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ON m-IRREDUCIBILITY OF M -SPACES

ZBIGNIEW DUSZYŃSKI

Abstract. We introduce m-irreducible spaces and infratopological spaces. These
notions generalize notions of topological space and irreducible space [T. Thomp-
son, Characterizations of irreducible spaces, Kyungpook Math. J., 21(2) (1981),
191–194]. Characterizations of m-T2 spaces and characterizations of m-irreducible
spaces are obtained. Our research leads to several generalizations of some well-
known results.
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1. INTRODUCTION

In 1996 Haruo Maki [2] generalized the notion of topological space making
use of four subfamilies of the powerset P(X) of a nonempty set X (see also [3]).
In such spaces generalized closure and interior operators are defined and inves-
tigated. Maki generalized and studied the classical concepts of semi-open [1]
and preopen set [4]. In 2000 Popa and Noiri introduced so-called minimal
structure mX on X 6= ∅ as a subfamily of P(X) containing ∅ and X [10]. A
pair (X,mX) we call here an M -space; in [9] Popa and Noiri used the term
m-space instead. For sets equipped with minimal structures, these authors
introduced a continuity-like property, so-called M -continuity, and provided
several characterizations of functions with this property [10]. In the latter
paper, Popa and Noiri also defined m-compactness, m-connectedness, m-T2
spaces and investigated some of their properties. In 1983 Masshour et al. [6]
studied properties of a particular case of M -spaces, so-called supratopological
spaces (briefly: supraspaces); see also [5]. In this paper we offer a new type
of M -spaces called infratopological space (briefly: infraspace). Generalized α-
open [7] and semi-open sets are studied. We obtain some characterizations
of m-T2 spaces (analogous to the classical ones). We introduce m-irreducible
spaces and give several characterizations of them. Some theorems in the paper
are generalizations of already known results.

2. PRELIMINARIES

Let X be a nonempty set. A subfamily mX of the powerset P(X) is called
a minimal structure on X if ∅ ∈ mX and X ∈ mX . The pair (X,mX) is
called then an M -space. mX -closure and mX -interior of any subset S of X are
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defined as follows:

mX-cl(S) =
⋂
{F : S ⊂ F and X \ F ∈ mX};

mX-int(S) =
⋃
{U : S ⊃ U and U ∈ mX}.

The following lemma lists all useful fundamental properties of mX-cl(·) and
mX-int(·).

Lemma 2.1. [2, 10] Let (X,mX) be any M -space. Then, for subsets A,B ⊂
X the following hold:

(1a) mX-cl(X \A) = X \mX-int(A),
(1b) mX-int(X \A) = X \mX-cl(A);
(2a) if X \A ∈ mX , then mX-cl(A) = A,
(2b) if A ∈ mX , then mX-int(A) = A;

(3) mX-cl(∅) = ∅, mX-cl(X) = X, mX-int(∅) = ∅, mX-int(X) = X;
(4a) if A ⊂ B, then mX-cl(A) ⊂ mX-cl(B),
(4b) if A ⊂ B, then mX-int(A) ⊂ mX-int(B);
(5a) A ⊂ mX-cl(A),
(5b) A ⊃ mX-int(A);
(6a) mX-cl

(
mX-cl(A)

)
= mX-cl(A),

(6b) mX-int
(
mX-int(A)

)
= mX-int(A).

A function f : (X,mX) → (Y,mY ), where (X,mX), (Y,mY ) are two M -
spaces, is said to be M -continuous on (X,mX) [10] if for each x ∈ X and
each V ∈ mY containing f(x), there exists U ∈ mX containing x such that
f(U) ⊂ V .

An M -space (X,mX) is said to be supratopological space [6] (briefly: supras-
pace) if for any family {Ui}i∈I ⊂ mX ,

⋃
i∈I Ui ∈ mX .

It is necessary to recall the classical notions of semi-open and α-open subsets
of a topological space (X, τ). A set S ⊂ X is said to be α-open [7] (resp. semi-
open [1]) in (X, τ) if S ⊂ intτ (clτ (intτ (S))) (resp. S ⊂ clτ (intτ (S))). The
folowing characterizations hold: (1) S is α-open in (X, τ) if and only if there
exist U ∈ τ with U ⊂ S ⊂ intτ (clτ (U)) [8, Lemma 4.12]; (2) S is semi-open in
(X, τ) if and only if there is U ∈ τ such that U ⊂ S ⊂ clτ (U) [1, Theorem 1].

Lemma 2.2. Let (X,mX) be any M -space and U, V ∈ mX . If U ∩ V = ∅,
then U ∩mX-cl(V ) = ∅ (and V ∩mX-cl(U) = ∅).

Proof. Since U ∩ V = ∅, then U ⊂ X \ V . By Lemma 2.1, (4b) and (1b),
we obtain mX-int(U) ⊂ X \mX-cl(V ). But mX-int(U) = U (Lemma 2.1 (2b)),
thus U ∩mX-cl(V ) = ∅. �

3. INFRATOPOLOGICAL SPACES AND SEMI-OPEN SETS

Definition 3.1. For any set X, a collection mX ⊂ P(X) is said to be an
infratopology in X if
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(1) ∅, X ∈ mX ;
(2) for any A1, A2 ∈ mX the intersection A1 ∩A2 ∈ mX .

A pair (X,mX) where mX is an infratopology in X, will be called an infras-
pace. Obviously, each topological space is an infraspace and each infraspace is
an M -space. The reverse implications are not true, in general.

Definition 3.2. [10] An M -space (X,mX) is said to be m-Hausdorff (equiv.
m-T2), if for each distinct x, y ∈ X there exist U, V ∈ mX , x ∈ U , y ∈ V , such
that U ∩ V = ∅.

Example 3.3. Let X = {a, b, c, d} and

mX =
{
∅, X, {a}, {b}, {c}, {d}, {a, b}, {b, c}, {c, d}, {a, d}

}
.

The infraspace (X,mX) (that is not a supraspace) is m-T2.

The infraspace given later on in Example 3.7 is not m-Hausdorff.

Example 3.4. Let X = R and mX = {[a,+∞) : a ∈ R} ∪ {(−∞, b] : b ∈
R} ∪ {∅,R}. The M -space (X,mX) is m-T2, but it is not an infraspace (and
not a supraspace).

The following lemma will be of use.

Lemma 3.5. [10, Lemma 3.2] Let (X,mX) be an M -space and S ⊂ X. Then
x ∈ mX-cl(S) if and only if U ∩ S 6= ∅ for each U ∈ mX containing x.

For infraspaces the following property holds.

Proposition. Let (X,mX) be an infraspace and S ⊂ X. Then

U ∩mX-cl(S) ⊂ mX-cl(U ∩ S)

for every U ∈ mX .

Proof. Let x ∈ U ∩ mX-cl(S) be such a point that x /∈ mX-cl(U ∩ S). By
Lemma 3.5, for a certain W ∈ mX with x ∈ W we have W ∩ (U ∩ S) = ∅.
But, since mX is an infratopology on X, x ∈ W ∩ U ∈ mX . Thus we get a
contradiction with the fact that x ∈ mX-cl(S). �

Definition 3.6. Let (X,mX) be an M -space. A subset S ⊂ X is said to
be mX-open in (X,mX) if for each point x ∈ S there exists a set Ux ∈ mX

with x ∈ Ux ⊂ S.

The family of all mX -open subsets of an M -space (X,mX) we denote as
O(X,mX). The following statements (we omit the proofs) hold for every M -
space (X,mX):

(1) mX ⊂ O(X,mX);
(2) mX-int(S) ∈ O(X,mX) for every S ⊂ X;
(3) for every S ⊂ X, S ∈ O(X,mX) if and only if mX-int(S) = S.

The inclusion mX ⊂ O(X,mX) is proper, in general, as the following example
shows.
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Example 3.7. Let X = R and mX = {[a,+∞) : a ∈ R} ∪ {∅,R}. For any
a ∈ R one has (a,+∞) ∈ O(X,mX) \ mX , since (X,mX) is not a topological
space (it is an infraspace only).

It is worth to observe that every M -space (X,mX) is a supraspace if and
only if O(X,mX) = mX .

In [2] the author has introduced a certain generalization of semi-open set,
which – in particular case – can be applied in M -spaces. In this section we
define also a generalization of α-openness of subsets for M -spaces and we study
interrelationships between these notions.

Definition 3.8. Let (X,mX) be an M -space. A subset S ⊂ X is said to
be:

(1) m-semi-open in (X,mX) if there exists a set U ∈ mX such that

U ⊂ S ⊂ mX-cl(U).

(2) m-α-open in (X,mX) if there exists a set U ∈ mX such that

U ⊂ S ⊂ mX-int(mX-cl(U)).

(3) weakly m-semi-open in (X,mX) if

S ⊂ mX-cl(mX-int(S)).

(4) weakly m-α-open in (X,mX) if

S ⊂ mX-int(mX-cl(mX-int(S))).

The families of all subsets defined by (1)–(4) above are denoted respectively
by SO(X,mX), αO(X,mX), wSO(X,mX), and wαO(X,mX).

Theorem 3.9. Let (X,mX) be an M -space. Then the following hold:

(a) mX ⊂ O(X,mX) ⊂ wαO(X,mX) ⊂ wSO(X,mX);
(b) mX ⊂ αO(X,mX) ⊂ SO(X,mX) ⊂ wSO(X,mX);
(c) (1) O(X,mX) ⊂ SO(X,mX) and (2) αO(X,mX) ⊂ wαO(X,mX);
(d) if (X,mX) is a supraspace, then (1) αO(X,mX) = wαO(X,mX) and

(2) SO(X,mX) = wSO(X,mX).

Proof. We use respective properties from Lemma 2.1 and the observation
(3) before Example 3.7.

(a) Only the inclusion O(X,mX) ⊂ wαO(X,mX) requires a proof. Let S ∈
O(X,mX). Then S = mX-int(S). By Lemma 2.1 (5a), S ⊂ mX-cl(mX-int(S))
and by (4b) of that lemma we get S = mX-int(S) ⊂ mX-int(mX-cl(mX-int(S))).

(b) We show the inclusion SO(X,mX) ⊂ wSO(X,mX). Let S ∈ SO(X,mX).
Then for a certain U ∈ mX with U ⊂ S, S ⊂ mX-cl(U). Thus U ⊂ mX-int(S)
and consequently S ⊂ mX-cl(mX-int(S)). To show mX ⊂ αO(X,mX), let
S ∈ mX . Obviously S ⊂ mX-cl(S) and by Lemma 2.1 (4b), mX-int(S) ⊂
mX-int(mX-cl(S)). Since S = mX-int(S) (Lemma 2.1 (3)) finally we obtain
S ⊂ S ⊂ mX-int(mX-cl(S)) and so S ∈ αO(X,mX).
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(c) The case (1) is clear and the proof of (2) is similar to the proof of
SO(X,mX) ⊂ wSO(X,mX).

(d) We shall show only that wαO(X,mX) ⊂ αO(X,mX). Namely, for
S ∈ wαO(X,mX) we have what follows (use Lemma 2.1 (5b)): mX-int(S) ⊂
S ⊂ mX-int(mX-cl(mX-int(S))), where mX-int(S) ∈ mX since (X,mX) is a
supraspace. �

We shall show now that there is, in general, no relationship between families
O(X,mX) and αO(X,mX).

Example 3.10. Let X = {a, b, c, d} and mX =
{
∅, X, {b}, {c}

}
. (X,mX)

is an infraspace which is not a supraspace, and for S = {b, c} we have S ∈
O(X,mX) \ αO(X,mX) since S 6⊂ {b} = mX-int(mX-cl({b})) and S 6⊂ {c} =
mX-int(mX-cl({c})). Observe also that by inclusion O(X,mX) ⊂ SO(X,mX)
we get S ∈ SO(X,mX) \ αO(X,mX), and by O(X,mX) ⊂ wαO(X,mX),
S ∈ wαO(X,mX) \ αO(X,mX).

Example 3.11. Consider the infraspace (X,mX) from Example 3.7. One
may easily check that for each of the kind S = {a}∪ (b,+∞), where a < b, we
have S ∈ αO(X,mX) \O(X,mX).

Observe that by the inclusion αO(X,mX) ⊂ SO(X,mX) we have S ∈
SO(X,mX) \ O(X,mX), and by inclusion αO(X,mX) ⊂ wαO(X,mX), S ∈
wαO(X,mX) \O(X,mX).

Example 3.12. Let X = {a, b, c, d} and mX =
{
∅, X, {c}, {d}, {b, c}

}
.

(X,mX) is an infraspace (not a supraspace) and for S = {a, b, c} we have

S = mX-cl(mX-int({a, b, c})) = {a, b, c},
S 6⊂ {b, c} = mX-int(mX-cl(mX-int(S))).

So, S ∈ wSO(X,mX) \ wαO(X,mX).

Example 3.13. Let X = {a, b, c}, mX =
{
∅, X, {a}, {c}

}
. For the subset

S = {a, c} one gets S ∈ wSO(X,mX) because S ⊂ X = mX-cl(mX-int(S)).
At the same time S /∈ SO(X,mX), since S 6⊂ {a, b} = mX-cl({a}), S 6⊂
mX-cl({c}) = {b, c}.

Some results of the next lemma will be useful in the sequel.

Lemma 3.14. Let (X,mX) be an M -space. Then the following hold:

(a) mX-int(S) ∈ wSO(X,mX) for each S ⊂ X;
(b) mX-int(S) ∈ SO(X,mX) for each S ∈ mX ;
(c) mX-cl(S) ∈ SO(X,mX) for each S ∈ mX ;
(d) mX-cl(S) ∈ wSO(X,mX) for each S ∈ wSO(X,mX).

Proof. (a) Let S ⊂ X. Clearly, we have mX-int(S) ⊂ mX-cl(mX-int(S)) =
mX-cl(mX-int(mX-int(S))) (by Lemma 2.1 (6b)).

(b) Let S ∈ mX . Then by Lemma 2.1 (2b), (5a) we get S = mX-int(S) ⊂
mX-cl(mX-int(S)) = mX-cl(S).
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(c) Directly follows by Lemma 2.1 (5a): S ⊂ mX-cl(S) ⊂ mX-cl(S).
(d) Let S ∈ wSO(X,mX). Then S ⊂ mX-cl(mX-int(S)) and by Lemma 2.1,

(4a) and (6a), mX-cl(S) ⊂ mX-cl(mX-cl(mX-int(S))) = mX-cl(mX-int(S)).
Using again Lemma 2.1 (5a), (4), mX-cl(S) ⊂ mX-cl(mX-int(mX-cl(S))). �

4. M-IRREDUCIBLE SPACES

Definition 4.1. An M -space (X,mX) is said to be m-irreducible if for
every two nonempty sets S1, S2 ∈ mX , S1 ∩ S2 6= ∅.

In general, infraspaces need not be m-irreducible and conversely, as it is
shown below.

Example 4.2. Let X = R and mX =
{
{0} ∪ [a,+∞) : a ≥ 2

}
∪ {∅, X} ∪{

{0} ∪ (−∞,−a] : a ≥ 2
}

. One checks that (X,mX) is m-irreducible and
neither an infraspace nor a supraspace.

Example 4.3. Let X = R and mX =
{
{−1} ∪ [a,+∞) : a ≥ 2

}
∪{

(−∞,−a] ∪ {1} : a ≥ 2
}
∪ {∅, X}. (X,mX) is an infraspace and not a

supraspace, and it is not m-irreducible.

There exists an infraspace which is m-irreducible.

Example 4.4. Let X = R and m′X = mX ∪{{0}}, where mX is the minimal
structure from Example 4.2. (X,m′X) is an m-irreducible infraspace.

Remark 4.5. Each m-irreducible M -space is not m-T2, but the converse is
not true, in general. It is enough to consider Example 4.2.

Definition 4.6. An M -space (X,mX) is said to be weakly Sm-connected
(briefly: wSm-connected) if there are no two nonempty S1, S2 ∈ wSO(X,mX)
such that X = S1 ∪ S2 and S1 ∩ S2 = ∅.

Theorem 4.7. Let (X,mX) be an M -space. The following statements are
equivalent:

(1) (X,mX) is m-irreducible,
(2) S1 ∩ S2 6= ∅ for any nonempty sets S1, S2 ∈ wSO(X,mX),
(3) (X,mX) is wSm-connected,
(4) there is no surjection f : X → {a, b} such that f−1({a}), f−1({b}) ∈

wSO(X,mX).

Proof. (1)⇒(2) Let S1, S2 ∈ wSO(X,mX) be nonempty sets. So, S1 ⊂
mX-cl(mX-int(S1)), S2 ⊂ mX-cl(mX-int(S2)), where

mX-int(S1) 6= ∅ 6= mX-int(S2)

(see Lemma 2.1 (3)). Hence there exist nonempty sets U1, U2 ∈ mX with
U1 ⊂ mX-int(S1) ⊂ S1 and U2 ⊂ mX-int(S2) ⊂ S2. Thus by m-irreducibility
of (X,mX) we infer that S1 ∩ S2 6= ∅.

(2)⇒(3) Clear.
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(3)⇒(4) If there exists a surjection f fulfilling the condition in (4), then it
can be easily seen that (X,mX) is not wSm-connected.

(4)⇒(1) Suppose (X,mX) is not m-irreducible. Then there are two nonempty
sets S1, S2 ∈ mX such that S1∩S2 = ∅. By Lemma 2.2 we get S1∩mX-cl(S2) =
∅. By Lemma 3.14 (c), ∅ 6= mX-cl(S2) ∈ SO(X,mX) ⊂ wSO(X,mX). On the
other hand, by Lemma 2.1 (1b), X \ mX-cl(S2) = mX-int(X \ S2) ⊃ S1 6= ∅.
Using Lemma 3.14 (a) we have that ∅ 6= mX-int(X \ S2) ∈ wSO(X,mX). To
obtain a contradiction it is enough to define a surjection f : X → {a, b} as
follows: f = a on mX-cl(S2), f = b on X \mX-cl(S2). �

Remark 4.8. Theorem 4.7 generalizes [12, Theorem 17].

Theorem 4.9. Let (X,mX) be any M -space. The following statements are
equivalent:

(1) (X,mX) is m-irreducible,
(2) S1 ∩ S2 6= ∅ for every nonempty sets S1, S2 ∈ wαO(X,mX),
(3) S1 ∩ S2 6= ∅ for every nonempty sets S1, S2 ∈ O(X,mX).

Proof. (1)⇒(2) The implication (1)⇒(2) of Theorem 4.7 is true for arbitrary
M -space (Remark 4.8 (1)). Therefore the result follows from wαO(X,mX) ⊂
wSO(X,mX) (Theorem 3.9 (a)).

(2)⇒(3) Use the inclusion O(X,mX) ⊂ wαO(X,mX) (Theorem 3.9).
(3)⇒(1) By the inclusion O(X,mX) ⊃ mX . �

The proof of the next theorem is similar to the proof of Theorem 4.9 – we
use inclusions (b) from Theorem 3.9.

Theorem 4.10. Let (X,mX) be any M -space. The following are equivalent:

(1) (X,mX) is m-irreducible,
(2) S1 ∩ S2 6= ∅ for every nonempty sets S1, S2 ∈ SO(X,mX),
(3) S1 ∩ S2 6= ∅ for every nonempty sets S1, S2 ∈ αO(X,mX).

In the class of non-infraspaces we can indicate both wSm-connected and
non-wSm-connected M -spaces.

Example 4.11. Let X = {a, b, c, d} and mX =
{
∅, X, {b, c}, {c, d}

}
. It

can be easily checked that this non-infraspace (X,mX) (which is also not a
supraspace) is wSm-connected.

Example 4.12. LetX = {a, b, c, d, e}, mX =
{
∅, X, {d, e}, {a, b, c}, {c, d, e}

}
.

The non-infraspace (X,mX) (which is a supraspace) is not wSm-connected.

Definition 4.13. A subset S of an M -space (X,mX) is said to be m-dense
in (X,mX) if mX-cl(S) = X.

Theorem 4.14. Let (X,mX) be an M -space. The following are equivalent:

(1) (X,mX) is m-irreducible.
(2) Every nonempty set S ∈ wSO(X,mX) is m-dense in (X,mX).
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(3) Every nonempty set S ∈ SO(X,mX) is m-dense in (X,mX).
(4) Every nonempty set S ∈ αO(X,mX) is m-dense in (X,mX).
(5) Every nonempty set S ∈ wαO(X,mX) is m-dense in (X,mX).
(6) Every nonempty set S ∈ O(X,mX) is m-dense in (X,mX).
(7) Every nonempty set S ∈ mX is m-dense in (X,mX).

Proof. (1)⇒(2) Suppose there exits a nonempty set S ∈ wSO(X,mX) such
that mX-cl(S) 6= X. Hence mX-int(X \ S) = X \ mX-cl(S) 6= ∅. It im-
plies the existence of a nonempty set U ∈ mX with U ⊂ mX-int(X \ S).
On the other hand, mX-cl(S) ∈ wSO(X,mX) by Lemma 3.14 (d). Thus
there are two nonempty sets S1 = U , S2 = mX-cl(S) ∈ wSO(X,mX) such
that S1 ∩ S2 = ∅. Consequently by Theorem 4.7 (2), (X,mX) is not m-
irreducible. Implications (2)⇒(5)⇒(6)⇒(7) are obvious by Theorem 3.9 (a).
Implications (2)⇒(3)⇒(4)⇒(7) hold by Theorem 3.9 (b). Thus it is enough
to show (7)⇒(1). Suppose (X,mX) is not m-irreducible. Then for some two
nonempty sets S1, S2 ∈ mX , S1 ∩ S2 = ∅. Using now Lemma 2.2 we get
S1 ∩mX-cl(S2) = ∅ which shows that mX-cl(S2) 6= X. �

Problem. It is an open problem to find a non-infraspace being not m-
irreducible, for which nevertheless the condition (7) holds.

Any filterbase given on an arbitrary M -space we will call m-filterbase. Let
(X,mX) be an infraspace and FmX = {Ai ∈ mX : i ∈ I and Ai1 ∩ Ai2 6=
∅ for i1, i2 ∈ I}. Obviously FmX is an m-filterbase on (X,mX). Define also
the folowing two families of subsets of any M -space (X,mX): mN(y) = {S ∈
mX : y ∈ S} and mU(y) = {U ∈ O(X,mX) : y ∈ U}.

Definition 4.15. Let F be an m-filterbase on (X,mX) and y0 ∈ X. We
say that F accumulates at y0 if for each U ∈ mU(y0) and each A ∈ F,
A ∩ U 6= ∅.

Theorem 4.16. An infraspace (X,mX) is m-irreducible if and only if every
m-filterbase F ⊂ mX accumulates at every point of X.

Proof. (⇒) Let (X,mX) be m-irreducible and let F ⊂ mX be arbitrary m-
filterbase in it. For any x ∈ X and every U =

⋃
{Ui ∈ mX : Ui ⊂ U, i ∈ I} ∈

U(x) and A ∈ F, one has Ui ∩ A 6= ∅, i ∈ I, because of m-irreducibility of
(X,mX). So, A ∩ U 6= ∅.

(⇐) Suppose every m-filterbase F ⊂ mX accumulates at every point x ∈ X.
Let S1, S2 ∈ mX be arbitrary two nonempty sets and let x ∈ S1, y ∈ S2.
Consider the family mN(x). Obviously, it is an m-filterbase in (X,mX), since
(X,mX) is an infraspace. By assumption, mN(x) accumulates at y, that is
for each U ∈ mU(y) and each A ∈ mN(x), A ∩ U 6= ∅. In particular, for
U = S2 and A = S1 one obtains S1 ∩ S2 6= ∅. This shows that (X,mX) is
m-irreducible. �

Remark 4.17. Theorem 4.16 generalizes [12, Theorem 16].
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5. M-IRREDUCIBILITY AND FUNCTIONS

Recall the following useful characterizations of M -continuity.

Lemma 5.1. [10, Theorem 3.1]. Let (X,mX) and (Y,mY ) be two arbitrary
M -spaces. For a function f : (X,mX) → (Y,mY ) the following properties are
equivalent:

(a) f is M -continuous,
(b) f−1(V ) = mX-int

(
f−1(V )

)
for every V ∈ mY ,

(c) f
(
mX-cl(S)

)
⊂ mX-cl(f(S)) for every S ⊂ X,

(d) f−1(V ) ∈ O(X,mX) for every V ∈ mY .

Equivalence (b)⇔(d) follows directly by the observation (3) in Section 3
(page 135).

Corollary 5.2. Let (X,mX) and (Y,mY ) be two arbitrary M -spaces. Then
for each M -continuous function f : (X,mX) → (Y,mY ) and any subset T of
Y one has

f
(
mX-cl

(
f−1(T )

))
⊂ mY-cl(T ).

Proof. Omitted. �

Theorem 5.3. Let (X,mX) and (Y,mY ) be M -spaces. If (X,mX) is m-
irreducible and a surjection f : (X,mX) → (Y,mY ) is M -continuous, then
(Y,mY ) is m-irreducible.

Proof. Let V ∈ mY be arbitrarily chosen. Since f is M -continuous, by
Lemma 5.1, f−1(V ) ∈ O(X,mX). Then by m-irreducibility of (X,mX), using
Theorem 4.14 we get that X = mX-cl

(
f−1(V )

)
. By Corollary 5.2 one obtains

that Y ⊂ mY-cl(V ). So, again by Theorem 4.14, (Y,mY ) is m-irreducible. �

The result of Theorem 5.3 may be extended for a class of functions defined
as follows:

Definition 5.4. Let (X,mX) and (Y,mY ) be two arbitrary M -spaces. A
function f : (X,mX) → (Y,mY ) is said to be wSm-continuous if f−1(V ) ∈
wSO(X,mX) for every V ∈ mY .

M -continuity implies wSm-continuity, but the converse is not true, in gen-
eral.

Example 5.5. Let X = {a, b, c, d}, mX =
{
∅, X, {a}, {b}

}
, Y = {a, b, c}

and mY =
{
∅, Y, {b}, {c}

}
. Define a function f : (X,mX) → (Y,mY ) as fol-

lows: f(a) = f(d) = b, f(b) = f(c) = c. One checks that f−1({b}), f−1({c}) ∈
wSO(X,mX) \O(X,mX).

Theorem 5.6. Let (X,mX) and (Y,mY ) be M -spaces. If (X,mX) is m-
irreducible and a surjection f : (X,mX) → (Y,mY ) is wSm-continuous, then
(Y,mY ) is m-irreducible.
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Proof. Suppose (Y,mY ) is not m-irreducible. Then for some nonempty sets
V1, V2 ∈ mY , V1 ∩ V2 = ∅. It is clear that by wSm-continuity of f ,

mX-int
(
f−1(V1)

)
6= ∅ 6= mX-int

(
f−1(V2)

)
.

Thus for some nonempty U1, U2 ∈ mX we have U1 ∩ U2 ⊂ mX-int
(
f−1(V1)

)
∩

mX-int
(
f−1(V2)

)
⊂ f−1(V1 ∩ V2) = ∅. A contradiction. �

Remark 5.7. Theorem 5.6 generalizes [12, Theorem 13].

Let us generalize the well-known notion of cluster set [13] for M -spaces in
the following fashion.

Definition 5.8. Let (X,mX) and (Y,mY ) be M -spaces and f : (X,mX)→
(Y,mY ). For x0 ∈ X, the m-cluster set of f at x0 is the set m-C(f, x0) =⋂
{mY-cl(f(U)) : U ∈ mN(x0)}.

The next theorem is a generalization of [11, Theorem 6]. First, we give the
following definition:

Definition 5.9. Let (X,mX) be an M -space. The m-spiral of a point
x0 ∈ X is the set mX-Sp(x0) =

⋂
{mX-cl(U) : U ∈ mN(x0)}.

Theorem 5.10. Let a function f : (X,mX) → (Y,mY ) be M -continuous,
where (X,mX) and (Y,mY ) are M -spaces. Then for an arbitrarily chosen
x0 ∈ X we have

f
(
mX-Sp(x0)

)
⊂ m-C(f, x0) ⊂ mY-Sp(f(x0)).

Proof. Let us prove the left-hand inclusion. Using Lemma 5.1 we calculate
as follows:

f
(
mX-Sp(x0)

)
= f

(⋂
{mX-cl(U) : U ∈ mN(x0)}

)
⊂

⊂
⋂

f
(
{mX-cl(U) : U ∈ mN(x0)}

)
⊂

⊂
⋂
{mX-cl(f(U)) : U ∈ mN(x0)} = m-C(f, x0).

To prove the second inclusion observe that for each V ∈ mN(f(x0)), x0 ∈
f−1(V ) = mX-int

(
f−1(V )

)
by Lemma 5.1. Then there exists a set UV ∈ mX

with x0 ∈ UV , that is UV ∈ mN(x0). Therefore we have:

m-C(f, x0) ⊂
⋂
{mY-cl(f(UV )) : V ∈ mN(f(x0))} ⊂

⊂
⋂ {

mY-cl
(
f
(
mX-int

(
f−1(V )

)))
: V ∈ mN(f(x0))

}
⊂

⊂
⋂ {

mY-cl
(
f
(
f−1(V )

))
: V ∈ mN(f(x0))

}
⊂

⊂
⋂ {

mY-cl(V ) : V ∈ mN(f(x0))
}

= mY-Sp(f(x0)). �

Recall the following property of the diagonal set ∆ = {(x, x) : x ∈ X},
where X is an arbitrary nonempty set: (U × V ) ∩ ∆ = ∅ if and only if
U ∩ V = ∅ for arbitrarily chosen subsets U, V ⊂ X.
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Let (X,mX) and (Y,mY ) be infraspaces. By (X × Y,mX×Y ) we mean the
infraspace with mX×Y = {U × V : U ∈ mX , V ∈ mY }.

Theorem 5.11. Let (X,mX) be an M -space. The following properties are
equivalent:

(a) (X,mX) is m-Hausdorff;
(b) for any distinct points x1, x2 ∈ X there exist sets Ux1 , Ux2 ∈ mX with

x1 ∈ Ux1, x2 ∈ Ux2, such that x1 /∈ mX-cl(Ux2) and x2 /∈ mX-cl(Ux1);
(c) for each point x ∈ X,

⋂
{mX-cl(U) : x ∈ U ∈ mX} = {x};

(d) the set (X ×X) \∆ ∈ O(X ×X,mX×X).

Proof. (a)⇒(b). Let x1 6= x2. By assumption there exist disjoint Ux1 , Ux2 ∈
mX with x1 ∈ Ux1 , x2 ∈ Ux2 . Using Lemma 2.2 we get x1 /∈ mX-cl(Ux2) and
x2 /∈ mX-cl(Ux1).

(b)⇒(c). If y 6= x, then there exists a set Ux ∈ mX with x ∈ Ux such that
y /∈ mX-cl(Ux). So, y /∈

⋂
{mX-cl(U) : x ∈ U ∈ mX}.

(c)⇒(d). Let (x, y) /∈ ∆. Then x 6= y and by assumption there is a
certain set U ∈ mX with x ∈ U such that y /∈ mX-cl(U). Clearly, we obtain
U ∩ mX-int(X \ U) = ∅, where y ∈ mX-int(X \ U) = X \ mX-cl(U) (use
Lemma 2.1 (1b)). Thus for some W ⊂ mX-int(X \U), where W ∈ mX , we get
(x, y) ∈ U ×W . Since U ∩W = ∅, one has U ×W ⊂ (X ×X) \∆ and so the
desired result follows.

(d)⇒(a). Let x 6= y. Hence (x, y) ∈ (X × X) \ ∆ and there exist sets
U, V ∈ mX with x ∈ U , y ∈ V , such that (U × V ) ∩ ∆ = ∅. Therefore
U ∩ V = ∅. This completes the proof. �

Theorem 5.12. Let (X,mX) be an m-irreducible M -space and (Y,mY ) be
an m-T2 M -space. Then each M -continuous function f : (X,mX) → (Y,mY )
is constant.

Proof. Let a point x0 ∈ X be arbitrary. By Theorem 5.11, mY-Sp(f(x0)) =
{f(x0)}. But by using Theorem 4.14, mX-Sp(x0) = X. Therefore, by Theorem
5.10 one gets f(X) = {f(x0)}. �

Corollary 5.13. Let X,Y be topological spaces. If X is irreducible and Y
is Hausdorff, then every continuous function from X to Y is constant.
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