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AN ARCLENGTH PROBLEM FOR SOME SUBCLASSES
OF m-FOLD SYMMETRIC UNIVALENT FUNCTIONS

A. VASUDEVARAO

Abstract. For 0 < β ≤ 1, let Fm(β) (respectively Gm(β)) denote the class of

analytic functions f in the unit disk D with f(0) = 0, f ′(0) = 1 and f(e
2πi
m z) =

e
2πi
m f(z) satisfying RePf (z) < β

2
+ 1 (respectively RePf (z) > β

2
− 1) for z ∈ D,

where

Pf (z) = 1 +
zf ′′(z)

f ′(z)
.

For |α| < π/2, let Sα denote the class of univalent functions f(z) for which zf ′(z)
is spirallike functions which has been introduced by M.S. Robertson [18]. The
main aim of this paper is to investigate arclength problem

Lr(f) =

∫
|z|=r

|f ′(z)| |dz|, 0 < r < 1

for functions f in Fm(β), Gm(β) and Sα. As a consequence, we shall obtain
arclength for functions in some subclasses of the class of univalent functions. In
each of these subclasses, we shall provide extremal functions to obtain the sharp
upper bound for Lr(f).

MSC 2010. 34C45.
Key words. Univalent functions, starlike, convex, close-to-convex, spirallike
functions, hypergeometric functions, arclength.

1. AREA OF A SURFACE AND PERIOD MAP

Let Dr := {z ∈ C : |z| < r} be an open disk with center origin and radius
r and ∂Dr := {z ∈ C : |z| = r} be the circle with center origin and radius
r in the complex plane C. In particular, D := D1 denotes the unit disk in
C. Let H denote the class of analytic functions in the unit disk D. Here we
think of H as a topological vector space endowed with the topology of uniform
convergence over compact subsets of D. Let A denote the family of functions
f in H normalized by f(0) = 0 and f ′(0) = 1. A function f is said to be
univalent in D if it is one-to-one in D. Let S denote the class of univalent
functions in A. Denote by S∗ the subclass of functions f ∈ A such that f
maps D univalently onto a domain f(D) that is starlike with respect to the
origin. That is, tf(z) ∈ f(D) for each t ∈ [0, 1]. It is well-known that f ∈ S∗
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if and only if

Re

(
zf ′(z)

f(z)

)
> 0, z ∈ D.

Functions in S∗ are refereed to as starlike functions. A domain Ω ⊂ C is said
to be convex if it is starlike with respect to every point in Ω. A function f ∈ A
is said to be convex if f(D) is a convex domain. We denote the class of convex
functions in D by C. A function f ∈ A is in C if and only if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ D.

It is well-known that f ∈ C if and only if zf ′ ∈ S∗. A function f ∈ A is said to
be close-to-convex if there exists a convex univalent function g and a number
φ ∈ R such that

Re

(
eiφ
f ′(z)

g′(z)

)
> 0 for z ∈ D.

Let K denote the class of close-to-convex functions f in A. It is well-known
that every close-to-convex function is univalent in D (see [4]).

A domain Ω containing the origin is said to be α-spirallike if for each point
w0 6= 0 in Ω the arc of the α-spiral from w0 to the origin lies entirely in Ω.
A function f analytic and univalent in the unit disk D with f(0) = 0 is said
to be α-spirallike if its range is α-spirallike. A function is spirallike if it is α-
spirallike for some α. Spirallike functions can be characterized by an analytic
condition which is a slight generalization of the condition for starlikeness. A
function f ∈ A is α-spirallike if for some real constant α (|α| < π/2),

Re

(
eiα

zf ′(z)

f(z)

)
> 0, z ∈ D.

We denote by Sp(α) the class of all α-spriallike functions in D. Thus⋃
−π/2<α<π/2

Sp(α)

denotes the class of spirallike functions in D. In particular, Sp(0) denotes the
usual class of starlike functions S∗.

We consider another family of functions that includes the class of convex
functions as a proper subfamily. For |α| < π/2, we say that f ∈ Sα if f ∈ A
is locally univalent in D and Re P̃f (z) > 0 in D, where

P̃f (z) = eiα
(

1 +
zf ′′(z)

f ′(z)

)
.

It is easy to see that f ∈ Sα if and only if there exists a function g ∈ S∗ such
that

(1) f ′(z) =

(
g(z)

z

)(cosα) exp(−iα)
.
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Also, we observe that the above conditions are precisely the conditions for
the function zf ′(z) to be spirallike. The class S0 consists of the normalized
convex functions. For general values of α (|α| < π/2), a function in Sα need
not be univalent in D. For example, the function f(z) = i(1− z)i − i belongs
to Sπ/4\S. In 1968, M.S. Robertson [18] proved that f ∈ Sα is univalent
if 0 < cosα ≤ 0.2315 . . . and showed that there are non-univalent functions
f ∈ Sα for each α with 1

2 < α < 1. In 1972, R. J. Libera and M.R. Zeigler
[7] improved the range of α as 0 < cosα ≤ 0.2564 . . . for which f ∈ Sα is
univalent. Further, in 1975, P.N. Chichra [1] has improved the range of α as
0 < cosα ≤ 0.2588 . . . . In the same year J.A. Pfaltzgraff [12] has shown that
f ∈ Sα is univalent whenever 0 < cosα ≤ 1/2. This settles the improvement
of range of α for which f ∈ Sα is univalent. On the other hand, V. Singh [17]
has shown that functions in Sα which satisfy f ′′(0) = 0 are univalent for all
real values of α with |α| < π/2. For a general reference about many of these
special classes we refer to [4, 5, 13].

Let a, b and c be complex numbers with c 6= 0,−1,−2,−3, . . .. Then the
function

2F1(a, b; c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!
+ · · · ,

is called the Gaussian hypergeometric function which is analytic in D and
satisfies the differential equation

z(1− z)w′′(z) + [c− (a+ b+ 1)z]w′ − abw = 0.

A function f ∈ H is said to be m-fold symmetric (m = 1, 2, 3, . . .) if

(2) f
(

e
2πi
m z
)

= e
2πi
m f(z).

In particular, every analytic function f(z) is 1-fold symmetric and every odd
analytic function f(z) is 2-fold symmetric. If f ∈ H is an m-fold symmetric
function then it is not difficult to see that f has the following representation

f(z) = z + am+1z
m+1 + a2m+1z

2m+1 + · · · .

For 0 < β ≤ 1, let Fm(β) be the class of analytic functions f ∈ A satisfying
(2) and

RePf (z) <
β

2
+ 1 for z ∈ D,

where

Pf (z) = 1 +
zf ′′(z)

f ′(z)
.

For m = 1 the class Fm(β) reduces to the following class

F1(β) =

{
f ∈ A : RePf (z) <

β

2
+ 1 for z ∈ D

}
.
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If f(z) = z +
∑∞

n=0 anz
n ∈ F(β) then it has been proved [11] that

|an| ≤
β

n(n− 1)
for z ∈ D.

These bounds are best possible. For the sharp Fekete-Szegö inequality and
other important characterization for functions in F(β) we refer to [11]. Fur-
ther, for m = 1 and β = 1 the class Fm(β) reduces to

F1 := F1(1) =

{
f ∈ A : RePf (z) <

3

2
for z ∈ D

}
.

Another class of our interest in this paper is Gm(β). More precisely, for
0 < β ≤ 1 let Gm(β) be the class of analytic functions f ∈ A satisfying (2)
and

RePf (z) >
β

2
− 1 for z ∈ D.

For m = 1 the class Gm(β) reduces to

G1(β) =

{
f ∈ A : RePf (z) >

β

2
− 1 for z ∈ D

}
.

Further, for m = 1 and β = 1 the class Gm(β) reduces to

G1 := G1(1) =

{
f ∈ A : RePf (z) > −1

2
for z ∈ D

}
.

It is known that F1 ⊂ S∗ and G1 ⊂ K (see [14, Equation (16)] and [15]). The
regions of variability for the classes F1 and G1 have been studied in [16]. For
a detailed discussion about these classes we refer to [14, 15].

For f ∈ S and 0 < r < 1, let

Lr(f) =

∫
|z|=r

|f ′(z)| |dz|

=

∫ 2π

0
r|f ′(reiθ)|dθ

denote the arclength of the image of the circle ∂Dr. The class S is a compact
subset of the classA in D endowed with the topology of uniform convergence on
every compact subset of D. Since the functional S 3 f 7→ Lr(f) is continuous
on A, a solution of the extremal problem

max
f∈S

Lr(f)

exists and is in S. Although the arclength problem for functions f in S has
been investigated, the sharp upper bound for Lr(f) is still unknown (see [4],
p.39). In 1954, Keogh [6] has investigated the extremal problem

max
f∈C

Lr(f)
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and proved that

max
f∈C

Lr(f) ≤ 2πr

1− r2
with equality if and only if f(z) = z

1−eiθz for some θ ∈ R. The problem

max
f∈S∗

Lr(f)

has been solved by Marx [8], who showed that

max
f∈S∗

Lr(f) = Lr(k),

where k is the Koebe function k(z) = z
(1−z)2 . In 1966, Clunie and Duren [2]

solved the extremal problem within the class K of all close-to-convex functions
and shown that

max
f∈K

Lr(f) = Lr(k).

Duren [3] also obtained an evaluation of Lr(k) in terms of standard elliptic
integrals. Arclength problems for the m-fold symmetric function of convex,
starlike and close-to-convex functions have been investigated by S.S. Miller
(see [9]).

The main aim of this paper is to investigate the arclength Lr(f) (0 < r < 1)
for functions f in the classes Fm(β), Gm(β) and Sα. As a consequence we
obtain the arclength for functions in the subclasses F1(β), G1(β), F1, and G1.
We shall obtain the sharp upper bound for Lr(f) when f ranges over each of
these classes. Before stating our results we recall the following result [9] which
plays a vital role in proving our results.

Lemma 1. ([9, Lemma 5]) Let µ(φ) be non-decreasing on [0, 2π] and µ(2π)−
µ(0) = 1. If h(φ) is positive and integrable with respect to µ(φ) on [0, 2π] then

exp

(∫ 2π

0
lnh(φ) (φ)

)
≤
∫ 2π

0
h(φ) dµ(φ).

2. MAIN RESULTS ON ARCLENGTH PROBLEM

The following result is the arclength problem for the class of univalent func-
tions f(z) for which zf ′(z) is spirallike functions which has been introduced
by M.S. Robertson [18].

Theorem 1. If f ∈ Sα, then for 0 < r < 1,

(3) Lr(f) ≤ Lr(Ψ),

where Ψ′(z) = (1− z)−2(cosα)e−iα
. The inequality in (3) is sharp.

Proof. Let f ∈ Sα. Then for |α| < π
2 we have Re P̃f (z) > 0 in D, where

P̃f (z) = eiα
(

1 +
zf ′′(z)

f ′(z)

)
.
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Clearly P̃f (0) = eiα. Then by the well-known Herglotz representation for func-
tions with positive real part, there exists a unit positive measure µ on (0, 2π]
such that

(4) P̃f (z) = (cosα)

∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) + i sinα.

A simple computation of (4) gives

f ′′(z)

f ′(z)
= 2e−iα(cosα)

∫ 2π

0

e−it

1− ze−it
dµ(t),

which implies

log f ′(z) = 2e−iα(cosα)

∫ 2π

0
log(1− ze−it)−1 dµ(t)

or

(5) f ′(z) = exp

∫ 2π

0
log(1− ze−it)−2e−iα(cosα) dµ(t).

In view of Lemma 1 and (5) for f ∈ Sα, we obtain

|zf ′(z)| =

∣∣∣∣z exp

∫ 2π

0
log(1− ze−it)−2e−iα(cosα) dµ(t)

∣∣∣∣
= |z| exp

∫ 2π

0
ln
∣∣∣(1− ze−it)−2(cos2 α)∣∣∣ dµ(t)

≤ |z|
∫ 2π

0
|1− ze−it|−2(cos2 α) dµ(t).

Consequently,

Lr(f) =

∫ 2π

0
|zf ′(z)| dθ ≤ |z|

∫ 2π

0

∫ 2π

0
|1− ze−it|−2(cos2 α) dµ(t) dθ,

where z = reiθ. By changing the order of integration and using the identity∫ 2π

0
|1− ze−it|−2(cos2 α)dθ =

∫ 2π

0
|1− z|−2(cos2 α)dθ,

we obtain

Lr(f) ≤ |z|
∫ 2π

0
|1− z|−2(cos2 α)dθ.

Let k(z) = z
(1−z)2 ∈ S

∗. Then put

Ψ′(z) =

(
k(z)

z

)(cosα)e−iα

= (1− z)−2(cosα)e−iα
.

In view of (1) it is easy to see that Ψ ∈ Sα. Thus

Lr(Ψ) =

∫ 2π

0
|zΨ′(z)|dθ = |z|

∫ 2π

0
|1− z|−2(cos2 α)dθ.
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Hence Ψ(z) is a solution of the extremal problem

max
f∈Sα

Lr(f)

and the inequality in (3) is sharp. �

Theorem 2. If f ∈ Fm(β), then for 0 < r < 1,

(6) Lr(f) ≤ Lr(hm),

where hm(z) = z 2F1

(
1
m ,−

β
m ; 1 + 1

m ; zm
)
. The inequality in (6) is sharp.

Proof. If f ∈ Fm(β) then from (2) it is easy to see that

(7) Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
1 +

zmf ′′(zm)

f ′(zm)

)
<
β

2
+ 1 for z ∈ D.

Equivalently, (7) can be written as

(8) (β + 2)− 2Re

(
1 +

zf ′′(z)

f ′(z)

)
= (β + 2)− 2Re

(
1 +

zmf ′′(zm)

f ′(zm)

)
> 0.

Let g1(z) = (β + 2) − 2
(

1 + zmf ′′(zm)
f ′(zm)

)
. Then g1(0) = β and Re g1(z) > 0

in D. Hence by Herglotz representation for functions with positive real part,
there exists a unique positive unit measure µ on (0, 2π] such that

(9) g1(z) = β

∫ 2π

0

1 + zme−it

1− zme−it
dµ(t).

Therefore from (8) and (9) we have

(β + 2)− 2

(
1 +

zf ′′(z)

f ′(z)

)
= β

∫ 2π

0

(
1 + zme−it

1− zme−it

)
dµ(t),

which implies
f ′′(z)

f ′(z)
= β

∫ 2π

0

−zm−1e−it

1− zme−it
dµ(t).

By integrating both sides, we obtain

f ′(z) = exp

∫ 2π

0
log(1− zme−it)

β
m dµ(t).

In view of Lemma 1 and for f ∈ Fm(β), we see that

|zf ′(z)| = |z| exp

∫ 2π

0
ln
∣∣1− zme−it

∣∣ βm dµ(t)

≤ |z|
∫ 2π

0
|1− zme−it|

β
m dµ(t).

Consequently

Lr(f) =

∫ 2π

0
|zf ′(z)| dθ ≤ |z|

∫ 2π

0

∫ 2π

0
|1− zme−it|

β
m dµ(t)dθ,



8 An arclength problem 189

where z = reiθ. By changing the order of integration and using the following
identity ∫ 2π

0
|1− zme−it|

β
m dθ =

∫ 2π

0
|1− zm|

β
m dθ,

we obtain

(10) Lr(f) ≤ |z|
∫ 2π

0
|1− zm|

β
m dθ.

In order to show that the inequality (6) is sharp, we define

(11) hm(z) = z 2F1

(
1

m
,− β

m
; 1 +

1

m
; zm

)
.

A simple computation gives

Re

(
1 +

zh′′m(z)

h′m(z)

)
= 1− β Re

(
zm

1− zm

)
< 1 +

β

2
.

From (11), it is not difficult to see that hm(e
2πi
m z) = e

2πi
m hm(z). That is hm(z)

is an m-fold symmetric function and hence hm ∈ Fm(β). Finally, a simple
computation gives

Lr(hm) =

∫ 2π

0
|zh′(z)|dθ = |z|

∫ 2π

0
|1− z|

β
m dθ.

Therefore hm(z) is a solution of the extremal problem

max
f∈Fm(β)

Lr(f).

This shows that the inequality (6) is sharp. �

As a special case, for m = 1, Theorem 2 reduces to the following arclength
problem for functions in F1(β).

Corollary 1. If f ∈ F1(β), then for 0 < r < 1,

(12) Lr(f) ≤ Lr(l1),
where

l1(z) =
1

β + 1

(
1− (1− z)β+1

)
.

The inequality in (12) is sharp.

Further, by taking m = 1 and β = 1 in Theorem 2, we obtain the following
interesting arclength problem for functions in the class F1 which is a subclass
of S∗.

Corollary 2. If f ∈ F1, then for 0 < r < 1,

(13) Lr(f) ≤ Lr(l2),
where

l2(z) =
1

2

(
1− (1− z)2

)
.
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The inequality in (13) is sharp.

Next, our aim is to investigate the arclength problem for functions in the
class Gm(β).

Theorem 3. If f ∈ Gm(β), then for 0 < r < 1,

(14) Lr(f) ≤ Lr(J̃m),

where J̃m(z) = z 2F1

(
1
m ,

(4−β)
m ; 1 + 1

m ; zm
)
. The inequality in (14) is sharp.

Proof. If f ∈ Gm(β) then from (2) we have

(15) Re

(
1 +

zf ′′(z)

f ′(z)

)
= Re

(
1 +

zmf ′′(zm)

f ′(zm)

)
>
β

2
− 1, for z ∈ D.

Equivalently, (15) can be written as

(16) 2Re

(
1 +

zf ′′(z)

f ′(z)

)
− (β − 2) = 2Re

(
1 +

zmf ′′(zm)

f ′(zm)

)
− (β − 2) > 0,

for z ∈ D. Let g2(z) = 2
(

1 + zmf ′′(zm)
f ′(zm)

)
− (β − 2). Then clearly g2(0) = 4− β

and Re g2(z) > 0 for z ∈ D. Hence by well-known Herglotz representation,
there exists a unique positive unit measure µ on (0, 2π] such that

g2(z) = (4− β)

∫ 2π

0

1 + zme−it

1− zme−it
dµ(t).

Therefore in view of (16) we can easily see that

(17) 2

(
1 +

zf ′′(z)

f ′(z)

)
− (β − 2) = (4− β)

∫ 2π

0

(
1 + zme−it

1− zme−it

)
dµ(t).

A simple computation of (17) gives

f ′′(z)

f ′(z)
= (4− β)

∫ 2π

0

zm−1e−it

1− zme−it
dµ(t),

and by integrating both sides we obtain

f ′(z) = exp

∫ 2π

0
log(1− zme−it)−

(4−β)
m dµ(t).

Thus by applying Lemma 1 for f ∈ Gm(β), we obtain

|zf ′(z)| ≤ |z|
∫ 2π

0

∣∣1− zme−it
∣∣− (4−β)

m dµ(t),

and consequently

Lr(f) =

∫ 2π

0
|zf ′(z)| dθ ≤ |z|

∫ 2π

0

∫ 2π

0

∣∣1− zme−it
∣∣− (4−β)

m dµ(t) dθ,
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where z = reiθ. By changing the order of integration and using the following
identity ∫ 2π

0
|1− zme−it|−

(4−β)
m dθ =

∫ 2π

0
|1− zm|−

(4−β)
m dθ,

we obtain

(18) Lr(f) ≤ |z|
∫ 2π

0
|1− zm|−

(4−β)
m dθ.

To see the sharpness of the inequality (14), we let

J̃m(z) = z 2F1

(
1

m
,
(4− β)

m
; 1 +

1

m
; zm

)
.

Then a simple computation gives

Re

(
1 +

zJ̃ ′′m(z)

J̃ ′m(z)

)
= 1 + βRe

(
zm

1− zm

)
>
β

2
− 1.

Since J̃m(e
2πi
m z) = e

2πi
m J̃m(z), we see that J̃m(z) is an m-fold symmetric func-

tion. Thus

Lr(J̃m) =

∫ 2π

0
|zh′(z)|dθ = |z|

∫ 2π

0
|1− zm|

−(4−β)
m dθ,

which shows that (14) is sharp. �

In the case of m = 1, Theorem 3 reduces to the following interesting ar-
clength problem for functions in the class G1(β).

Corollary 3. If f ∈ G1(β), then for 0 < r < 1,

(19) Lr(f) ≤ Lr(l3),
where

l3(z) =
1

3− β

(
1

(1− z)(3−β)
− 1

)
.

The inequality in (19) is sharp.

For m = 1 and β = 1, Theorem 3 reduces to the following interesting
arclength problem for functions in the class G1 which is a subclass of K.

Corollary 4. If f ∈ G1, then for 0 < r < 1,

(20) Lr(f) ≤ Lr(l4),
where

l4(z) =
1

2

(
1

(1− z)2
− 1

)
.

The inequality in (20) is sharp.

Since the proofs of the Corollaries 3 and 4 are on the same lines of that of
Theorem 14, we omit the details.
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