au-NORMAL DECOMPOSITIONS OF MODULES

IULIU CRIVEI and LIANA CRIVEI

Abstract. Let τ be a hereditary torsion theory on the category of modules. A module A is called finitely τ -completely decomposable if it is a finite direct sum of τ -uniform τ -injective modules. For a submodule B of a module A, we show that the τ -injective envelope of A/B is finitely τ -completely decomposable if and only if B has a so-called τ -normal decomposition in A.

MSC 2010. 16S90,16D50

Key words. Torsion theory, τ -injective module, τ -irreducible submodule, τ -uniform module, τ -completely decomposable module, τ -normal decomposition.

1. INTRODUCTION

A classical result of E. Matlis states that every injective module over a left noetherian ring has a decomposition as a direct sum of indecomposable injective modules [9, Theorem 2.5]. Over an arbitrary ring, a module (not necessarily injective) having such a direct sum decomposition was called *com*pletely decomposable by C. Faith and E. Walker [6, p. 217], and played an important part in the theory of injective modules. For a hereditary torsion theory τ on the category of modules, a torsion-theoretic counterpart is the so-called τ -completely decomposable module (i.e. direct sum of some minimal τ -injective modules), which was studied by K. Masaike and T. Horigome [8], S. Mohamed, B.J. Müller and S. Singh [10, 11], J.L. Bueso, P. Jara and B. Torrecillas [1], S. Crivei [3, 4] or S. Charalambides and J. Clark [2]. For a submodule B of a module A, our main result characterizes when the τ injective envelope of A/B is finitely τ -completely decomposable in terms of the existence of a so-called τ -normal decomposition of B in A. By specialising our results to the hereditary torsion theory having all modules torsion, one obtains properties from the classical theory of injective modules.

2. PRELIMINARIES

Throughout the paper R is an associative ring with non-zero identity and all modules are unitary left R-modules. We recall some terminology on torsion theories following [5, 7]. By $\tau = (\mathcal{T}, \mathcal{F})$ we denote a torsion theory on the category of modules. The modules in the class \mathcal{T} are called τ -torsion, and the modules in the class \mathcal{F} are called τ -torsionfree. The class \mathcal{T} is closed under direct sums, factor modules and extensions, while the class \mathcal{F} is closed under direct products, submodules and extensions. If the class \mathcal{T} is closed under submodules, then τ is called *hereditary*. Throughout the paper τ will be a hereditary torsion theory on the category of left R-modules. The following definitions give the torsion-theoretic versions of the notions of essential submodule, irreducible submodule, uniform module and injective module.

DEFINITION 2.1. A submodule B of a module A is called:

- (1) τ -dense if A/B is τ -torsion.
- (2) τ -essential if B is essential and τ -dense in A.
- (3) τ -irreducible if $B \neq A$ and for every submodules B_1 and B_2 of A with $B \subset B_1$ and $B \subset B_2$, we have $B \subset B_1 \cap B_2$ and $B_1 \cap B_2$ is a τ -dense submodule of A.

DEFINITION 2.2. A module A is called:

- (1) τ -uniform if $A \neq 0$ and every non-zero submodule B of A is τ -essential in A.
- (2) τ -injective if it is injective with respect to every monomorphism with a τ -torsion cokernel.

The following known proposition will be frequently used [7, p. 84].

PROPOSITION 2.3. Every module A has a τ -injective envelope, which is unique up to isomorphism and denoted by $E_{\tau}(A)$. The τ -injective envelope of A is a τ -essential extension of A.

PROPOSITION 2.4. Let A be a τ -injective module. Then the following are equivalent:

- (i) A is τ -uniform.
- (ii) $A \neq 0$ and $A = E_{\tau}(B)$ for every non-zero submodule B of A.
- (iii) The zero submodule of A is τ -irreducible.

Proof. (i) \Rightarrow (ii) Assume that A is τ -uniform. Then $A \neq 0$. Let B be a nonzero submodule of A. Then B is τ -essential in A. We may consider $E_{\tau}(B) \subseteq A$. Since B is τ -dense in A, A/B is τ -torsion. Then the factor module $A/E_{\tau}(B)$ is τ -torsion, hence $E_{\tau}(B)$ is τ -dense in A. Then τ -injectivity implies that $E_{\tau}(B)$ is a direct summand of A. Since B is essential in A, so is $E_{\tau}(B)$. It follows that $E_{\tau}(B) = A$.

(ii) \Rightarrow (iii) Assume that (ii) holds. Let B_1 and B_2 be non-zero submodules of A. Then $A = E_{\tau}(B_1)$ by hypothesis. Since B_1 is τ -dense in $E_{\tau}(B_1) = A$, B_1 is essential in A, hence we have $B_1 \cap B_2 \neq 0$. Then $A = E_{\tau}(B_1 \cap B_2)$ by hypothesis, hence $B_1 \cap B_2$ is τ -essential in $E_{\tau}(B_1 \cap B_2) = A$. It follows that the zero submodule of A is τ -irreducible.

(iii) \Rightarrow (i) Assume that the zero submodule of A is τ -irreducible. Then $A \neq 0$. Let B be a non-zero submodule of A. By hypothesis, for every non-zero submodule C of $A, B \cap C$ is a non-zero τ -dense submodule of A. Then B is essential in A. Since $B \cap C$ is τ -dense in $A, A/(B \cap C)$ is τ -torsion. It follows that the factor module A/B is τ -torsion, hence B is τ -dense in A. Therefore, B is τ -essential in A, and so A is τ -uniform.

128

COROLLARY 2.5. Let A be a module. Then:

(1) The zero submodule of A is τ -irreducible if and only if $E_{\tau}(A)$ is τ -uniform. (2) A submodule B of A is τ -irreducible if and only if $E_{\tau}(A/B)$ is τ -uniform.

Proof. (1) Assume that the zero submodule of A is τ -irreducible. Then $A \neq 0$. By Proposition 2.4, in order to show that $E_{\tau}(A)$ is τ -uniform it is enough to prove that the zero submodule of $E_{\tau}(A)$ is τ -irreducible. Let B_1, B_2 be non-zero submodules of $E_{\tau}(A)$. Since A is essential in $E_{\tau}(A)$, we have $B_1 \cap A \neq 0$ and $B_2 \cap A \neq 0$. By hypothesis, $B_1 \cap B_2 \cap A$ is a non-zero τ -dense submodule of A. Then we have $B_1 \cap B_2 \neq 0$. In the short exact sequence

$$0 \to A/(B_1 \cap B_2 \cap A) \to E_\tau(A)/(B_1 \cap B_2 \cap A) \to E_\tau(A)/A \to 0$$

the first and the last terms are τ -torsion, hence the middle one must also be τ -torsion. Then the factor module $E_{\tau}(A)/(B_1 \cap B_2)$ must be τ -torsion, hence $B_1 \cap B_2$ is τ -dense in $E_{\tau}(A)$. Therefore, the zero submodule of $E_{\tau}(A)$ is τ -irreducible.

Conversely, assume that $E_{\tau}(A)$ is τ -uniform. Then the zero submodule of $E_{\tau}(A)$ is τ -irreducible by Proposition 2.4. Let B_1, B_2 be non-zero submodules of A. It follows that $B_1 \cap B_2$ is a non-zero τ -dense submodule of $E_{\tau}(A)$. Since $E_{\tau}(A)/(B_1 \cap B_2)$ is τ -torsion, so is its submodule $A/(B_1 \cap B_2)$. Hence $B_1 \cap B_2$ is a τ -dense submodule of A. Therefore, the zero submodule of A is τ -irreducible.

(2) Let B_1 and B_2 be submodules of A such that $B \subset B_1$ and $B \subset B_2$. Then we have $B \subset B_1 \cap B_2$ if and only if $B_1/B \cap B_2/B \neq 0$. Also, $B_1 \cap B_2$ is τ -dense in A if and only if $A/(B_1 \cap B_2)$ is τ -torsion if and only if $(B_1/B) \cap (B_2/B)$ is τ -dense in A/B. It follows that the submodule B of A is τ -irreducible if and only if the zero submodule of A/B is τ -irreducible. But this is equivalent to $E_{\tau}(A/B)$ being τ -uniform by Proposition 2.4.

Another needed notion is that of irredundant intersection of submodules. If B_1, \ldots, B_n are submodules of a module A, then the intersection $B_1 \cap \ldots \cap B_n$ is called *irredundant* if

$$B_i \not\supseteq B_1 \cap \ldots \cap B_{i-1} \cap B_{i+1} \cap \ldots \cap B_n$$

for every $i \in \{1, ..., n\}$ [12, p. 91]. Note that one can always refine a finite intersection of submodules to an irredundant intersection by omitting certain submodules.

3. τ -NORMAL DECOMPOSITION

In this section we characterize when the τ -injective envelope of a factor module is finitely τ -completely decomposable in the sense of the following definition. DEFINITION 3.1. A module A is called finitely τ -completely decomposable if it is isomorphic to a finite direct sum of τ -uniform τ -injective modules, say E_1, \ldots, E_n . Then $\{E_1, \ldots, E_n\}$ is called a complete set of associated τ -uniform τ -injective modules of A.

If B is a submodule of a module A and $A \cong E_{\tau}(A/B) \cong E_1 \oplus \cdots \oplus E_n$ is a finite direct sum of τ -uniform τ -injective modules such that $E_1 \cong \ldots \cong E_n \cong E$, then B is called *E*-isotopic.

The following lemma is immediate from the above definition.

LEMMA 3.2. Let A be a module and let B_1, \ldots, B_n be E-isotopic submodules of A for some τ -uniform τ -injective module E. Then $B = B_1 \cap \ldots \cap B_n$ is an E-isotopic submodule of A.

DEFINITION 3.3. Let A be a module and let $B = B_1 \cap \ldots \cap B_n$ be an irredundant intersection of submodules of A. This intersection is called a τ -normal decomposition of B in A if for every $i \in \{1, \ldots, n\}$, B_i is E_i -isotopic for some non-isomorphic τ -uniform τ -injective modules E_i .

Now we may give our main result.

THEOREM 3.4. Let B be a submodule of a module A. The following are equivalent:

- (i) $E_{\tau}(A/B)$ is finitely τ -completely decomposable.
- (ii) B is a finite intersection of τ -irreducible submodules of A.
- (iii) B has a τ -normal decomposition in A.

Proof. (i) \Rightarrow (ii) Suppose that $E_{\tau}(A/B)$ is finitely τ -completely decomposable, say $E_{\tau}(A/B) = E_1 \oplus \cdots \oplus E_n$ for some τ -uniform τ -injective modules E_1, \ldots, E_n . Let $p : A \to A/B$ be the natural homomorphism and $j : A/B \to E_{\tau}(A/B)$ the inclusion homomorphism. For every $i \in \{1, \ldots, n\}$, let $q_i : E_{\tau}(A/B) \to E_i$ be the canonical projection, $f_i = q_i jp : A \to E_i$ and $B_i = \operatorname{Ker}(f_i)$. Then we have $B = B_1 \cap \ldots \cap B_n$.

Let $i \in I$. Since A/B is τ -essential in $E_{\tau}(A/B)$ and $E_i \neq 0$, we have $(A/B) \cap E_i \neq 0$. Then we must have $B_i \neq A$. It follows that $0 \neq A/B_i \cong \text{Im}(f_i) \subseteq E_i$. Since E_i is τ -uniform τ -injective, we have $E_i \cong E_{\tau}(A/B_i)$ by Proposition 2.4. Then B_i is τ -irreducible by Corollary 2.5, and so B is a finite intersection of τ -irreducible submodules of A.

(ii) \Rightarrow (i) Suppose that $B = B_1 \cap \ldots \cap B_n$ is an intersection of τ -irreducible submodules of A. We may assume that the intersection is already irredundant. By Proposition 2.4, a non-zero module is τ -uniform τ -injective if and only if it is the τ -injective envelope of each of its non-zero submodules, that is, it is minimal τ -injective in the sense of [4]. By Corollary 2.5 it follows that each $E_{\tau}(A/B_i)$ is minimal τ -injective. By [4, Theorem 3.6] we have

$$E_{\tau}(A/B) \cong E_{\tau}(A/B_1) \oplus \cdots \oplus E_{\tau}(A/B_n),$$

hence $E_{\tau}(A/B)$ is finitely τ -completely decomposable.

(ii) \Rightarrow (iii) Suppose that $B = B_1 \cap \ldots \cap B_n$ is an intersection of τ -irreducible submodules of A. We may assume that the intersection is already irredundant. Then each B_i is $E_{\tau}(A/B_i)$ -isotopic. We may group together the submodules B_i having isomorphic associated τ -uniform τ -injective modules and use Lemma 3.2 to produce a writing of B as a finite intersection of isotopic submodules with non-isomorphic associated τ -uniform τ -injective modules. Finally, one obtains a τ -normal decomposition of B in A by making the intersection irredundant.

(iii) \Rightarrow (ii) Suppose that $B = B_1 \cap \ldots \cap B_n$ is a τ -normal decomposition of Bin A. Then for every $i \in \{1, \ldots, n\}$, B_i is E_i -isotopic for some non-isomorphic τ -uniform τ -injective modules E_i . If $B_i = B_{i1} \cap \ldots \cap B_{im}$, then $E_{\tau}(A/B_{ij}) \cong E_i$ for every $j \in \{1, \ldots, m\}$ and each B_{ij} is τ -irreducible by Corollary 2.5. Hence B may be written as a finite intersection of τ -irreducible submodules of A. \Box

COROLLARY 3.5. Let B be a submodule of a module A and let

$$B = B_1 \cap \ldots \cap B_n = B'_1 \cap \ldots \cap B'_m$$

be τ -normal decompositions of B in A such that B_i is E_i -isotopic and B_j is E'_j -isotopic for some τ -uniform τ -injective modules E_i and E'_j for every $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$. Then n = m and there is a one-to-one correspondence between the modules E_i and E'_j such that the corresponding modules are isomorphic.

Proof. By Proposition 2.4 and [7, Proposition 8.16], the endomorphism ring of a τ -uniform τ -injective module is local. Then the corollary follows by the Krull-Remak-Schmidt-Azumaya Theorem.

As already mentioned in the introduction, one may specialize our results to the hereditary torsion theory τ having all modules τ -torsion in order to obtain similar properties from the classical theory of injective modules (e.g. see [12, Chapter 4]).

We end with an example for another hereditary torsion theory.

EXAMPLE 3.6. Following [4, Example 3.7], consider the polynomial ring $R = K[X_1, \ldots, X_{n+2}]$, where K is a field and n is a positive integer. Consider the prime ideals $p = (X_1X_2, X_1X_3)$, $p_1 = (X_1)$ and $p_2 = (X_2, X_3)$ of R generated by the specified elements. Then we have $p = p_1 \cap p_2$. Let τ_n be the hereditary torsion theory generated by all modules M of Krull dimension dim $M \leq n$. Then $E_{\tau_n}(R/p_1)$ and $E_{\tau_n}(R/p_2)$ are τ_n -uniform τ_n -injective and

$$E_{\tau_n}(R/p) \cong E_{\tau_n}(R/p_1) \oplus E_{\tau_n}(R/p_2)$$

by [4, Example 3.7]. Hence p_1 and p_2 are τ_n -irreducible by Corollary 2.5, and so $p = p_1 \cap p_2$ is an irredundant intersection of τ_n -irreducible ideals of R. Moreover, p_1 is $E_{\tau_n}(R/p_1)$ -isotopic and p_2 is $E_{\tau_n}(R/p_2)$ -isotopic. Hence $p = p_1 \cap p_2$ is a τ_n -normal decomposition of p in R by Theorem 3.4.

REFERENCES

- BUESO, J.L., JARA P. and TORRECILLAS, B., Decomposition of injective modules relative to a torsion theory, Israel J. Math., 52 (1985), 266–272.
- [2] CHARALAMBIDES, S. and CLARK, J., τ-injective modules. In: Modules and Comodules (T. Brzezinski, J.L. Gómez Pardo, I. Shestakov, P.F. Smith Eds.), Series: Trends in Mathematics, Birkhäuser, 2008, pp. 143–168.
- [3] CRIVEI, S., On τ -completely decomposable modules, Bull. Aust. Math. Soc., **70** (2004), 163–175.
- [4] CRIVEI, S., τ-injective submodules of indecomposable injective modules, J. Korean Math. Soc., 43 (2006), 65–76.
- [5] DICKSON, S.E., A torsion theory for abelian categories, Trans. Amer. Math. Soc., 121 (1966), 223–235.
- [6] FAITH, C. and WALKER, E., Direct sum representations of injective modules, J. Algebra, 5 (1967), 203–221.
- [7] GOLAN, J.S., Torsion Theories, Longman Scientific and Technical, New York, 1986.
- [8] MASAIKE, K. and HORIGOME, T., Direct sum of σ -injective modules, Tsukuba J.Math., 4 (1980), 77–81.
- [9] MATLIS, E., Injective modules over noetherian rings, Pacific J. Math., 8 (1958), 511– 528.
- [10] MOHAMED, S., MÜLLER, B.J. and SINGH, S., A note on the decomposition of σ-injective modules, Comm. Algebra, 12 (1984), 663–672.
- [11] MOHAMED, S. and SINGH, S., Decomposition of σ -injective modules, Comm. Algebra, **9** (1981), 601–611.
- [12] SHARPE, D.W. and VÁMOS, P., *Injective Modules*, Cambridge University Press, Cambridge, 1972.

Received March 5, 2014 Accepted July 12, 2014 Technical University Department of Mathematics Str. C. Daicoviciu 15 400020 Cluj-Napoca, Romania E-mail: crivei@math.utcluj.ro

Babeş-Bolyai University Faculty of Mathematics and Computer Science Str. M. Kogălniceanu 1 400084 Cluj-Napoca, Romania