STARLIKENESS OF AN INTEGRAL TRANSFORM

SARIKA VERMA, SUSHMA GUPTA, and SUKHJIT SINGH

Abstract

The main objective of this paper is to present a differential inequality implying starlikeness of order β and as a consequence, to obtain conditions on the kernel function g such that the function defined by $$
f(z)=\int_{0}^{1} \int_{0}^{1} g(r, s, z) \mathrm{d} r \mathrm{~d} s
$$

is a starlike function of the same order.
MSC 2010. 30C45, 30C80.
Key words. Differential subordination, starlike function, convex function.

1. INTRODUCTION

Let \mathcal{H} denotes the class of all analytic functions f defined in the open unit $\operatorname{disc} E=\{z:|z|<1\}$. For a positive integer n and $a \in \mathcal{C}$ define the classes of functions:

$$
\begin{aligned}
\mathcal{H}[a, n] & =\left\{f \in \mathcal{H}: f(z)=a+a_{n} z^{n}+a_{n+1} z^{n+1}+\cdots\right\}, \text { and } \\
\mathcal{A}_{n} & =\left\{f \in \mathcal{H}: f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots\right\},
\end{aligned}
$$

with $\mathcal{A}_{1}=\mathcal{A}$. Let S be the subclass of \mathcal{A} consisting of univalent functions in E. A function f in \mathcal{A} is said to be starlike of order β if it satisfies

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right)>\beta, \quad z \in E
$$

for some $\beta(0 \leq \beta<1)$. We denote by $S^{*}(\beta)$, the subclass of S consisting of functions which are starlike of order β in E. Set $S^{*}(0)=S^{*}$. Also, a function f in \mathcal{A} is said to be convex if it satisfies

$$
\operatorname{Re}\left(1+\frac{z f^{\prime \prime}(z)}{f^{\prime}(z)}\right)>0, \quad z \in E .
$$

Let $f, g \in \mathcal{H}$ and let g be univalent in E. The function f is said to be subordinate to g (written $f(z) \prec g(z)$ or $f \prec g$) in E if $f(0)=g(0)$ and $f(E) \subset g(E)$.

In 2003, Fournier and Mocanu [1], investigated some differential inequalities in the unit disc E which imply starlikeness. In a recent paper, Miller and Mocanu [3] extended some of those results and also investigated starlikeness properties of functions f defined by double integral operators of the form

$$
f(z)=\int_{0}^{1} \int_{0}^{1} W(r, s, z) \mathrm{d} r \mathrm{~d} s
$$

In this paper, we propose a differential inequality which imply starlikeness of order β. As an application of this inequality, we construct a new starlike functions of order β which can be expressed in terms of double integrals of some functions in the class \mathcal{H}.

2. PRELIMINARY RESULTS

We shall need the following lemmas to prove our results.
Lemma 2.1. ([2], p.71) Let h be a convex function with $h(0)=a$ and let $\operatorname{Re}(\gamma)>0$. If $p \in \mathcal{H}[a, n]$ and

$$
p(z)+\frac{z p^{\prime}(z)}{\gamma} \prec h(z)
$$

then

$$
p(z) \prec q(z) \prec h(z),
$$

where

$$
q(z)=\frac{\gamma}{n z^{\gamma / n}} \int_{0}^{z} h(t) t^{\gamma / n-1} \mathrm{~d} t
$$

This result is sharp.
Lemma 2.2. ([2], p.383) Let n be a positive a integer and α real, with $0 \leq$ $\alpha<n$. Let $q \in \mathcal{H}$, with $q(0)=0, q^{\prime}(0) \neq 0$ and

$$
\begin{equation*}
\operatorname{Re} \frac{z q^{\prime \prime}(z)}{q^{\prime}(z)}+1>\frac{\alpha}{n} \tag{1}
\end{equation*}
$$

If $p \in \mathcal{H}[0, n]$ satisfies

$$
z p^{\prime}(z)-\alpha p(z) \prec z n q^{\prime}(z)-\alpha q(z)
$$

then $p(z) \prec q(z)$ and this result is sharp.
Lemma 2.3. ([2], p.76) Let h be a starlike function with $h(0)=0$. If $p \in$ $\mathcal{H}[a, n]$ satisfies

$$
z p^{\prime}(z) \prec h(z)
$$

then

$$
p(z) \prec q(z)=a+\frac{1}{n} \int_{0}^{z} \frac{h(t)}{t} \mathrm{~d} t
$$

and this result is sharp.

3. MAIN RESULT

THEOREM 3.1. Let α and β be real numbers such that $0 \leq \alpha<n+1$ and $0 \leq \beta<1$. If $f \in \mathcal{A}_{n}$ satisfies

$$
\begin{equation*}
\left|z f^{\prime \prime}(z)-\alpha\left(f^{\prime}(z)-\frac{f(z)}{z}\right)\right|<\frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}, \quad z \in E, \tag{2}
\end{equation*}
$$

then f is starlike of order β in E.

Proof. Rewriting inequality (2) in terms of subordination, we get

$$
\begin{equation*}
z f^{\prime \prime}(z)-\alpha\left(f^{\prime}(z)-\frac{f(z)}{z}\right) \prec \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)} z \tag{3}
\end{equation*}
$$

If we set

$$
P(z)=f^{\prime}(z)-\frac{f(z)}{z}=n a_{n+1} z^{n}+(n+1) a_{n+2} z^{n+1}+\cdots
$$

then $P \in \mathcal{H}[0, n]$ and the subordination (3) becomes

$$
\begin{equation*}
(1-\alpha) P(z)+z P^{\prime}(z) \prec \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)} z . \tag{4}
\end{equation*}
$$

In order to prove our result, we need to consider the following two cases:
Case I. When $0 \leq \alpha<1$, i.e. $0<1-\alpha \leq 1$. Then, the differential subordination (4) can be written as

$$
P(z)+\frac{z P^{\prime}(z)}{1-\alpha} \prec \frac{n(n+1-\alpha)(1-\beta)}{(1-\alpha)(n+1-\beta)} z=h(z)(\text { say }) .
$$

It can be easily seen that h is convex and $h(0)=P(0)$. So, applying Lemma 2.1 (with $\gamma=1-\alpha$), we obtain

$$
\begin{equation*}
f^{\prime}(z)-\frac{f(z)}{z} \prec \frac{n(1-\beta)}{(n+1-\beta)} z, \quad z \in E . \tag{5}
\end{equation*}
$$

Case II. When $1 \leq \alpha<n+1$. In this case, differential subordination (4) can be written as

$$
\begin{equation*}
z P^{\prime}(z)-(\alpha-1) P(z) \prec n z Q^{\prime}(z)-(\alpha-1) Q(z) \tag{6}
\end{equation*}
$$

where $Q(z)=\frac{n(1-\beta)}{(n+1-\beta)} z, Q(0)=0, Q^{\prime}(0) \neq 0$ and satisfies in E

$$
\operatorname{Re}\left(1+\frac{z Q^{\prime \prime}(z)}{Q^{\prime}(z)}\right)>\frac{\alpha-1}{n}
$$

since $\alpha<n+1$. So, in view of Lemma 2.2, the subordination (6) gives $P \prec Q$ in E or

$$
\begin{equation*}
f^{\prime}(z)-\frac{f(z)}{z} \prec \frac{n(1-\beta)}{(n+1-\beta)} z, \quad z \in E . \tag{7}
\end{equation*}
$$

Thus, in both the cases, we arrive at the same conclusion. Now, if we write

$$
p(z)=\frac{f(z)}{z}=1+a_{n+1} z^{n}+a_{n+2} z^{n+1}+\cdots
$$

then, $p \in \mathcal{H}[1, n]$ and the subordination (7) becomes

$$
z p^{\prime}(z) \prec \frac{n(1-\beta)}{(n+1-\beta)} z=h_{1}(z)(s a y)
$$

The function h_{1} satisfies the conditions of Lemma 2.3. Thus, we obtain

$$
p(z) \prec 1+\frac{1}{n} \int_{0}^{z} \frac{n(1-\beta)}{(n+1-\beta)} \mathrm{d} t
$$

or

$$
\begin{equation*}
\frac{f(z)}{z} \prec 1+\frac{(1-\beta)}{(n+1-\beta)} z . \tag{8}
\end{equation*}
$$

It follows from the subordination (7) that

$$
\left|f^{\prime}(z)-\frac{f(z)}{z}\right|<\frac{n(1-\beta)}{(n+1-\beta)}, \quad z \in E,
$$

while from the subordination (8), we have

$$
\left|\frac{f(z)}{z}\right|>\frac{n}{n+1-\beta}, \quad z \in E .
$$

Combining the above two inequalities, we get
$\frac{n}{n+1-\beta}\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<\left|\frac{f(z)}{z}\right|\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|=\left|f^{\prime}(z)-\frac{f(z)}{z}\right|<\frac{n(1-\beta)}{(n+1-\beta)}$,
which implies that

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right|<(1-\beta) .
$$

This proves that f is starlike of order β in E.
Letting $\beta=0$ in Theorem 3.1, we obtain the following result of Miller and Mocanu [3].

Corollary 3.1. Let $f \in \mathcal{A}_{n}$ and $0 \leq \alpha<n+1$. If

$$
\left|z f^{\prime \prime}(z)-\alpha\left(f^{\prime}(z)-\frac{f(z)}{z}\right)\right|<\frac{n(n+1-\alpha)}{(n+1)}
$$

then $f \in S^{*}$.
For $\alpha=\beta=0$ and $n=1$, Theorem 3.1 reduces to the following result of Obradovic [4]:

Corollary 3.2. Let $f \in \mathcal{A}$ be such that $\left|z f^{\prime \prime}(z)\right|<1$ in E. Then $f \in S^{*}$.

4. APPLICATION

As an application of Theorem 3.1, we prove the starlikeness of an integral operator in the following result.

Theorem 4.1. Let $g \in \mathcal{H}$ satisfy $|g(z)| \leq \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}$ in E for some $0 \leq \alpha<n+1$ and $0 \leq \beta<1$. Then, the function f given by

$$
\begin{equation*}
f(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n-\alpha} s^{n-1} \mathrm{~d} r \mathrm{~d} s \tag{9}
\end{equation*}
$$

is starlike of order β in E.

Proof. Let $f \in \mathcal{A}_{n}$ satisfy the differential equation

$$
\begin{equation*}
z f^{\prime \prime}(z)-\alpha\left(f^{\prime}(z)-\frac{f(z)}{z}\right)=z^{n} g(z) \tag{10}
\end{equation*}
$$

Clearly,

$$
\left|z f^{\prime \prime}(z)-\alpha\left(f^{\prime}(z)-\frac{f(z)}{z}\right)\right|<\frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}, \quad z \in E .
$$

Thus, from the Theorem 3.1, we see that the solution f of the differential equation (10) must be starlike of order β.
Setting $\phi(z)=f^{\prime}(z)-\frac{f(z)}{z} \in \mathcal{H}[0, n]$ in the differential equation (10), we obtain

$$
z \phi^{\prime}(z)+(1-\alpha) \phi(z)=z^{n} g(z) .
$$

Solving this equation, we get

$$
\phi(z)=z^{-1+\alpha} \int_{0}^{z} \zeta^{n-\alpha} g(\zeta) \mathrm{d} \zeta=z^{n} \int_{0}^{1} r^{n-\alpha} g(r z) \mathrm{d} r .
$$

Since $\phi(z)=f^{\prime}(z)-\frac{f(z)}{z}$, we have

$$
f^{\prime}(z)-\frac{f(z)}{z}=z^{n} \int_{0}^{1} r^{n-\alpha} g(r z) \mathrm{d} r
$$

or

$$
\left(\frac{f(z)}{z}\right)^{\prime}=z^{n-1} \int_{0}^{1} r^{n-\alpha} g(r z) \mathrm{d} r .
$$

Integrating, we get

$$
\frac{f(z)}{z}=1+\int_{0}^{z} \zeta^{n-1} \int_{0}^{1} g(r \zeta) r^{n-\alpha} \mathrm{d} r \mathrm{~d} \zeta .
$$

Thus, putting $\zeta=s z$, we have

$$
f(z)=z+z^{n+1} \int_{0}^{1} \int_{0}^{1} g(r s z) r^{n-\alpha} s^{n-1} \mathrm{~d} r \mathrm{~d} s
$$

This completes the proof of the theorem.
Taking various permissible values of α and n, we obtain several special cases of above result. However, we mention only one such result by taking $\alpha=0$ and $n=1$.

Corollary 4.1. If $g \in \mathcal{H}$ and $|g(z)|<\frac{2(1-\beta)}{2-\beta}$ for $z \in E$, then for some β ($0 \leq \beta<1$),

$$
f(z)=z+z^{2} \int_{0}^{1} \int_{0}^{1} g(r s z) r \mathrm{~d} r \mathrm{~d} s \in S^{*}(\beta) .
$$

REFERENCES

[1] Fournier, R. and Mocanu, P.T., Differential inequalities and starlikeness, Complex Var. Theory Appl., 48 (2003), 283-292.
[2] Miller, S.S. and Mocanu, P.T., Differential Subordinations-Theory and Applications, Marcel Dekker, New York, 1999.
[3] Miller, S.S. and Mocanu, P.T., Double integral starlike operators, Integral Transforms Spec. Funct., 19 (2008), 591-597.
[4] Obradovic, M., Simple sufficient conditions for univalence, Mat. Vesnik., 49 (1997), 241-244.

Received August 23, 2012
Accepted September 15, 2014

Sant Longowal Institute of Engineering and Technology Department of Mathematics

Longowal-148106
Punjab, India
E-mail: sarika.16984@gmail.com
E-mail: sushmagupta1@yahoo.com E-mail: sukhjit_d@yahoo.com

