ON \mathfrak{m} -IRREDUCIBILITY OF \mathcal{M} -SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. We introduce m-irreducible spaces and infratopological spaces. These notions generalize notions of topological space and irreducible space [T. Thompson, *Characterizations of irreducible spaces*, Kyungpook Math. J., **21**(2) (1981), 191–194]. Characterizations of m- T_2 spaces and characterizations of m-irreducible spaces are obtained. Our research leads to several generalizations of some well-known results.

MSC 2010. 54C08.

Key words. Infraspace, supraspace, \mathfrak{m} -Hausdorff, \mathfrak{m} -irreducible, \mathfrak{m} - α -open, \mathfrak{m} -semi-open, \mathcal{M} -continuity.

1. INTRODUCTION

In 1996 Haruo Maki [2] generalized the notion of topological space making use of four subfamilies of the powerset $\mathcal{P}(X)$ of a nonempty set X (see also [3]). In such spaces generalized closure and interior operators are defined and investigated. Maki generalized and studied the classical concepts of semi-open [1] and preopen set [4]. In 2000 Popa and Noiri introduced so-called minimal structure \mathfrak{m}_X on $X \neq \emptyset$ as a subfamily of $\mathcal{P}(X)$ containing \emptyset and X [10]. A pair (X, \mathfrak{m}_X) we call here an \mathcal{M} -space; in [9] Popa and Noiri used the term m-space instead. For sets equipped with minimal structures, these authors introduced a continuity-like property, so-called \mathcal{M} -continuity, and provided several characterizations of functions with this property [10]. In the latter paper, Popa and Noiri also defined \mathfrak{m} -compactness, \mathfrak{m} -connectedness, \mathfrak{m} - T_2 spaces and investigated some of their properties. In 1983 Masshour et al. [6] studied properties of a particular case of \mathcal{M} -spaces, so-called supratopological spaces (briefly: supraspaces); see also [5]. In this paper we offer a new type of \mathcal{M} -spaces called *infratopological space* (briefly: infraspace). Generalized α open [7] and semi-open sets are studied. We obtain some characterizations of \mathfrak{m} - T_2 spaces (analogous to the classical ones). We introduce \mathfrak{m} -irreducible spaces and give several characterizations of them. Some theorems in the paper are generalizations of already known results.

2. PRELIMINARIES

Let X be a nonempty set. A subfamily \mathfrak{m}_X of the powerset $\mathcal{P}(X)$ is called a *minimal structure on* X if $\emptyset \in \mathfrak{m}_X$ and $X \in \mathfrak{m}_X$. The pair (X, \mathfrak{m}_X) is called then an \mathcal{M} -space. \mathfrak{m}_X -closure and \mathfrak{m}_X -interior of any subset S of X are defined as follows:

$$\mathfrak{m}_X \text{-cl}(S) = \bigcap \{F : S \subset F \text{ and } X \setminus F \in \mathfrak{m}_X\};$$
$$\mathfrak{m}_X \text{-int}(S) = \bigcup \{U : S \supset U \text{ and } U \in \mathfrak{m}_X\}.$$

The following lemma lists all useful fundamental properties of \mathfrak{m}_X -cl(·) and \mathfrak{m}_X -int(·).

LEMMA 2.1. [2, 10] Let (X, \mathfrak{m}_X) be any \mathcal{M} -space. Then, for subsets $A, B \subset X$ the following hold:

- (1a) \mathfrak{m}_X -cl $(X \setminus A) = X \setminus \mathfrak{m}_X$ -int(A),
- (1b) \mathfrak{m}_X -int $(X \setminus A) = X \setminus \mathfrak{m}_X$ -cl(A);
- (2a) if $X \setminus A \in \mathfrak{m}_X$, then \mathfrak{m}_X -cl(A) = A,
- (2b) if $A \in \mathfrak{m}_X$, then \mathfrak{m}_X -int(A) = A;
- (3) \mathfrak{m}_X -cl $(\emptyset) = \emptyset$, \mathfrak{m}_X -cl(X) = X, \mathfrak{m}_X -int $(\emptyset) = \emptyset$, \mathfrak{m}_X -int(X) = X;
- (4a) if $A \subset B$, then \mathfrak{m}_X -cl $(A) \subset \mathfrak{m}_X$ -cl(B),
- (4b) if $A \subset B$, then \mathfrak{m}_X -int $(A) \subset \mathfrak{m}_X$ -int(B);
- (5a) $A \subset \mathfrak{m}_X$ -cl(A),
- (5b) $A \supset \mathfrak{m}_X$ -int(A);
- (6a) \mathfrak{m}_X -cl $(\mathfrak{m}_X$ -cl $(A)) = \mathfrak{m}_X$ -cl(A),
- (6b) \mathfrak{m}_X -int $(\mathfrak{m}_X$ -int $(A)) = \mathfrak{m}_X$ -int(A).

A function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$, where (X, \mathfrak{m}_X) , (Y, \mathfrak{m}_Y) are two \mathcal{M} -spaces, is said to be \mathcal{M} -continuous on (X, \mathfrak{m}_X) [10] if for each $x \in X$ and each $V \in \mathfrak{m}_Y$ containing f(x), there exists $U \in \mathfrak{m}_X$ containing x such that $f(U) \subset V$.

An \mathcal{M} -space (X, \mathfrak{m}_X) is said to be supratopological space [6] (briefly: supraspace) if for any family $\{U_i\}_{i \in I} \subset \mathfrak{m}_X, \bigcup_{i \in I} U_i \in \mathfrak{m}_X$.

It is necessary to recall the classical notions of semi-open and α -open subsets of a topological space (X, τ) . A set $S \subset X$ is said to be α -open [7] (resp. semiopen [1]) in (X, τ) if $S \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(S)))$ (resp. $S \subset \operatorname{cl}_{\tau}(\operatorname{int}_{\tau}(S))$). The folowing characterizations hold: (1) S is α -open in (X, τ) if and only if there exist $U \in \tau$ with $U \subset S \subset \operatorname{int}_{\tau}(\operatorname{cl}_{\tau}(U))$ [8, Lemma 4.12]; (2) S is semi-open in (X, τ) if and only if there is $U \in \tau$ such that $U \subset S \subset \operatorname{cl}_{\tau}(U)$ [1, Theorem 1].

LEMMA 2.2. Let (X, \mathfrak{m}_X) be any \mathcal{M} -space and $U, V \in \mathfrak{m}_X$. If $U \cap V = \emptyset$, then $U \cap \mathfrak{m}_X$ -cl $(V) = \emptyset$ (and $V \cap \mathfrak{m}_X$ -cl $(U) = \emptyset$).

Proof. Since $U \cap V = \emptyset$, then $U \subset X \setminus V$. By Lemma 2.1, (4b) and (1b), we obtain \mathfrak{m}_X -int $(U) \subset X \setminus \mathfrak{m}_X$ -cl(V). But \mathfrak{m}_X -int(U) = U (Lemma 2.1 (2b)), thus $U \cap \mathfrak{m}_X$ -cl $(V) = \emptyset$.

3. INFRATOPOLOGICAL SPACES AND SEMI-OPEN SETS

DEFINITION 3.1. For any set X, a collection $\mathfrak{m}_X \subset \mathcal{P}(X)$ is said to be an *infratopology in* X if

- (1) $\emptyset, X \in \mathfrak{m}_X;$
- (2) for any $A_1, A_2 \in \mathfrak{m}_X$ the intersection $A_1 \cap A_2 \in \mathfrak{m}_X$.

A pair (X, \mathfrak{m}_X) where \mathfrak{m}_X is an infratopology in X, will be called an *infraspace*. Obviously, each topological space is an infraspace and each infraspace is an \mathcal{M} -space. The reverse implications are not true, in general.

DEFINITION 3.2. [10] An \mathcal{M} -space (X, \mathfrak{m}_X) is said to be \mathfrak{m} -Hausdorff (equiv. \mathfrak{m} - T_2), if for each distinct $x, y \in X$ there exist $U, V \in \mathfrak{m}_X, x \in U, y \in V$, such that $U \cap V = \emptyset$.

EXAMPLE 3.3. Let $X = \{a, b, c, d\}$ and

 $\mathfrak{m}_X = \{ \emptyset, X, \{a\}, \{b\}, \{c\}, \{d\}, \{a, b\}, \{b, c\}, \{c, d\}, \{a, d\} \}.$

The infraspace (X, \mathfrak{m}_X) (that is not a supraspace) is \mathfrak{m} - T_2 .

The infraspace given later on in Example 3.7 is not m-Hausdorff.

EXAMPLE 3.4. Let $X = \mathbb{R}$ and $\mathfrak{m}_X = \{[a, +\infty) : a \in \mathbb{R}\} \cup \{(-\infty, b] : b \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$. The \mathcal{M} -space (X, \mathfrak{m}_X) is \mathfrak{m} - T_2 , but it is not an infraspace (and not a supraspace).

The following lemma will be of use.

LEMMA 3.5. [10, Lemma 3.2] Let (X, \mathfrak{m}_X) be an \mathcal{M} -space and $S \subset X$. Then $x \in \mathfrak{m}_X$ -cl(S) if and only if $U \cap S \neq \emptyset$ for each $U \in \mathfrak{m}_X$ containing x.

For infraspaces the following property holds.

PROPOSITION. Let (X, \mathfrak{m}_X) be an infraspace and $S \subset X$. Then

 $U \cap \mathfrak{m}_X$ -cl $(S) \subset \mathfrak{m}_X$ -cl $(U \cap S)$

for every $U \in \mathfrak{m}_X$.

Proof. Let $x \in U \cap \mathfrak{m}_X$ -cl(S) be such a point that $x \notin \mathfrak{m}_X$ -cl $(U \cap S)$. By Lemma 3.5, for a certain $W \in \mathfrak{m}_X$ with $x \in W$ we have $W \cap (U \cap S) = \emptyset$. But, since \mathfrak{m}_X is an infratopology on $X, x \in W \cap U \in \mathfrak{m}_X$. Thus we get a contradiction with the fact that $x \in \mathfrak{m}_X$ -cl(S).

DEFINITION 3.6. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. A subset $S \subset X$ is said to be \mathfrak{m}_X -open in (X, \mathfrak{m}_X) if for each point $x \in S$ there exists a set $U_x \in \mathfrak{m}_X$ with $x \in U_x \subset S$.

The family of all \mathfrak{m}_X -open subsets of an \mathcal{M} -space (X, \mathfrak{m}_X) we denote as $O(X, \mathfrak{m}_X)$. The following statements (we omit the proofs) hold for every \mathcal{M} -space (X, \mathfrak{m}_X) :

(1) $\mathfrak{m}_X \subset \mathcal{O}(X,\mathfrak{m}_X);$

(2) \mathfrak{m}_X -int $(S) \in \mathcal{O}(X, \mathfrak{m}_X)$ for every $S \subset X$;

(3) for every $S \subset X$, $S \in O(X, \mathfrak{m}_X)$ if and only if \mathfrak{m}_X -int(S) = S.

The inclusion $\mathfrak{m}_X \subset \mathcal{O}(X, \mathfrak{m}_X)$ is proper, in general, as the following example shows.

EXAMPLE 3.7. Let $X = \mathbb{R}$ and $\mathfrak{m}_X = \{[a, +\infty) : a \in \mathbb{R}\} \cup \{\emptyset, \mathbb{R}\}$. For any $a \in \mathbb{R}$ one has $(a, +\infty) \in O(X, \mathfrak{m}_X) \setminus \mathfrak{m}_X$, since (X, \mathfrak{m}_X) is not a topological space (it is an infraspace only).

It is worth to observe that every \mathcal{M} -space (X, \mathfrak{m}_X) is a supraspace if and only if $O(X, \mathfrak{m}_X) = \mathfrak{m}_X$.

In [2] the author has introduced a certain generalization of semi-open set, which – in particular case – can be applied in \mathcal{M} -spaces. In this section we define also a generalization of α -openness of subsets for \mathcal{M} -spaces and we study interrelationships between these notions.

DEFINITION 3.8. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. A subset $S \subset X$ is said to be:

(1) \mathfrak{m} -semi-open in (X, \mathfrak{m}_X) if there exists a set $U \in \mathfrak{m}_X$ such that

 $U \subset S \subset \mathfrak{m}_X$ -cl(U).

(2) \mathfrak{m} - α -open in (X, \mathfrak{m}_X) if there exists a set $U \in \mathfrak{m}_X$ such that

 $U \subset S \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl(U)).

(3) weakly \mathfrak{m} -semi-open in (X, \mathfrak{m}_X) if

 $S \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S)).

(4) weakly \mathfrak{m} - α -open in (X, \mathfrak{m}_X) if

 $S \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S))).

The families of all subsets defined by (1)–(4) above are denoted respectively by $SO(X, \mathfrak{m}_X)$, $\alpha O(X, \mathfrak{m}_X)$, $wSO(X, \mathfrak{m}_X)$, and $w\alpha O(X, \mathfrak{m}_X)$.

THEOREM 3.9. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. Then the following hold:

(a) $\mathfrak{m}_X \subset \mathcal{O}(X, \mathfrak{m}_X) \subset w\alpha \mathcal{O}(X, \mathfrak{m}_X) \subset wSO(X, \mathfrak{m}_X);$

- (b) $\mathfrak{m}_X \subset \alpha \mathcal{O}(X, \mathfrak{m}_X) \subset \mathcal{SO}(X, \mathfrak{m}_X) \subset w \mathcal{SO}(X, \mathfrak{m}_X);$
- (c) (1) $O(X, \mathfrak{m}_X) \subset SO(X, \mathfrak{m}_X)$ and (2) $\alpha O(X, \mathfrak{m}_X) \subset w\alpha O(X, \mathfrak{m}_X)$;
- (d) if (X, \mathfrak{m}_X) is a supraspace, then (1) $\alpha O(X, \mathfrak{m}_X) = w \alpha O(X, \mathfrak{m}_X)$ and (2) $SO(X, \mathfrak{m}_X) = w SO(X, \mathfrak{m}_X)$.

Proof. We use respective properties from Lemma 2.1 and the observation (3) before Example 3.7.

(a) Only the inclusion $O(X, \mathfrak{m}_X) \subset w \alpha O(X, \mathfrak{m}_X)$ requires a proof. Let $S \in O(X, \mathfrak{m}_X)$. Then $S = \mathfrak{m}_X$ -int(S). By Lemma 2.1 (5a), $S \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S)) and by (4b) of that lemma we get $S = \mathfrak{m}_X$ -int $(S) \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S))).

(b) We show the inclusion $\mathrm{SO}(X, \mathfrak{m}_X) \subset \mathrm{wSO}(X, \mathfrak{m}_X)$. Let $S \in \mathrm{SO}(X, \mathfrak{m}_X)$. Then for a certain $U \in \mathfrak{m}_X$ with $U \subset S$, $S \subset \mathfrak{m}_X$ -cl(U). Thus $U \subset \mathfrak{m}_X$ -int(S)and consequently $S \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S)). To show $\mathfrak{m}_X \subset \alpha O(X, \mathfrak{m}_X)$, let $S \in \mathfrak{m}_X$. Obviously $S \subset \mathfrak{m}_X$ -cl(S) and by Lemma 2.1 (4b), \mathfrak{m}_X -int $(S) \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl(S)). Since $S = \mathfrak{m}_X$ -int(S) (Lemma 2.1 (3)) finally we obtain $S \subset S \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl(S)) and so $S \in \alpha O(X, \mathfrak{m}_X)$. (c) The case (1) is clear and the proof of (2) is similar to the proof of $SO(X, \mathfrak{m}_X) \subset wSO(X, \mathfrak{m}_X)$.

(d) We shall show only that $w\alpha O(X, \mathfrak{m}_X) \subset \alpha O(X, \mathfrak{m}_X)$. Namely, for $S \in w\alpha O(X, \mathfrak{m}_X)$ we have what follows (use Lemma 2.1(5b)): \mathfrak{m}_X -int $(S) \subset S \subset \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S))), where \mathfrak{m}_X -int $(S) \in \mathfrak{m}_X$ since (X, \mathfrak{m}_X) is a supraspace.

We shall show now that there is, in general, no relationship between families $O(X, \mathfrak{m}_X)$ and $\alpha O(X, \mathfrak{m}_X)$.

EXAMPLE 3.10. Let $X = \{a, b, c, d\}$ and $\mathfrak{m}_X = \{\emptyset, X, \{b\}, \{c\}\}$. (X, \mathfrak{m}_X) is an infraspace which is not a supraspace, and for $S = \{b, c\}$ we have $S \in O(X, \mathfrak{m}_X) \setminus \alpha O(X, \mathfrak{m}_X)$ since $S \not\subset \{b\} = \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl $(\{b\}))$ and $S \not\subset \{c\} = \mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl $(\{c\}))$. Observe also that by inclusion $O(X, \mathfrak{m}_X) \subset SO(X, \mathfrak{m}_X)$ we get $S \in SO(X, \mathfrak{m}_X) \setminus \alpha O(X, \mathfrak{m}_X)$, and by $O(X, \mathfrak{m}_X) \subset w\alpha O(X, \mathfrak{m}_X)$, $S \in w\alpha O(X, \mathfrak{m}_X) \setminus \alpha O(X, \mathfrak{m}_X)$.

EXAMPLE 3.11. Consider the infraspace (X, \mathfrak{m}_X) from Example 3.7. One may easily check that for each of the kind $S = \{a\} \cup (b, +\infty)$, where a < b, we have $S \in \alpha O(X, \mathfrak{m}_X) \setminus O(X, \mathfrak{m}_X)$.

Observe that by the inclusion $\alpha O(X, \mathfrak{m}_X) \subset SO(X, \mathfrak{m}_X)$ we have $S \in SO(X, \mathfrak{m}_X) \setminus O(X, \mathfrak{m}_X)$, and by inclusion $\alpha O(X, \mathfrak{m}_X) \subset w\alpha O(X, \mathfrak{m}_X)$, $S \in w\alpha O(X, \mathfrak{m}_X) \setminus O(X, \mathfrak{m}_X)$.

EXAMPLE 3.12. Let $X = \{a, b, c, d\}$ and $\mathfrak{m}_X = \{\emptyset, X, \{c\}, \{d\}, \{b, c\}\}$. (X, \mathfrak{m}_X) is an infraspace (not a supraspace) and for $S = \{a, b, c\}$ we have

$$\begin{split} S &= \mathfrak{m}_X \text{-}\mathrm{cl}\left(\mathfrak{m}_X \text{-}\mathrm{int}\left(\{a,b,c\}\right)\right) = \{a,b,c\},\\ S \not\subset \{b,c\} &= \mathfrak{m}_X \text{-}\mathrm{int}\left(\mathfrak{m}_X \text{-}\mathrm{cl}\left(\mathfrak{m}_X \text{-}\mathrm{int}\left(S\right)\right)\right). \end{split}$$

So, $S \in wSO(X, \mathfrak{m}_X) \setminus w\alpha O(X, \mathfrak{m}_X)$.

EXAMPLE 3.13. Let $X = \{a, b, c\}, \mathfrak{m}_X = \{\emptyset, X, \{a\}, \{c\}\}$. For the subset $S = \{a, c\}$ one gets $S \in \mathrm{wSO}(X, \mathfrak{m}_X)$ because $S \subset X = \mathfrak{m}_X\operatorname{-cl}(\mathfrak{m}_X\operatorname{-int}(S))$. At the same time $S \notin \mathrm{SO}(X, \mathfrak{m}_X)$, since $S \not\subset \{a, b\} = \mathfrak{m}_X\operatorname{-cl}(\{a\}), S \not\subset \mathfrak{m}_X\operatorname{-cl}(\{c\}) = \{b, c\}$.

Some results of the next lemma will be useful in the sequel.

LEMMA 3.14. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. Then the following hold:

- (a) \mathfrak{m}_X -int $(S) \in wSO(X, \mathfrak{m}_X)$ for each $S \subset X$;
- (b) \mathfrak{m}_X -int $(S) \in SO(X, \mathfrak{m}_X)$ for each $S \in \mathfrak{m}_X$;
- (c) \mathfrak{m}_X -cl $(S) \in SO(X, \mathfrak{m}_X)$ for each $S \in \mathfrak{m}_X$;
- (d) \mathfrak{m}_X -cl $(S) \in wSO(X, \mathfrak{m}_X)$ for each $S \in wSO(X, \mathfrak{m}_X)$.

Proof. (a) Let $S \subset X$. Clearly, we have \mathfrak{m}_X -int $(S) \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int $(S)) = \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -int(S))) (by Lemma 2.1 (6b)).

(b) Let $S \in \mathfrak{m}_X$. Then by Lemma 2.1 (2b), (5a) we get $S = \mathfrak{m}_X$ -int $(S) \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int $(S)) = \mathfrak{m}_X$ -cl(S).

(c) Directly follows by Lemma 2.1 (5a): $S \subset \mathfrak{m}_X$ -cl $(S) \subset \mathfrak{m}_X$ -cl(S).

(d) Let $S \in wSO(X, \mathfrak{m}_X)$. Then $S \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S)) and by Lemma 2.1, (4a) and (6a), \mathfrak{m}_X -cl $(S) \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int $(S))) = \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int(S)). Using again Lemma 2.1 (5a), (4), \mathfrak{m}_X -cl $(S) \subset \mathfrak{m}_X$ -cl $(\mathfrak{m}_X$ -int $(\mathfrak{m}_X$ -cl(S))).

4. \mathfrak{M} -irreducible spaces

DEFINITION 4.1. An \mathcal{M} -space (X, \mathfrak{m}_X) is said to be \mathfrak{m} -irreducible if for every two nonempty sets $S_1, S_2 \in \mathfrak{m}_X, S_1 \cap S_2 \neq \emptyset$.

In general, infraspaces need not be $\mathfrak{m}\text{-}\mathrm{i}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{u}\mathrm{c}\mathrm{i}\mathrm{b}\mathrm{l}$, as it is shown below.

EXAMPLE 4.2. Let $X = \mathbb{R}$ and $\mathfrak{m}_X = \{\{0\} \cup [a, +\infty) : a \ge 2\} \cup \{\emptyset, X\} \cup \{\{0\} \cup (-\infty, -a] : a \ge 2\}$. One checks that (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible and neither an infraspace nor a supraspace.

EXAMPLE 4.3. Let $X = \mathbb{R}$ and $\mathfrak{m}_X = \{\{-1\} \cup [a, +\infty) : a \geq 2\} \cup \{(-\infty, -a] \cup \{1\} : a \geq 2\} \cup \{\emptyset, X\}$. (X, \mathfrak{m}_X) is an infraspace and not a supraspace, and it is not \mathfrak{m} -irreducible.

There exists an infraspace which is \mathfrak{m} -irreducible.

EXAMPLE 4.4. Let $X = \mathbb{R}$ and $\mathfrak{m}'_X = \mathfrak{m}_X \cup \{\{0\}\}$, where \mathfrak{m}_X is the minimal structure from Example 4.2. (X, \mathfrak{m}'_X) is an \mathfrak{m} -irreducible infraspace.

REMARK 4.5. Each \mathfrak{m} -irreducible \mathcal{M} -space is not \mathfrak{m} - T_2 , but the converse is not true, in general. It is enough to consider Example 4.2.

DEFINITION 4.6. An \mathcal{M} -space (X, \mathfrak{m}_X) is said to be **weakly** $S\mathfrak{m}$ -connected (briefly: $wS\mathfrak{m}$ -connected) if there are no two nonempty $S_1, S_2 \in wSO(X, \mathfrak{m}_X)$ such that $X = S_1 \cup S_2$ and $S_1 \cap S_2 = \emptyset$.

THEOREM 4.7. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. The following statements are equivalent:

- (1) (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible,
- (2) $S_1 \cap S_2 \neq \emptyset$ for any nonempty sets $S_1, S_2 \in wSO(X, \mathfrak{m}_X)$,
- (3) (X, \mathfrak{m}_X) is wSm-connected,
- (4) there is no surjection $f: X \to \{a, b\}$ such that $f^{-1}(\{a\}), f^{-1}(\{b\}) \in wSO(X, \mathfrak{m}_X)$.

Proof. (1) \Rightarrow (2) Let $S_1, S_2 \in \text{wSO}(X, \mathfrak{m}_X)$ be nonempty sets. So, $S_1 \subset \mathfrak{m}_X\text{-cl}(\mathfrak{m}_X\text{-int}(S_1)), S_2 \subset \mathfrak{m}_X\text{-cl}(\mathfrak{m}_X\text{-int}(S_2))$, where

$$\mathfrak{m}_X$$
-int $(S_1) \neq \emptyset \neq \mathfrak{m}_X$ -int (S_2)

(see Lemma 2.1(3)). Hence there exist nonempty sets $U_1, U_2 \in \mathfrak{m}_X$ with $U_1 \subset \mathfrak{m}_X$ -int $(S_1) \subset S_1$ and $U_2 \subset \mathfrak{m}_X$ -int $(S_2) \subset S_2$. Thus by \mathfrak{m} -irreducibility of (X, \mathfrak{m}_X) we infer that $S_1 \cap S_2 \neq \emptyset$.

 $(2) \Rightarrow (3)$ Clear.

 $(3) \Rightarrow (4)$ If there exists a surjection f fulfilling the condition in (4), then it can be easily seen that (X, \mathfrak{m}_X) is not $wS\mathfrak{m}$ -connected.

 $(4) \Rightarrow (1)$ Suppose (X, \mathfrak{m}_X) is not \mathfrak{m} -irreducible. Then there are two nonempty sets $S_1, S_2 \in \mathfrak{m}_X$ such that $S_1 \cap S_2 = \emptyset$. By Lemma 2.2 we get $S_1 \cap \mathfrak{m}_X$ -cl $(S_2) = \emptyset$. By Lemma 3.14 (c), $\emptyset \neq \mathfrak{m}_X$ -cl $(S_2) \in \mathrm{SO}(X, \mathfrak{m}_X) \subset \mathrm{wSO}(X, \mathfrak{m}_X)$. On the other hand, by Lemma 2.1 (1b), $X \setminus \mathfrak{m}_X$ -cl $(S_2) = \mathfrak{m}_X$ -int $(X \setminus S_2) \supset S_1 \neq \emptyset$. Using Lemma 3.14 (a) we have that $\emptyset \neq \mathfrak{m}_X$ -int $(X \setminus S_2) \in \mathrm{wSO}(X, \mathfrak{m}_X)$. To obtain a contradiction it is enough to define a surjection $f: X \to \{a, b\}$ as follows: f = a on \mathfrak{m}_X -cl (S_2) , f = b on $X \setminus \mathfrak{m}_X$ -cl (S_2) .

REMARK 4.8. Theorem 4.7 generalizes [12, Theorem 17].

THEOREM 4.9. Let (X, \mathfrak{m}_X) be any \mathcal{M} -space. The following statements are equivalent:

- (1) (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible,
- (2) $S_1 \cap S_2 \neq \emptyset$ for every nonempty sets $S_1, S_2 \in w\alpha O(X, \mathfrak{m}_X)$,
- (3) $S_1 \cap S_2 \neq \emptyset$ for every nonempty sets $S_1, S_2 \in O(X, \mathfrak{m}_X)$.

Proof. (1) \Rightarrow (2) The implication (1) \Rightarrow (2) of Theorem 4.7 is true for arbitrary \mathcal{M} -space (Remark 4.8 (1)). Therefore the result follows from w $\alpha O(X, \mathfrak{m}_X) \subset$ wSO (X, \mathfrak{m}_X) (Theorem 3.9 (a)).

(2) \Rightarrow (3) Use the inclusion $O(X, \mathfrak{m}_X) \subset w\alpha O(X, \mathfrak{m}_X)$ (Theorem 3.9).

(3) \Rightarrow (1) By the inclusion $O(X, \mathfrak{m}_X) \supset \mathfrak{m}_X$.

The proof of the next theorem is similar to the proof of Theorem 4.9 – we use inclusions (b) from Theorem 3.9.

THEOREM 4.10. Let (X, \mathfrak{m}_X) be any \mathcal{M} -space. The following are equivalent:

- (1) (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible,
- (2) $S_1 \cap S_2 \neq \emptyset$ for every nonempty sets $S_1, S_2 \in \mathrm{SO}(X, \mathfrak{m}_X)$,
- (3) $S_1 \cap S_2 \neq \emptyset$ for every nonempty sets $S_1, S_2 \in \alpha O(X, \mathfrak{m}_X)$.

In the class of non-infraspaces we can indicate both $wS\mathfrak{m}$ -connected and non- $wS\mathfrak{m}$ -connected \mathcal{M} -spaces.

EXAMPLE 4.11. Let $X = \{a, b, c, d\}$ and $\mathfrak{m}_X = \{\emptyset, X, \{b, c\}, \{c, d\}\}$. It can be easily checked that this non-infraspace (X, \mathfrak{m}_X) (which is also not a supraspace) is $wS\mathfrak{m}$ -connected.

EXAMPLE 4.12. Let $X = \{a, b, c, d, e\}, \mathfrak{m}_X = \{\emptyset, X, \{d, e\}, \{a, b, c\}, \{c, d, e\}\}$. The non-infraspace (X, \mathfrak{m}_X) (which is a supraspace) is not $wS\mathfrak{m}$ -connected.

DEFINITION 4.13. A subset S of an \mathcal{M} -space (X, \mathfrak{m}_X) is said to be \mathfrak{m} -dense in (X, \mathfrak{m}_X) if \mathfrak{m}_X -cl(S) = X.

THEOREM 4.14. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. The following are equivalent:

- (1) (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible.
- (2) Every nonempty set $S \in wSO(X, \mathfrak{m}_X)$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .

- (3) Every nonempty set $S \in SO(X, \mathfrak{m}_X)$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .
- (4) Every nonempty set $S \in \alpha O(X, \mathfrak{m}_X)$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .
- (5) Every nonempty set $S \in w\alpha O(X, \mathfrak{m}_X)$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .
- (6) Every nonempty set $S \in O(X, \mathfrak{m}_X)$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .
- (7) Every nonempty set $S \in \mathfrak{m}_X$ is \mathfrak{m} -dense in (X, \mathfrak{m}_X) .

Proof. (1)⇒(2) Suppose there exits a nonempty set $S \in \text{wSO}(X, \mathfrak{m}_X)$ such that $\mathfrak{m}_X\text{-cl}(S) \neq X$. Hence $\mathfrak{m}_X\text{-int}(X \setminus S) = X \setminus \mathfrak{m}_X\text{-cl}(S) \neq \emptyset$. It implies the existence of a nonempty set $U \in \mathfrak{m}_X$ with $U \subset \mathfrak{m}_X\text{-int}(X \setminus S)$. On the other hand, $\mathfrak{m}_X\text{-cl}(S) \in \text{wSO}(X, \mathfrak{m}_X)$ by Lemma 3.14 (d). Thus there are two nonempty sets $S_1 = U$, $S_2 = \mathfrak{m}_X\text{-cl}(S) \in \text{wSO}(X, \mathfrak{m}_X)$ such that $S_1 \cap S_2 = \emptyset$. Consequently by Theorem 4.7 (2), (X, \mathfrak{m}_X) is not \mathfrak{m}_i irreducible. Implications (2)⇒(5)⇒(6)⇒(7) are obvious by Theorem 3.9 (a). Implications (2)⇒(3)⇒(4)⇒(7) hold by Theorem 3.9 (b). Thus it is enough to show (7)⇒(1). Suppose (X, \mathfrak{m}_X) is not \mathfrak{m}_i -irreducible. Then for some two nonempty sets $S_1, S_2 \in \mathfrak{m}_X, S_1 \cap S_2 = \emptyset$. Using now Lemma 2.2 we get $S_1 \cap \mathfrak{m}_X\text{-cl}(S_2) = \emptyset$ which shows that $\mathfrak{m}_X\text{-cl}(S_2) \neq X$.

PROBLEM. It is an open problem to find a non-infraspace being not \mathfrak{m} irreducible, for which nevertheless the condition (7) holds.

Any filterbase given on an arbitrary \mathcal{M} -space we will call \mathfrak{m} -filterbase. Let (X, \mathfrak{m}_X) be an infraspace and $\mathcal{F}_{\mathfrak{m}_X} = \{A_i \in \mathfrak{m}_X : i \in I \text{ and } A_{i_1} \cap A_{i_2} \neq \emptyset$ for $i_1, i_2 \in I\}$. Obviously $\mathcal{F}_{\mathfrak{m}_X}$ is an \mathfrak{m} -filterbase on (X, \mathfrak{m}_X) . Define also the following two families of subsets of any \mathcal{M} -space (X, \mathfrak{m}_X) : $\mathfrak{m}\mathcal{N}(y) = \{S \in \mathfrak{m}_X : y \in S\}$ and $\mathfrak{m}\mathcal{U}(y) = \{U \in O(X, \mathfrak{m}_X) : y \in U\}$.

DEFINITION 4.15. Let \mathcal{F} be an m-filterbase on (X, \mathfrak{m}_X) and $y_0 \in X$. We say that \mathcal{F} accumulates at y_0 if for each $U \in \mathfrak{mU}(y_0)$ and each $A \in \mathcal{F}$, $A \cap U \neq \emptyset$.

THEOREM 4.16. An infraspace (X, \mathfrak{m}_X) is \mathfrak{m} -irreducible if and only if every \mathfrak{m} -filterbase $\mathcal{F} \subset \mathfrak{m}_X$ accumulates at every point of X.

Proof. (\Rightarrow) Let (X, \mathfrak{m}_X) be \mathfrak{m} -irreducible and let $\mathcal{F} \subset \mathfrak{m}_X$ be arbitrary \mathfrak{m} filterbase in it. For any $x \in X$ and every $U = \bigcup \{U_i \in \mathfrak{m}_X : U_i \subset U, i \in I\} \in$ $\mathfrak{U}(x)$ and $A \in \mathcal{F}$, one has $U_i \cap A \neq \emptyset$, $i \in I$, because of \mathfrak{m} -irreducibility of (X, \mathfrak{m}_X) . So, $A \cap U \neq \emptyset$.

(\Leftarrow) Suppose every m-filterbase $\mathcal{F} \subset \mathfrak{m}_X$ accumulates at every point $x \in X$. Let $S_1, S_2 \in \mathfrak{m}_X$ be arbitrary two nonempty sets and let $x \in S_1, y \in S_2$. Consider the family $\mathfrak{mN}(x)$. Obviously, it is an m-filterbase in (X, \mathfrak{m}_X) , since (X, \mathfrak{m}_X) is an infraspace. By assumption, $\mathfrak{mN}(x)$ accumulates at y, that is for each $U \in \mathfrak{mU}(y)$ and each $A \in \mathfrak{mN}(x), A \cap U \neq \emptyset$. In particular, for $U = S_2$ and $A = S_1$ one obtains $S_1 \cap S_2 \neq \emptyset$. This shows that (X, \mathfrak{m}_X) is m-irreducible.

REMARK 4.17. Theorem 4.16 generalizes [12, Theorem 16].

5. M-IRREDUCIBILITY AND FUNCTIONS

Recall the following useful characterizations of \mathcal{M} -continuity.

LEMMA 5.1. [10, Theorem 3.1]. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be two arbitrary \mathcal{M} -spaces. For a function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ the following properties are equivalent:

(a) f is \mathcal{M} -continuous,

(b) $f^{-1}(V) = \mathfrak{m}_X$ -int $(f^{-1}(V))$ for every $V \in \mathfrak{m}_Y$,

(c) $f(\mathfrak{m}_X - \mathrm{cl}(S)) \subset \mathfrak{m}_X - \mathrm{cl}(f(S))$ for every $S \subset X$,

(d) $f^{-1}(V) \in O(X, \mathfrak{m}_X)$ for every $V \in \mathfrak{m}_Y$.

Equivalence (b) \Leftrightarrow (d) follows directly by the observation (3) in Section 3 (page 135).

COROLLARY 5.2. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be two arbitrary \mathcal{M} -spaces. Then for each \mathcal{M} -continuous function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ and any subset T of Y one has

$$f(\mathfrak{m}_X\operatorname{-cl}(f^{-1}(T))) \subset \mathfrak{m}_Y\operatorname{-cl}(T)$$

Proof. Omitted.

THEOREM 5.3. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be \mathcal{M} -spaces. If (X, \mathfrak{m}_X) is \mathfrak{m} irreducible and a surjection $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ is \mathcal{M} -continuous, then (Y, \mathfrak{m}_Y) is \mathfrak{m} -irreducible.

Proof. Let $V \in \mathfrak{m}_Y$ be arbitrarily chosen. Since f is \mathcal{M} -continuous, by Lemma 5.1, $f^{-1}(V) \in O(X, \mathfrak{m}_X)$. Then by \mathfrak{m} -irreducibility of (X, \mathfrak{m}_X) , using Theorem 4.14 we get that $X = \mathfrak{m}_X$ -cl $(f^{-1}(V))$. By Corollary 5.2 one obtains that $Y \subset \mathfrak{m}_Y$ -cl(V). So, again by Theorem 4.14, (Y, \mathfrak{m}_Y) is \mathfrak{m} -irreducible. \Box

The result of Theorem 5.3 may be extended for a class of functions defined as follows:

DEFINITION 5.4. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be two arbitrary \mathcal{M} -spaces. A function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ is said to be $wS\mathfrak{m}$ -continuous if $f^{-1}(V) \in wSO(X, \mathfrak{m}_X)$ for every $V \in \mathfrak{m}_Y$.

 \mathcal{M} -continuity implies $wS\mathfrak{m}$ -continuity, but the converse is not true, in general.

EXAMPLE 5.5. Let $X = \{a, b, c, d\}$, $\mathfrak{m}_X = \{\emptyset, X, \{a\}, \{b\}\}$, $Y = \{a, b, c\}$ and $\mathfrak{m}_Y = \{\emptyset, Y, \{b\}, \{c\}\}$. Define a function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ as follows: f(a) = f(d) = b, f(b) = f(c) = c. One checks that $f^{-1}(\{b\}), f^{-1}(\{c\}) \in$ wSO $(X, \mathfrak{m}_X) \setminus O(X, \mathfrak{m}_X)$.

THEOREM 5.6. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be \mathcal{M} -spaces. If (X, \mathfrak{m}_X) is \mathfrak{m} irreducible and a surjection $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ is $wS\mathfrak{m}$ -continuous, then (Y, \mathfrak{m}_Y) is \mathfrak{m} -irreducible.

Proof. Suppose (Y, \mathfrak{m}_Y) is not \mathfrak{m} -irreducible. Then for some nonempty sets $V_1, V_2 \in \mathfrak{m}_Y, V_1 \cap V_2 = \emptyset$. It is clear that by $wS\mathfrak{m}$ -continuity of f,

$$\mathfrak{m}_X$$
-int $(f^{-1}(V_1)) \neq \emptyset \neq \mathfrak{m}_X$ -int $(f^{-1}(V_2))$.

Thus for some nonempty $U_1, U_2 \in \mathfrak{m}_X$ we have $U_1 \cap U_2 \subset \mathfrak{m}_X$ -int $(f^{-1}(V_1)) \cap \mathfrak{m}_X$ -int $(f^{-1}(V_2)) \subset f^{-1}(V_1 \cap V_2) = \emptyset$. A contradiction.

REMARK 5.7. Theorem 5.6 generalizes [12, Theorem 13].

Let us generalize the well-known notion of cluster set [13] for \mathcal{M} -spaces in the following fashion.

DEFINITION 5.8. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be \mathcal{M} -spaces and $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$. For $x_0 \in X$, the \mathfrak{m} -cluster set of f at x_0 is the set \mathfrak{m} -C $(f, x_0) = \bigcap {\mathfrak{m}_Y \text{-cl}(f(U)) : U \in \mathfrak{mN}(x_0)}.$

The next theorem is a generalization of [11, Theorem 6]. First, we give the following definition:

DEFINITION 5.9. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. The \mathfrak{m} -spiral of a point $x_0 \in X$ is the set \mathfrak{m}_X -Sp $(x_0) = \bigcap {\mathfrak{m}_X - \mathrm{cl}(U) : U \in \mathfrak{m}\mathcal{N}(x_0)}.$

THEOREM 5.10. Let a function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ be \mathcal{M} -continuous, where (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) are \mathcal{M} -spaces. Then for an arbitrarily chosen $x_0 \in X$ we have

$$f(\mathfrak{m}_X \operatorname{Sp}(x_0)) \subset \mathfrak{m} \operatorname{-C}(f, x_0) \subset \mathfrak{m}_Y \operatorname{-Sp}(f(x_0)).$$

Proof. Let us prove the left-hand inclusion. Using Lemma 5.1 we calculate as follows:

$$f(\mathfrak{m}_{X}-\operatorname{Sp}(x_{0})) = f\left(\bigcap \left\{\mathfrak{m}_{X}-\operatorname{cl}(U) : U \in \mathfrak{m}\mathcal{N}(x_{0})\right\}\right) \subset$$
$$\subset \bigcap f\left(\left\{\mathfrak{m}_{X}-\operatorname{cl}(U) : U \in \mathfrak{m}\mathcal{N}(x_{0})\right\}\right) \subset$$
$$\subset \bigcap \left\{\mathfrak{m}_{X}-\operatorname{cl}(f(U)) : U \in \mathfrak{m}\mathcal{N}(x_{0})\right\} = \mathfrak{m}-\operatorname{C}(f,x_{0}).$$

To prove the second inclusion observe that for each $V \in \mathfrak{mN}(f(x_0)), x_0 \in f^{-1}(V) = \mathfrak{m}_X$ -int $(f^{-1}(V))$ by Lemma 5.1. Then there exists a set $U_V \in \mathfrak{m}_X$ with $x_0 \in U_V$, that is $U_V \in \mathfrak{mN}(x_0)$. Therefore we have:

$$\mathfrak{m}\text{-}\mathcal{C}(f,x_{0}) \subset \bigcap \left\{\mathfrak{m}_{Y}\text{-}\mathrm{cl}(f(U_{V})): V \in \mathfrak{m}\mathcal{N}(f(x_{0}))\right\} \subset \\ \subset \bigcap \left\{\mathfrak{m}_{Y}\text{-}\mathrm{cl}\left(f\left(\mathfrak{m}_{X}\text{-}\mathrm{int}\left(f^{-1}(V)\right)\right)\right): V \in \mathfrak{m}\mathcal{N}(f(x_{0}))\right\} \subset \\ \subset \bigcap \left\{\mathfrak{m}_{Y}\text{-}\mathrm{cl}\left(f\left(f^{-1}(V)\right)\right): V \in \mathfrak{m}\mathcal{N}(f(x_{0}))\right\} \subset \\ \subset \bigcap \left\{\mathfrak{m}_{Y}\text{-}\mathrm{cl}(V): V \in \mathfrak{m}\mathcal{N}(f(x_{0}))\right\} = \mathfrak{m}_{Y}\text{-}\mathrm{Sp}(f(x_{0})). \qquad \Box$$

Recall the following property of the diagonal set $\Delta = \{(x, x) : x \in X\}$, where X is an arbitrary nonempty set: $(U \times V) \cap \Delta = \emptyset$ if and only if $U \cap V = \emptyset$ for arbitrarily chosen subsets $U, V \subset X$. Let (X, \mathfrak{m}_X) and (Y, \mathfrak{m}_Y) be infraspaces. By $(X \times Y, \mathfrak{m}_{X \times Y})$ we mean the infraspace with $\mathfrak{m}_{X \times Y} = \{U \times V : U \in \mathfrak{m}_X, V \in \mathfrak{m}_Y\}.$

THEOREM 5.11. Let (X, \mathfrak{m}_X) be an \mathcal{M} -space. The following properties are equivalent:

- (a) (X, \mathfrak{m}_X) is \mathfrak{m} -Hausdorff;
- (b) for any distinct points $x_1, x_2 \in X$ there exist sets $U_{x_1}, U_{x_2} \in \mathfrak{m}_X$ with $x_1 \in U_{x_1}, x_2 \in U_{x_2}$, such that $x_1 \notin \mathfrak{m}_X$ -cl (U_{x_2}) and $x_2 \notin \mathfrak{m}_X$ -cl (U_{x_1}) ;
- (c) for each point $x \in X$, $\bigcap \{\mathfrak{m}_X \text{-cl}(U) : x \in U \in \mathfrak{m}_X\} = \{x\};$
- (d) the set $(X \times X) \setminus \Delta \in O(X \times X, \mathfrak{m}_{X \times X})$.

Proof. (a) \Rightarrow (b). Let $x_1 \neq x_2$. By assumption there exist disjoint $U_{x_1}, U_{x_2} \in \mathfrak{m}_X$ with $x_1 \in U_{x_1}, x_2 \in U_{x_2}$. Using Lemma 2.2 we get $x_1 \notin \mathfrak{m}_X$ -cl (U_{x_2}) and $x_2 \notin \mathfrak{m}_X$ -cl (U_{x_1}) .

(b) \Rightarrow (c). If $y \neq x$, then there exists a set $U_x \in \mathfrak{m}_X$ with $x \in U_x$ such that $y \notin \mathfrak{m}_X$ -cl (U_x) . So, $y \notin \bigcap {\mathfrak{m}_X$ -cl $(U) : x \in U \in \mathfrak{m}_X}$.

 $(c) \Rightarrow (d)$. Let $(x, y) \notin \Delta$. Then $x \neq y$ and by assumption there is a certain set $U \in \mathfrak{m}_X$ with $x \in U$ such that $y \notin \mathfrak{m}_X$ -cl(U). Clearly, we obtain $U \cap \mathfrak{m}_X$ -int $(X \setminus U) = \emptyset$, where $y \in \mathfrak{m}_X$ -int $(X \setminus U) = X \setminus \mathfrak{m}_X$ -cl(U) (use Lemma 2.1 (1b)). Thus for some $W \subset \mathfrak{m}_X$ -int $(X \setminus U)$, where $W \in \mathfrak{m}_X$, we get $(x, y) \in U \times W$. Since $U \cap W = \emptyset$, one has $U \times W \subset (X \times X) \setminus \Delta$ and so the desired result follows.

(d) \Rightarrow (a). Let $x \neq y$. Hence $(x, y) \in (X \times X) \setminus \Delta$ and there exist sets $U, V \in \mathfrak{m}_X$ with $x \in U, y \in V$, such that $(U \times V) \cap \Delta = \emptyset$. Therefore $U \cap V = \emptyset$. This completes the proof.

THEOREM 5.12. Let (X, \mathfrak{m}_X) be an \mathfrak{m} -irreducible \mathcal{M} -space and (Y, \mathfrak{m}_Y) be an \mathfrak{m} - T_2 \mathcal{M} -space. Then each \mathcal{M} -continuous function $f: (X, \mathfrak{m}_X) \to (Y, \mathfrak{m}_Y)$ is constant.

Proof. Let a point $x_0 \in X$ be arbitrary. By Theorem 5.11, \mathfrak{m}_Y -Sp $(f(x_0)) = \{f(x_0)\}$. But by using Theorem 4.14, \mathfrak{m}_X -Sp $(x_0) = X$. Therefore, by Theorem 5.10 one gets $f(X) = \{f(x_0)\}$.

COROLLARY 5.13. Let X, Y be topological spaces. If X is irreducible and Y is Hausdorff, then every continuous function from X to Y is constant.

REFERENCES

- LEVINE, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36–41.
- [2] MAKI, H., On generalizing semi-open sets and preopen sets, Report for Meeting on Topological Spaces Theory and its Applications, 24-25 August 1996, Yatsushiro College Tech., 13–18.
- [3] MAKI, H., CHANDRASEKHARA RAO, K. and NAGOOR GANI, M., On generalizing semiopen sets and preopen sets, Pure Appl. Math. Sci., 49 (1999), 17–29.
- [4] MASHHOUR, A.S., ABD EL-MONSEF, M.E. and EL-DEEB, S.N., On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.

.44	Z. Duszyński	12
[5]	MASHHOUR, A.S., ABD EL-MONSEF, M.E. and HASANEIN I.A., On spaces, Bull. Math. Soc. Math. R. S. Roumanie, 28(76) (1984), 39–45.	pretopological

- [6] MASHHOUR, A.S., ALLAM, A.A., MAHMOUD, F.S. and KHEDR, F.H., On supratopological spaces, Indian J. Pure Appl. Math., 14 (1983), 502-510.
- [7] NJÅSTAD, O., On some classes of nearly open sets, Pacific J. Math., 15 (1965), 961–970.
- [8] NOIRI, T., On α-continuous functions, Čas. Pěst. Mat., 109 (1984), 118–126.
- [9] NOIRI, T. and POPA, V., On decompositions of continuity in topological spaces, Acta Math. Hungar., **128** (2010), 175–189.
- [10] POPA, V. and NOIRI, T., On *M*-continuous functions, Anal. Univ. "Dunărea de Jos" Galați, Ser. Mat. Fiz. Mec. Teor., Fasc. II, **18**(23) (2000), 31–41.
- [11] THOMPSON, T., Concerning certain subsets of non-Hausdorff topological spaces, Boll. Unione Mat. Ital., (5), 14-A (1977), 34-37.
- [12] THOMPSON, T., Characterizations of irreducible spaces, Kyungpook Math. J., 21 (1981), 191 - 194.
- [13] WESTON, J.D., Some theorems on cluster sets, J. London Math. Soc., 33 (1958), 435-441.

Received July 14, 2014 Accepted February 10, 2015 "Casimirus the Great" University Institute of Mathematics Pl. Weyssenhoffa 11 85-072 Bydgoszcz, Poland *E-mail:* imath.duzb@gmail.com