oplus C$ is a direct summand of N and N = (A + C) + L. Then K is DM in N.

PROPOSITION 2.6. Let τ and ρ be preradicals and $N \in \sigma[M]$ be a τ_M -semiregular module such that $\tau_M(N) + L = N$ and $\tau_M(N) \cap L \subseteq \rho_M(L)$ for a finitely generated submodule L of N. Then there is a decomposition $N = A \oplus B$ such that A is ρ_M -semiregular and $B \subseteq \tau_M(N)$.

Proof. Let N be τ_M -semiregular. Then there exists a decomposition $N = A \oplus B$ such that A is projective, $L = A \oplus (B \cap L)$ and $B \cap L \subseteq \tau_M(B)$ hence $B \cap L \subseteq \tau_M(N) \cap L \subseteq \rho_M(L)$. Now we show that A is ρ_M -semiregular and $B \subseteq \tau_M(N)$. Let K be a finitely generated submodule of A. Since A is a direct summand of N, it is also τ_M -semiregular. Thus there exists a decomposition $A = X \oplus Y$ such that X is a projective submodule of K and $Y \cap K \subseteq \tau_M(Y)$. Also $Y \cap K \subseteq \tau_M(Y) \cap L \subseteq \rho_M(N) \cap Y = \rho_M(Y)$ because Y is a direct summand of N. Thus A is ρ_M -semiregular. Since $\tau_M(N) = \tau_M(A) + \tau_M(B)$, we have $N = \tau_M(N) + L = \tau_M(A) + \tau_M(B) + A + (B \cap L) = A \oplus \tau_M(B)$ and so $\tau_M(B) = B \subseteq \tau_M(N)$.

THEOREM 2.4. Let R be a local ring. Then the following statements are equivalent:

(1) R_R is τ -semiregular;

(2) Every finitely generated free R-module is τ -semiregular;

(3) Every finitely generated projective R-module is τ -semiregular;

(4) If F is a finitely generated free R-module and N is a finitely generated fully invariant submodule of F, then F/N is τ -semiregular.

6

Proof. (1) \Rightarrow (2) Let *R* be τ -semiregular. Then by Theorem 2.1, a finitely generated free module is τ -semiregular.

 $(2) \Rightarrow (3) \Rightarrow (1)$ and $(4) \Rightarrow (1)$ They are clear.

(2) \Rightarrow (4) Let K/N be a finitely generated submodule of F/N. Then there exists a decomposition $F = A \oplus B$ where A is a projective submodule of K and $B \cap K \subseteq \tau(B)$. Then $F/N = (A + N)/N \oplus (B + N)/N$ and (A+N)/N is a projective submodule of K/N. Moreover, $(B+N)/N \cap K/N =$ $(B \cap K + N)/N \subseteq \tau(B + N/N)$. Hence F/N is τ -semiregular.

3. $\delta(M)$ AND SOC(M)

According to Zhou [15], a submodule N of a module M is called δ -small in M, denoted by $N \ll_{\delta} M$, if $N + K \neq M$ for any proper submodule K of M/K singular. Moreover, Zhou introduced the following fully invariant submodule of a module M

$$\delta(M) = \bigcap \{ N \le M : M/N \text{ is singular simple} \}.$$

Then $\delta(M)$ is the sum of all $\delta(M)$ -small submodules of M by [15, Lemma 1.5].

A pair (P, ρ) is called a *projective* δ -cover of the module M if P is projective and ρ is an epimorphism of P onto M with $\text{Ker}(\rho) \ll_{\delta} P$ (see [15]).

LEMMA 3.1 ([15, Lemma 2.4]). Let P be a projective module and N a submodule of P. Then the following are equivalent:

(1) P/N has a projective δ -cover.

(2) $P = P_1 \oplus P_2$ for some P_1 and P_2 with $P_1 \subseteq N$ and $P_2 \cap N \ll_{\delta} P$.

THEOREM 3.1. Let R be a local ring and M be a projective R-module. Then the following are equivalent:

(1) M is δ -semiregular;

(2) For every $N \cong \frac{M^n}{K}$ for some $n \in \mathbb{N}$ and finitely generated $K \subseteq M^n$, N has a projective δ -cover.

(3) For every finitely generated submodule K of M, M/K has a projective δ -cover.

Proof. (1) \Rightarrow (2) Let $N \cong \frac{M^n}{K}$ for some $n \in \mathbb{N}$ and finitely generated $K \subseteq M^n$. Since M is δ -semiregular, M^n is δ -semiregular by Theorem 2.1. Thus, by Lemma 3.1, N has a projective δ -cover.

 $(2) \Rightarrow (3)$ is clear.

(3) \Rightarrow (1) By Lemma 3.1, M is δ -semiregular.

COROLLARY 3.1. Let R be a local ring. Then the following are equivalent: (1) R is δ -semiregular;

(2) For every finitely generated right ideal I of R, R/I has a projective δ -cover.

(3) Every finitely presented right R-module has a projective δ -cover.

LEMMA 3.2 (See [12, Lemma 2.22]). Let P be a projective module and $N \leq P$. Then the following are equivalent:

(1) P/N has a projective Soc-cover;

(2) $P = P_1 \oplus P_2$ for some P_1 and P_2 with $P_1 \leq N$ and $P_2 \cap N \subseteq Soc(P)$.

THEOREM 3.2. Let R be a local ring and let M be a projective R-module. Then the following are equivalent:

(1) M is Soc-semiregular;

(1) In is solve behavior, (2) For every $N \cong \frac{M^n}{K}$ for some $n \in \mathbb{N}$ and finitely generated $K \subseteq M^n$, N has a projective Soc-cover.

(3) For every finitely generated submodule K of M, M/K has a projective Soc-cover.

Proof. (1) \Rightarrow (2) Let $N \cong \frac{M^n}{K}$ for some $n \in \mathbb{N}$ and finitely generated $K \subseteq M^n$. Since M is Soc-semiregular, M^n is Soc-semiregular by Theorem 2.1. Thus, by Lemma 3.2, N has a projective Soc-cover.

 $(2) \Rightarrow (3)$ is clear.

 $(3) \Rightarrow (1)$ By Lemma 3.2, M is Soc-semiregular.

COROLLARY 3.2. Let R be a local ring. Then the following are equivalent: (1) R is Soc-semiregular;

(2) For every finitely generated right ideal I of R, R/I has a projective Soc-cover.

(3) Every finitely presented right R-module has a projective Soc-cover.

REFERENCES

- Alkan, M., On τ-lifting Modules and τ-semiperfect Modules, Turkish J. Math., 33 (2009), 117–130.
- [2] ALKAN, M. and ÖZCAN, A.Ç., Semiregular modules with respect to a fully invariant submodule, Comm. Algebra, 32 (2004), 4285–4301.
- [3] ALKAN, M., NICHOLSON, W. K. and OZCAN, A. Ç., A generalization of projective covers, J. Algebra, 319 (2008), 4947–4960.
- [4] AL-TAKHMAN, K., LOMP, C. and WISBAUER, R., τ-complemented and τ-supplemented modules, Algebra Discrete Math., 3 (2006), 1–15.
- [5] ANDERSON, F.W. and FULLER, K.R., Rings and Categories of Modules, Springer-Verlag, New York, 1992.
- [6] CLARK, J., LOMP, C., VANAJA, N. and WISBAUER, R., *Lifting modules -supplements* and projectivity in module theory, Frontiers in Mathematics, Birkhäuser, 2006.
- [7] JAYARAMAN, M. and VANAJA, N., Harada modules, Comm. Algebra, 28 (2000), 3703– 3726.
- [8] MOHAMED, S. H. and MÜLLER, B. J., Continuous and Discrete Modules, London Math. Soc. Lecture Notes Series 147, Cambridge, University Press, 1990.
- [9] NICHOLSON, W. K., Semiregular modules and rings, Canad. J. Math. 28 (1976), 1105– 1120.
- [10] NICHOLSON, W. K. and YOUSIF, M. F., Weakly continuous and C2-rings, Comm. Algebra, 29 (2001), 2429–2446.
- [11] OZCAN, A. Ç. and AYDOĞDU, P., A generalization of semiregular and semiperfect modules, Algebra Colloq, 15 (2008), 667–680.

18 T. Amouzegar	9
[12] ÖZCAN, A.Ç. and ALKAN, M., Semiperfect modules with respect to a preradical,	Comm.
Algebra, 34 (2006), 841–856.	
[13] STENSTRÖM, B., Rings of Quotients, Grundl. 217. Springer-Verlag, 1975.	

- [14] WISBAUER, R., Foundations of module and ring theory, Gordon and Breach, Reading, 1991.
- [15] ZHOU, Y., Generalizations of perfect, semiperfect and semiregular rings, Algebra Colloq., 7 (2000), 305-318.

Received March 27, 2015 Accepted December 30, 2015 Quchan University of Advanced Technology Department of Mathematics Quchan, Iran E-mail: t.amoozegar@yahoo.com E-mail: t.amouzgar@qiet.ac.ir