
MATHEMATICA, Tome 56 (79), No 2, 2014, pp. 103–116

EXACT SOLUTIONS OF SOME NONLINEAR SYSTEMS
OF PARTIAL DIFFERENTIAL EQUATIONS

BY USING THE FUNCTIONAL VARIABLE METHOD
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Abstract. In this paper, we will employ the functional variable method for
solving some nonlinear systems of partial differential equations which are very
important in applied sciences, namely, the generalized Drinfel’d-Sokolov-Wilson
system, Bogoyavlenskii equations and Davey-Sterwatson equations. This ap-
proach provides a more powerful mathematical tool for solving nonlinear differ-
ential equations which can be converted to a second-order ordinary differential
equation through the travelling wave transformation.

MSC 2010. 83C15, 74J35, 93C10.

Key words. Functional variable method, Generalized Drinfel’d-Sokolov-Wilson
system, Bogoyavlenskii equations, Davey-Sterwatson equations, Nonlinear sys-
tem.

1. INTRODUCTION

In the theoretical investigation of the dynamics of nonlinear waves, coupled
nonlinear partial differential equations are of great importance, due to their
very wide applications in many fields of physics. As a matter of fact, coupled
nonlinear partial differential equations are used to model motions of waves in
a great array of contexts, including plasma physics, fluid mechanics, optical
fibers, hydrodynamics, quantum mechanics and many other nonlinear disper-
sive systems. These nonlinear partial differential equations play a key role in
describing key scientific phenomena. For example, the dispersive long wave
equation is very helpful for costal and civil engineers to apply the nonlinear
water wave model in harbor and coastal design. Recently, many kinds of pow-
erful methods have been proposed to find exact solutions of nonlinear partial
differential equations, for example, Variational iteration method [15], Alge-
braic method [19], Jacobi elliptic function expansion method [11], F-expansion
method [13], Auxiliary equation method [20], Tanh method [5], Generalized
hyperbolic function [12] and Functional variable method [18]. Among these
methods, the Functional variable method is a powerful mathematical tool to
solve nonlinear partial differential equations. By using this method, many
kinds of important nonlinear partial differential equations have been solved
successfully [18, 17]. The aim of this paper is to construct exact solutions of
the generalized Drinfel’d-Sokolov-Wilson system, the Bogoyavlenskii equations
and the Davey-Sterwatson equations by using the functional variable method.
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The rest of this paper is organized as follows. In Section 2, brief descrip-
tion of the functional variable method for finding traveling wave solutions
of nonlinear system of partial differential equations is given. In Section 3,
the method is employed for obtaining the exact solutions of the generalized
Drinfel’d-Sokolov-Wilson system, the Bogoyavlenskii equations and the Davey-
Sterwatson equations. Finally, some conclusions are given in Section 4.

2. THE FUNCTIONAL VARIABLE METHOD

The functional variable method were first proposed by Zerarka et al [18, 17]
to find the exact solutions for a wide class of linear and nonlinear wave equa-
tions. This method was further developed by many authors [16, 1, 10]. The
advantage of this method is that one treats nonlinear problems by essentially
linear methods, based on which it is easy to construct in full the exact so-
lutions such as soliton-like waves, compacton and noncompacton solutions,
trigonometric function solutions, pattern soliton solutions, black solitons or
kink solutions, and so on.

Now, we describe the main steps of the functional variable method for find-
ing exact solutions of nonlinear system of partial differential equations.

Consider the following nonlinear system of partial differential equations with
independent variables x and t and dependent variables u and v

(1)
P1(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, uxt, . . .) = 0,
P2(u, v, ut, vt, ux, vx, utt, vtt, uxx, vxx, uxt, . . .) = 0.

Applying the travelling wave transformations u(x, t) = U(ξ) and v(x, t) =
V (ξ) where ξ = x− wt, converts Eq.(1) into a system of ordinary differential
like

(2)
G1(U, V, Uξ, Vξ, Uξξ, Vξξ, . . .) = 0,
G2(U, V, Uξ, Vξ, Uξξ, Vξξ, . . .) = 0.

Using some mathematical operations, the system (2) is converted into a second-
order ordinary differential equation as

(3) H(U,Uξξ) = 0.

Then we make a transformation in which the unknown function U is considered
as a functional variable in the form

(4) Uξ = F (U),

and some successive derivatives of U are

(5) Uξξ =
1

2
(F 2)′,

(6) Uξξξ =
1

2
(F 2)′′

√
F 2,
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(7)

Uξξξξ = 1
2 [(F 2)′′′F 2 + (F 2)′′(F 2)′],

...

where “ ′ ” stands for d
dU .

Substituting (5) into Eq.(3) and after the mathematical manipulations, we
reduce the ordinary differential equation (3) in terms of U , F as

(8) K(U,F ) = 0.

The key idea of this particular form Eq.(8) is of special interest because it
admits analytical solutions for a large class of nonlinear wave type equations.
After integration, Eq.(8) provides the expression of F , and this, together with
Eq.(4), give appropriate solutions to the original problem.

Remark 1. The functional variable method definitely can be applied to
nonlinear PDEs which can be converted to a second-order ordinary differential
equation (ODE) through the travelling wave transformation.

Theorem 1. Consider the following second-order ordinary differential equa-
tion

(9) Uξξ = k1U − k2Un+1, n 6= 0,

where k1 and k2 are constants and U is a functional variable in the form (4).
Then using (5), the exact solutions of the Eq.(9) are obtained as

Type I. When k1 > 0, the solutions of Eq.(9) are

(10) U1(ξ) =

{
(n+ 2)k1

2k 2
sech2(

n

2

√
k1ξ)

} 1
n

,

(11) U2(ξ) =

{
−(n+ 2)k1

2k 2
sech2(

n

2

√
k1ξ)

} 1
n

,

Type II. When k1 < 0, the solutions of Eq.(9) are

(12) U3(ξ) =

{
(n+ 2)k1

2k 2
csc2(

n

2

√
−k1ξ)

} 1
n

,

(13) U4(ξ) =

{
(n+ 2)k1

2k 2
csc2(

n

2

√
−k1ξ)

} 1
n

.

Proof. According to Eq.(4), we get from (9) an expression for the function
F (U):

(14)
1

2

(
F 2(U)

)′
= k1U − k2Un+1,
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where the prime denotes differentiation with respect to ξ. Integrating Eq.(14)
with respect to U and after the mathematical manipulations, we have

(15) F (U) = ±U
√
k1 −

2k2
n+ 2

Un,

or

(16) F (U) = ±
√
k1U

√
1− 2k2

(n+ 2)k1
Un,

after changing the variables

(17) Z =
2k2

(n+ 2)k1
Un,

or

(18)

(
(n+ 2)k1

2k2
Z

) 1
n

= U,

with differentiation from Eq.(18):

(19)
1

n

(
(n+ 2)k1

2k2

) 1
n

Z
1−n
n dZ = dU(ξ).

We use (19) transformation to the Eq.(16):

(20)
dZ

Z
√

1− Z
= ±n

√
k1dξ,

with integrating from Eq.(20) and with setting the constant of integration as
zero:

(21) ln

∣∣∣∣1−√1− Z
1 +
√

1− Z

∣∣∣∣ = ±n
√
k1ξ.

In this case we have:

(22)

∣∣∣∣1−√1− Z
1 +
√

1− Z

∣∣∣∣ = e±n
√
k1ξ.

If θ = ±n
√
k1ξ, two cases will be considered separately.

Case 1. Suppose that k1 > 0. Then

(23)
1−
√

1− Z
1 +
√

1− Z
= eθ,

thus, according to (23), we have

Z =
4

e−θ + eθ + 2
=

2

cosh θ + 1
=

1

cosh2
(
θ
2

)
+ 1

= sech2

(
θ

2

)
,

so

(24) Z = sech2
(n

2

√
k1ξ
)
.
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Now, suppose that k1 < 0. Then

(25)
1−
√

1− Z
1 +
√

1− Z
= eiθ,

thus, according to (25), we have

Z =
4

e−iθ + eiθ + 2
=

2

cos θ + 1
=

1

cos2
(
θ
2

)
+ 1

= sec2
(
θ

2

)
,

hence

(26) Z = sec2
(n

2

√
−k1ξ

)
.

Case 2. Suppose that k1 > 0. Then

(27)
1−
√

1− Z
1 +
√

1− Z
= −eθ,

therefore, according to (27), we have

Z = − 4

e−θ + eθ + 2
=

2

cosh θ − 1
=

1

sinh2
(
θ
2

)
+ 1

= −csch2

(
θ

2

)
,

so

(28) Z = −csch2
(n

2

√
k1ξ
)
.

Now, assume that k1 < 0. Then

(29)
1−
√

1− Z
1 +
√

1− Z
= −e−iθ,

thus, according to (29), we have

Z = − 4

e−iθ + eiθ − 2
=

2

1− cos θ
=

1

sin2
(
θ
2

) = csc2
(
θ

2

)
,

so

(30) Z = csc2
(n

2

√
−k1ξ

)
.

Now, using the relations (18), (24), (26), (28) and (30), the solutions of Eq.(9)
are in the following forms:

– when k1 > 0, the solutions of Eq.(9) are

U1(ξ) =

{
(n+ 2)k1

2k 2
sech2

(n
2

√
k1ξ
)} 1

n

,

U2(ξ) =

{
−(n+ 2)k1

2k 2
sech2

(n
2

√
k1ξ
)} 1

n

.

– when k1 < 0, the solutions of Eq.(9) are

U3(ξ) =

{
(n+ 2)k1

2k 2
csc2

(n
2

√
−k1ξ

)} 1
n

,
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U4(ξ) =

{
(n+ 2)k1

2k 2
csc2

(n
2

√
−k1ξ

)} 1
n

.

�

3. EXAMPLES

In this Section, we demonstrate three nonlinear partial differential systems
by using the functional variable method described in Section 2.

3.1. The generalized Drinfel’d-Sokolov-Wilson system. Consider the gen-
eralized Drinefel’d-Sokolov-Wilson system [14]:

(31)

{
ut + p(vn)x = 0,
vt + qvxxx + ruvx + suxv = 0,

where p, q, r and s are constants. Eq.(31) is a very important nonlinear evo-
lution equation in mathematical physics and engineering. When n = 2, the
Eq.(31) become the Drinfel’d-Sokolov-Wilson system [21, 6]. We use the wave
transformations

(32) u(x, t) = U(ξ), v(x, t) = V (ξ), ξ = x− wt.
Substituting (32) into (31), we obtain ordinary differential equations:

(33) −wUξ + p(V n)ξ = 0,

(34) −wVξ + qVξξξ + rUVξ + sUξV = 0.

By integrating the Eq.(33) with respect to ξ, and neglecting the constant of
integration, we have

(35) U =
p

w
V n.

Inserting Eq.(35) into Eq.(34) it yields

(36) wqVξξξ − w2Vξ + p(r + ns)V nVξ = 0.

Integrating Eq.(36) with respect to ξ choosing constant of integration to zero,
we obtain

(37) wqVξξ − w2V +
p(r + ns)

(n+ 1)
V n+1 = 0,

or

(38) Vξξ =
w

q
V − p(r + ns)

qw(n+ 1)
V n+1.

Then we use the transformation

(39) Vξ = F (V ),

and Eq.(5) to convert Eq.(38) to

(40)
1

2

(
F 2(V )

)′
=
w

q
V − p(r + ns)

qw(n+ 1)
V n+1,
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where the prime denotes differentiation with respect to ξ. Integrating Eq.(40)
with respect to V and after the mathematical manipulations, we have

(41) F (V ) = ±
√
w

q
V

√
1− 2p(r + ns)

w2(n+ 1)(n+ 2)
V n.

Using the relations (39), (10), (11), (12) and (13), when w
q > 0, the solution

of Eq.(38) is in the following forms:

(42) V1(ξ) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
sech2

(
n

2

√
w

q
ξ

)} 1
n

,

(43) V2(ξ) =

{
−w

2(n+ 1)(n+ 2)

2p(r + ns)
csch2

(
n

2

√
w

q
ξ

)} 1
n

,

and, when w
q < 0, the solution of Eq.(38) is in the following forms:

(44) V3(ξ) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
sec2

(
n

2

√
w

q
ξ

)} 1
n

,

(45) V4(ξ) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
csc2

(
n

2

√
w

q
ξ

)} 1
n

.

Also, by considering the solution U given by the relation (35), we have obtained

(46) U1(ξ) =
w(n+ 1)(n+ 2)

2(r + ns)
sech2

(
n

2

√
w

q
ξ

)
,

(47) U2(ξ) = −w(n+ 1)(n+ 2)

2(r + ns)
csch2

(
n

2

√
w

q
ξ

)
,

(48) U3(ξ) =
w(n+ 1)(n+ 2)

2(r + ns)
sec2

(
n

2

√
w

q
ξ

)
,

(49) U4(ξ) =
w(n+ 1)(n+ 2)

2(r + ns)
csc2

(
n

2

√
w

q
ξ

)
.

For w
q > 0, using the travelling wave transformations (32), we obtain the fol-

lowing soliton solutions of the generalized Drinefel’d-Sokolov-Wilson system:

(50) v1(x, t) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
sech2

(
n

2

√
w

q
(x− wt)

)} 1
n

,

(51) u1(x, t) =
w(n+ 1)(n+ 2)

2(r + ns)
sech2

(
n

2

√
w

q
(x− wt)

)
,
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(52) v2(x, t) =

{
−w

2(n+ 1)(n+ 2)

2p(r + ns)
csch2

(
n

2

√
w

q
(x− wt)

)} 1
n

,

(53) u2(x, t) = −w(n+ 1)(n+ 2)

2(r + ns)
csch2

(
n

2

√
w

q
(x− wt)

)
.

For w
q < 0, we obtain the periodic wave solutions:

(54) v3(x, t) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
sec2

(
n

2

√
−w
q

(x− wt)
)} 1

n

,

(55) u3(x, t) =
w(n+ 1)(n+ 2)

2(r + ns)
sec2

(
n

2

√
−w
q

(x− wt)
)
,

(56) v4(x, t) =

{
w2(n+ 1)(n+ 2)

2p(r + ns)
csc2

(
n

2

√
−w
q

(x− wt)
)} 1

n

,

(57) u4(x, t) =
w(n+ 1)(n+ 2)

2(r + ns)
csc2

(
n

2

√
−w
q

(x− wt)
)
.

Note that the above two results in Eqs.(42) and (46) are the same as those
obtained in [4].

3.2. The Bogoyavlenskii equations. Consider the Bogoyavlenskii equations
[2]:

(58)

{
4ut + uxxy − 4u2uy − 4uxv = 0,
vx = uuy.

Eq. (58) were derived by Kudryashov and Pickering as a member of a (2+1)
Schwarzian breaking soliton hierarchy [7]. Eq.(58) is the modified version of a
breaking soliton equation, 4uxt+8uxuxy+4uyuxx+uxxxy = 0, which describes
the (2+1)-dimensional interaction of a Riemann wave propagating along the
y-axis with a long wave along the x-axis. To a certain extent, a similar inter-
action is observed in waves on the surface of the sea. It is well-known that
the solution and its dynamics of the equation can make researchers deeply
understand the described physical process [8]. Now, we apply the functional
variable method to find the solitary wave solutions for Bogoyavlenskii equa-
tions. Firstly, we let

(59) u(x, y, t) = U(ξ), v(x, y, t) = V (ξ), ξ = x+ y − wt.

Substituting (59) into (58), we obtain ordinary differential equations:

(60) −4wUξ + Uξξξ − 4U2Uξ − 4UξV = 0,

(61) UUξ = Vξ.



9 Exact solutions of some nonlinear systems of partial differential equations 111

By integrating the Eq.(61) with respect to ξ, and neglecting the constant of
integration, we have

(62) V =
1

2
U2.

Substituting Eq.(62) into Eq.(60), after integrating with respect to ξ choosing
constant of integration to zero, we obtain

(63) Uξξ − 2U3 − 4ωU = 0,

or

(64) Uξξ = 2U3 + 4ωU.

Then we use the transformation

(65) Uξ = F (U),

and Eq.(5) to convert Eq.(64) to

(66)
1

2

(
F 2(U)

)′
= 2U3 + 4ωU,

where the prime denotes differentiation with respect to ξ. Integrating Eq.(66)
with respect to U and after the mathematical manipulations, we have

(67) F (U) = U4 + 4ωU2 = 4ωU

√
1 +

1

4ω
U2.

Using the relations (57), (10), (11), (12) and (13), when w > 0, the solution
of Eq.(62) is in the following forms:

(68) U1(ξ) = 2
√
−w sech(2

√
wξ),

(69) U2(ξ) = 2
√
w csch(2

√
wξ),

and, when w < 0, the solution of Eq.(62) is in the following forms:

(70) U3(ξ) = 2
√
−w sec(2

√
−wξ),

(71) U4(ξ) = 2
√
−w sec(2

√
−wξ).

Also, by considering the solution V given by the relation (62), we have obtained

(72) V1(ξ) = −2w sech2(2
√
wξ),

(73) V2(ξ) = 2w csch2(2
√
wξ),

(74) V3(ξ) = −2w sec2(2
√
−wξ),

(75) V4(ξ) = −2w csc2(2
√
−wξ).

For w > 0, using the travelling wave transformations (59), we obtain the
following soliton solutions of the Bogoyavlenskii equations

(76) u1(x, y, t) = 2
√
−w sech(2

√
w(x+ y − wt)),
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(77) v1(x, y, t) = −2w sech2(2
√
w(x+ y − wt)),

(78) u2(x, y, t) = 2
√
w csch(2

√
w(x+ y − wt)),

(79) v2(x, y, t) = 2w csch2(2
√
w(x+ y − wt)).

For w < 0, we obtain the periodic wave solutions:

(80) u3(x, y, t) = 2
√
−w sec(2

√
−w(x+ y − wt)),

(81) v3(x, y, t) = −2w sec2(2
√
−w(x+ y − wt)),

(82) u4(x, y, t) = 2
√
−w csc(2

√
−w(x+ y − wt)),

(83) v2(x, y, t) = −2w csc2(2
√
−w(x+ y − wt)).

These solutions are all new exact solutions.

3.3. Davey-Sterwatson equations. Consider the Davey-Sterwatson equa-
tions [9]:

(84)

{
iut + 1

2k
2(uxx + k2uyy) + c |u|2 u− uv = 0,

vxx − k2vyy − 2c
(
|u|2
)
xx

= 0,

where c 6= 0 is real constant and k2 = ±1.
Davey and Stewartson first derived their model in the context of water

wave, with purely physical considerations. In this context, u is the ampli-
tude of a surface wave packet, while v is the velocity potential of the mean
flow interacting with the surface wave [3]. At this time, by means of the
functional variable method, we will find some solitary wave solutions of the
Davey-Sterwatson system. In order to seek its travelling wave solution, we
introduce a transformation

(85) u(x, y, t) = U(ξ)eiβ, v(x, y, t) = V (ξ), ξ = x+y−wt, β = x+y−αt.
Substituting (85) into Eq. (84), and cancelling eiβ yields ordinary differential
equations(ODES) for U(ξ) and V (ξ)

(86)

1
2k

2(1 + k2)Uξξ +
[
α− 1

2k
2(1 + k2)

]
U + cU3+

i
[
−ω + k2(1 + k2)

]
Uξ − UV = 0,

(87) (1− k2)Vξξ − 2c(U)2ξξ = 0.

Setting

(88) ω = k2(1 + k2),

then (86) and (87) reduce to

(89)
1

2
ωUξξ +

[
α− 1

2
ω

]
U + cU3 − UV = 0,
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(90) (1− k2)Vξξ − 2c(U2)ξξ = 0.

Integrating Eq.(90) with respect to ξ once and setting integration constant to
zero, and integrating it again yields

(91) (1− k2)V − 2cU2 = 0

or

(92) V =
2cU2

(1− k2)
,

substituting Eq.(92) into Eq.(89) yields

(93)
1

2
ωUξξ +

[
α− 1

2
ω

]
U +

[
c− 2c

(1− k2)

]
U3 = 0.

Eq.(93) can be written as

(94) Uξξ = A1U −A2U
3,

where

(95) A1 = −2α− ω
ω

, A2 =
2c− 4c

(1−k2)

ω
.

Then we use the transformation

(96) Uξ = F (U),

and Eq.(5) to convert Eq.(94) to

(97)
1

2

(
F 2(U)

)′
= A1U −A2U

3,

where the prime denotes differentiation with respect to ξ. Integrating Eq.(97)
with respect to U and after the mathematical manipulations, we have

(98) F (U) = ±U
√
A1 −

A2

2
U2.

Using the relations (96), (10), (11), (12) and (13), when A1 > 0, the solution
of Eq.(94) is in the following forms:

(99) U1(ξ) =

√
2A1

A2
sech(

√
A1ξ),

(100) U2(ξ) =

√
−2A1

A2
csch(

√
A1ξ),

and, when A1 < 0, the solution of Eq. (94) is in the following forms:

(101) U3(ξ) =

√
2A1

A2
sec(

√
−A1ξ),

(102) U4(ξ) =

√
2A1

A2
sec(

√
−A1ξ).
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Also, by considering the solution V given by the relation (92), we have obtained

(103) V1(ξ) =
4cA1

(1− k2)A2
sech2(

√
A1ξ),

(104) V2(ξ) = − 4cA1

(1− k2)A2
csch2(

√
A1ξ),

(105) V3(ξ) =
4cA1

(1− k2)A2
sec2(

√
−A1ξ),

(106) V4(ξ) =
4cA1

(1− k2)A2
sec2(

√
−A1ξ).

For A1 > 0, using the travelling wave transformations (69), we obtain the
following soliton solutions of the Davey-Sterwatson equations

(107) u1(x, y, t) =

√
2A1

A2
ei(x+y−αt)sech(

√
A1(x+ y − k2(1 + k2)t)),

(108) v1(x, y, t) =
4cA1

(1− k2)A2
sech2(

√
A1(x+ y − k2(1 + k2)t)),

(109) u2(x, y, t) =

√
−2A1

A2
ei(x+y−αt)csch(

√
A1(x+ y − k2(1 + k2)t)),

(110) v2(x, y, t) = − 4cA1

(1− k2)A2
csch2(

√
A1(x+ y − k2(1 + k2)t)).

For A1 < 0, we obtain the periodic wave solutions:

(111) u3(x, y, t) =

√
2A1

A2
ei(x+y−αt) sec(

√
−A1(x+ y − k2(1 + k2)t)),

(112) v3(x, y, t) =
4cA1

(1− k2)A2
sec2(

√
−A1(x+ y − k2(1 + k2)t)),

(113) u4(x, y, t) =

√
2A1

A2
ei(x+y−αt)sec(

√
−A1(x+ y − k2(1 + k2)t)),

(114) v4(x, y, t) =
4cA1

(1− k2)A2
sec2(

√
−A1(x+ y − k2(1 + k2)t)).
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4. CONCLUSIONS

In this article, we applied the functional variable method to construct the ex-
act solutions for three nonlinear partial differential systems, namely, the gener-
alized Drinfel’d-Sokolov-Wilson system, the Bogoyavlenskii equations and the
Davey-Sterwatson equations, which were not discussed elsewhere using that
method. This method definitely can be applied to nonlinear partial differential
systems which can be converted to a second-order ordinary differential equa-
tions through the travelling wave transformation. Also, we conclude that the
proposed method used in this paper is very effective and can be extended to
other kinds of nonlinear partial differential systems in mathematical physics.
Finally, by using the Maple we have assured the correctness of the obtained
solutions by putting them back into the original equations.
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