MATHEMATICA, Tome 56 (79), N $^{\rm o}$ 1, 2014, pp. 93–98

STARLIKENESS OF AN INTEGRAL TRANSFORM

SARIKA VERMA, SUSHMA GUPTA, and SUKHJIT SINGH

Abstract. The main objective of this paper is to present a differential inequality implying starlikeness of order β and as a consequence, to obtain conditions on the kernel function g such that the function defined by

$$f(z) = \int_0^1 \int_0^1 g(r, s, z) \mathrm{d}r \mathrm{d}s$$

is a starlike function of the same order.

MSC 2010. 30C45, 30C80.

 ${\bf Key}$ words. Differential subordination, starlike function, convex function.

1. INTRODUCTION

Let \mathcal{H} denotes the class of all analytic functions f defined in the open unit disc $E = \{z : |z| < 1\}$. For a positive integer n and $a \in \mathcal{C}$ define the classes of functions:

$$\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \}, \text{ and} \\ \mathcal{A}_n = \{ f \in \mathcal{H} : f(z) = z + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \cdots \},$$

with $\mathcal{A}_1 = \mathcal{A}$. Let S be the subclass of \mathcal{A} consisting of univalent functions in E. A function f in \mathcal{A} is said to be starlike of order β if it satisfies

$$\operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > \beta, \quad z \in E,$$

for some β ($0 \leq \beta < 1$). We denote by $S^*(\beta)$, the subclass of S consisting of functions which are starlike of order β in E. Set $S^*(0) = S^*$. Also, a function f in \mathcal{A} is said to be convex if it satisfies

$$\operatorname{Re}\left(1+\frac{zf''(z)}{f'(z)}\right) > 0, \quad z \in E.$$

Let $f, g \in \mathcal{H}$ and let g be univalent in E. The function f is said to be subordinate to g (written $f(z) \prec g(z)$ or $f \prec g$) in E if f(0) = g(0) and $f(E) \subset g(E)$.

In 2003, Fournier and Mocanu [1], investigated some differential inequalities in the unit disc E which imply starlikeness. In a recent paper, Miller and Mocanu [3] extended some of those results and also investigated starlikeness properties of functions f defined by double integral operators of the form

$$f(z) = \int_0^1 \int_0^1 W(r, s, z) \mathrm{d}r \mathrm{d}s.$$

In this paper, we propose a differential inequality which imply starlikeness of order β . As an application of this inequality, we construct a new starlike functions of order β which can be expressed in terms of double integrals of some functions in the class \mathcal{H} .

2. PRELIMINARY RESULTS

We shall need the following lemmas to prove our results.

LEMMA 2.1. ([2], p.71) Let h be a convex function with h(0) = a and let $\operatorname{Re}(\gamma) > 0$. If $p \in \mathcal{H}[a, n]$ and

$$p(z) + \frac{zp'(z)}{\gamma} \prec h(z),$$

then

$$p(z) \prec q(z) \prec h(z),$$

where

$$q(z) = \frac{\gamma}{nz^{\gamma/n}} \int_0^z h(t) t^{\gamma/n-1} \mathrm{d}t.$$

This result is sharp.

LEMMA 2.2. ([2], p.383) Let n be a positive a integer and α real, with $0 \leq \alpha < n$. Let $q \in \mathcal{H}$, with q(0) = 0, $q'(0) \neq 0$ and

(1)
$$\operatorname{Re}\frac{zq''(z)}{q'(z)} + 1 > \frac{\alpha}{n}$$

If $p \in \mathcal{H}[0,n]$ satisfies

$$zp'(z) - \alpha p(z) \prec znq'(z) - \alpha q(z),$$

then $p(z) \prec q(z)$ and this result is sharp.

LEMMA 2.3. ([2], p.76) Let h be a starlike function with h(0) = 0. If $p \in \mathcal{H}[a, n]$ satisfies

$$zp'(z) \prec h(z),$$

then

$$p(z) \prec q(z) = a + \frac{1}{n} \int_0^z \frac{h(t)}{t} \mathrm{d}t$$

and this result is sharp.

3. MAIN RESULT

THEOREM 3.1. Let α and β be real numbers such that $0 \leq \alpha < n+1$ and $0 \leq \beta < 1$. If $f \in A_n$ satisfies

(2)
$$\left|zf''(z) - \alpha\left(f'(z) - \frac{f(z)}{z}\right)\right| < \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}, \quad z \in E,$$

then f is starlike of order β in E.

Proof. Rewriting inequality (2) in terms of subordination, we get

(3)
$$zf''(z) - \alpha \left(f'(z) - \frac{f(z)}{z}\right) \prec \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}z.$$

If we set

$$P(z) = f'(z) - \frac{f(z)}{z} = na_{n+1}z^n + (n+1)a_{n+2}z^{n+1} + \cdots$$

then $P \in \mathcal{H}[0, n]$ and the subordination (3) becomes

(4)
$$(1-\alpha)P(z) + zP'(z) \prec \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}z.$$

In order to prove our result, we need to consider the following two cases:

Case I. When $0 \le \alpha < 1$, i.e. $0 < 1 - \alpha \le 1$. Then, the differential subordination (4) can be written as

$$P(z) + \frac{zP'(z)}{1-\alpha} \prec \frac{n(n+1-\alpha)(1-\beta)}{(1-\alpha)(n+1-\beta)}z = h(z) \ (say).$$

It can be easily seen that h is convex and h(0) = P(0). So, applying Lemma 2.1 (with $\gamma = 1 - \alpha$), we obtain

(5)
$$f'(z) - \frac{f(z)}{z} \prec \frac{n(1-\beta)}{(n+1-\beta)}z, \quad z \in E.$$

Case II. When $1 \le \alpha < n + 1$. In this case, differential subordination (4) can be written as

(6)
$$zP'(z) - (\alpha - 1)P(z) \prec nzQ'(z) - (\alpha - 1)Q(z),$$

where
$$Q(z) = \frac{n(1-\beta)}{(n+1-\beta)}z$$
, $Q(0) = 0, Q'(0) \neq 0$ and satisfies in E

$$\operatorname{Re}\left(1 + \frac{zQ''(z)}{Q'(z)}\right) > \frac{\alpha - 1}{n},$$

since $\alpha < n+1$. So, in view of Lemma 2.2, the subordination (6) gives $P \prec Q$ in E or

(7)
$$f'(z) - \frac{f(z)}{z} \prec \frac{n(1-\beta)}{(n+1-\beta)}z, \quad z \in E.$$

Thus, in both the cases, we arrive at the same conclusion. Now, if we write

$$p(z) = \frac{f(z)}{z} = 1 + a_{n+1}z^n + a_{n+2}z^{n+1} + \cdots,$$

then, $p \in \mathcal{H}[1, n]$ and the subordination (7) becomes

$$zp'(z) \prec \frac{n(1-\beta)}{(n+1-\beta)}z = h_1(z) \ (say).$$

The function h_1 satisfies the conditions of Lemma 2.3. Thus, we obtain

$$p(z) \prec 1 + \frac{1}{n} \int_0^z \frac{n(1-\beta)}{(n+1-\beta)} \mathrm{d}t$$

or

(8)
$$\frac{f(z)}{z} \prec 1 + \frac{(1-\beta)}{(n+1-\beta)}z.$$

It follows from the subordination (7) that

$$\left|f'(z) - \frac{f(z)}{z}\right| < \frac{n(1-\beta)}{(n+1-\beta)}, \quad z \in E,$$

while from the subordination (8), we have

$$\left|\frac{f(z)}{z}\right| > \frac{n}{n+1-\beta}, \quad z \in E.$$

Combining the above two inequalities, we get

$$\frac{n}{n+1-\beta} \left| \frac{zf'(z)}{f(z)} - 1 \right| < \left| \frac{f(z)}{z} \right| \left| \frac{zf'(z)}{f(z)} - 1 \right| = \left| f'(z) - \frac{f(z)}{z} \right| < \frac{n(1-\beta)}{(n+1-\beta)},$$
which implies that
$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < (1-\beta).$$

This proves that f is starlike of order β in E.

Letting $\beta = 0$ in Theorem 3.1, we obtain the following result of Miller and Mocanu [3].

COROLLARY 3.1. Let
$$f \in \mathcal{A}_n$$
 and $0 \le \alpha < n+1$. If
 $\left| zf''(z) - \alpha \left(f'(z) - \frac{f(z)}{z} \right) \right| < \frac{n(n+1-\alpha)}{(n+1)}$

then $f \in S^*$.

For $\alpha = \beta = 0$ and n = 1, Theorem 3.1 reduces to the following result of Obradovic [4]:

COROLLARY 3.2. Let $f \in \mathcal{A}$ be such that |zf''(z)| < 1 in E. Then $f \in S^*$.

4. APPLICATION

As an application of Theorem 3.1, we prove the starlikeness of an integral operator in the following result.

THEOREM 4.1. Let $g \in \mathcal{H}$ satisfy $|g(z)| \leq \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}$ in E for some $0 \leq \alpha < n+1$ and $0 \leq \beta < 1$. Then, the function f given by

(9)
$$f(z) = z + z^{n+1} \int_0^1 \int_0^1 g(rsz) r^{n-\alpha} s^{n-1} dr ds$$

is starlike of order β in E.

Proof. Let $f \in \mathcal{A}_n$ satisfy the differential equation

(10)
$$zf''(z) - \alpha \left(f'(z) - \frac{f(z)}{z}\right) = z^n g(z).$$

Clearly,

5

$$\left|zf''(z) - \alpha\left(f'(z) - \frac{f(z)}{z}\right)\right| < \frac{n(n+1-\alpha)(1-\beta)}{(n+1-\beta)}, \quad z \in E$$

Thus, from the Theorem 3.1, we see that the solution f of the differential equation (10) must be starlike of order β .

Setting $\phi(z) = f'(z) - \frac{f(z)}{z} \in \mathcal{H}[0,n]$ in the differential equation (10), we obtain

$$z\phi'(z) + (1-\alpha)\phi(z) = z^n g(z).$$

Solving this equation, we get

$$\phi(z) = z^{-1+\alpha} \int_0^z \zeta^{n-\alpha} g(\zeta) \mathrm{d}\zeta = z^n \int_0^1 r^{n-\alpha} g(rz) \mathrm{d}r$$

Since $\phi(z) = f'(z) - \frac{f(z)}{z}$, we have

$$f'(z) - \frac{f(z)}{z} = z^n \int_0^1 r^{n-\alpha} g(rz) \mathrm{d}r$$

or

$$\left(\frac{f(z)}{z}\right)' = z^{n-1} \int_0^1 r^{n-\alpha} g(rz) \mathrm{d}r.$$

Integrating, we get

$$\frac{f(z)}{z} = 1 + \int_0^z \zeta^{n-1} \int_0^1 g(r\zeta) r^{n-\alpha} \mathrm{d}r \mathrm{d}\zeta.$$

Thus, putting $\zeta = sz$, we have

$$f(z) = z + z^{n+1} \int_0^1 \int_0^1 g(rsz) r^{n-\alpha} s^{n-1} dr ds$$

This completes the proof of the theorem.

Taking various permissible values of α and n, we obtain several special cases of above result. However, we mention only one such result by taking $\alpha = 0$ and n = 1.

COROLLARY 4.1. If $g \in \mathcal{H}$ and $|g(z)| < \frac{2(1-\beta)}{2-\beta}$ for $z \in E$, then for some β $(0 \leq \beta < 1)$,

$$f(z) = z + z^2 \int_0^1 \int_0^1 g(rsz) r \mathrm{d}r \mathrm{d}s \in S^*(\beta).$$

REFERENCES

- FOURNIER, R. and MOCANU, P.T., Differential inequalities and starlikeness, Complex Var. Theory Appl., 48 (2003), 283–292.
- [2] MILLER, S.S. and MOCANU, P.T., Differential Subordinations-Theory and Applications, Marcel Dekker, New York, 1999.
- [3] MILLER, S.S. and MOCANU, P.T., Double integral starlike operators, Integral Transforms Spec. Funct., 19 (2008), 591–597.
- [4] OBRADOVIC, M., Simple sufficient conditions for univalence, Mat. Vesnik., 49 (1997), 241-244.

Received August 23, 2012 Accepted September 15, 2014 Sant Longowal Institute of Engineering and Technology Department of Mathematics Longowal-148106 Punjab, India E-mail: sarika.16984@gmail.com E-mail: sushmagupta1@yahoo.com