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DISSIPATIVE STURM-LIOUVILLE OPERATORS

ON BOUNDED TIME SCALES

HÜSEYIN TUNA

Abstract. In this paper we consider a second-order Sturm–Liouville operator
of the form

l (y) := −
[
p (t) y∆ (t)

]∇
+ q (t) y (t)

on bounded time scales. In this study, we construct a space of boundary values
of the minimal operator and describe all maximal dissipative, maximal accretive,
selfadjoint and other extensions of the dissipative Sturm-Liouville operators in
terms of boundary conditions. Using by methods of Pavlov [28–30], we proved
a theorem on completeness of the system of eigenvectors and associated vectors
of the dissipative Sturm-Liouville operators on bounded time scales.
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1. INTRODUCTION

The study of dynamic equations on time scales is a new area of theoretical
exploration in mathematics. The first fundamental results in this area were
obtained by Hilger [19]. Time scale calculus unites the study of differential
and difference equations. The study of time scales has led to several important
applications, e.g., in the study of neural networks, heat transfer, and insect
population models, epidemic models [1]. We refer the reader to consult the
reference [7, 15, 16, 18, 23, 27] for some basic definitions.

The spectral analysis of non-selfadjoint (dissipative) operators is based on
the ideas of the functional model and dilation theory rather than on traditional
resolvent analysis and Riesz integrals. Using a functional model of a non-
selfadjoint operator as a principal tool, spectral properties of such operators
are investigated. The functional model of non-selfadjoint dissipative operators
plays an important role within both the abstract operator theory and its more
specialized applications in other disciplines. The construction of functional
models for dissipative operators, natural analogues of spectral decompositions
for selfadjoint operators is based on Sz. Nagy-Foias dilation theory [25] and
Lax-Phillips scattering theory [24]. Pavlov’s approach, [28-30], to the model
construction of dissipative extensions of symmetric operators was followed by
B. Allahverdiev in his works [2-6] and some others, and by the group of authors
[12-14], where the theory of the dissipative Schrodinger operator on a finite
interval was applied to the problems arising in the semiconductor physics. In
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[8-11], Pavlov’s functional model was extended to (general) dissipative opera-
tors which are finite dimensional extensions of a symmetric operator, and the
corresponding dissipative and Lax-Phillips scattering problems were investi-
gated in some detail.

The organization of this document is as follows: In Section 2, some time
scale essentials are included for the convenience of the reader. In Section 3, we
construct a space of boundary values of the minimal operator and describe all
maximal dissipative, maximal accretive, selfadjoint and other extensions of the
dissipative Sturm-Liouville operators in terms of boundary conditions. Later,
we construct a selfadjoint dilation of this operator. We present its incoming
and outcoming spectral representations which makes it possible to determine
the scattering matrix of the dilation according to the Lax and Phillips scheme
[24]. A functional model of this operator is constructed by methods of Pavlov
[28-30] and its characteristic functions are defined. Finally, we prove a theo-
rem on completeness of the system of eigenvectors and associated vectors of
dissipative operators under consideration. While proving our results, we will
use the machinery of [2-6].

2. PRELIMINARIES

In this section, first, we recall the essentials of time scales, and we refer to
[7, 15, 16, 18, 23, 27] for more details.

Let T be a time scale. The forward jump operator σ : T→ T is defined by

σ (t) = inf {s ∈ T : s > t} , t ∈ T

and the backward jump operator ρ : T→ T is defined by

ρ (t) = sup {s ∈ T : s < t} , t ∈ T.

It is convenient to have graininess operators µσ : T → [0,∞) and µρ : T →
(−∞, 0] defined by µσ (t) = σ (t) − t and µρ (t) = ρ (t) − t, respectively. A
point t ∈ T is left scattered if µρ (t) 6= 0 and left dense if µρ (t) = 0. A point
t ∈ T is right scattered if µσ (t) 6= 0 and right dense if µσ (t) = 0. We introduce
the sets Tk, Tk, T∗ which are derived form the time scale T as follows. If T
has a left scattered maximum t1, then Tk = T − {t1} , otherwise Tk = T. If
T has a right scattered minimum t2, then Tk = T − {t2} , otherwise Tk = T.
Finally, T∗ = Tk ∩ Tk.

A function f on T is said to be ∆-differentiable at some point t ∈ T if there
is a number f∆(t) such that for every ε > 0 there is a neighborhood U ⊂ T of
t such that

|f(σ(t))− f(s)− f∆(t)(σ(t)− s)| ≤ ε|σ(t)− s|, s ∈ U.

Analogously one may define the notion of ∇-differentiability of some function
using the backward jump ρ. One can show (see [18])

f∆(t) = f∇(σ(t)), f∇(t) = f∆(ρ(t))
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for continuously differentiable functions.
Let f : T→ R be a function, and a, b ∈ T. If there exists a function F :

T→ R, such that F∆ (t) = f (t) for all t ∈ Tk, then F is a ∆-antiderivative of
f. In this case the integral is given by the formula∫ b

a
f (t) ∆t = F (b)− F (a) for a, b ∈ T.

Analogously one may define the notion of ∇-antiderivative of some function.
Let L2

∆ (T∗) be the space of all functions defined on T∗ such that

‖f‖ :=

(∫ b

a
|f (t)|2 ∆t

)1/2

<∞.

The space L2
∆ (T∗) is a Hilbert space with the inner product (see [31])

(f, g) :=

∫ b

a
f (t) g (t)∆t, f, g ∈ L2

∆(T∗) .

Let a ≤ b be fixed points in T and a ∈ Tk, b ∈ Tk. We will consider the
Sturm-Liouville equation

(1) l (y) := −
[
p (t) y∆ (t)

]∇
+ q (t) y (t) , t ∈ [a, b],

where q : T→ C is continuous function, p : T→ C is ∇-differentiable on
Tk, p (t) 6= 0 for all t ∈ T, and p∇ : Tk→ C is continuous. The Wronskian of
y, z is defined by (see [18])

W (y, z) (t) := p (t)
[
y (t) z∆ (t)− y∆ (t) z (t)

]
, t ∈ T∗.

Let L0 denote the closure of the minimal operator generated by (1) and by
D0 its domain. Besides, we denote by D the set of all functions y (t) from L2

∆

(T∗) such that l (y) ∈ L2
∆ (T∗); D is the domain of the maximal operator L.

Furthermore L = L∗0 (see [26]). Suppose that the operator L0 has defect index
(2, 2) .

For every y, z ∈ D we have Lagrange’s identity (see [18])

(Ly, z)− (y, Lz) = [y, z] (b)− [y, z] (a) ,

where [y, z] := p (t)
[
y (t) z∆ (t)− y∆ (t) z (t)

]
.

Let us define by Γ1,Γ2 the linear maps from D to C2 by the formula

(2) Γ1y =

(
−y (a)
y (b)

)
, Γ2y =

(
p (t) y∆ (a)
p (t) y∆ (b)

)
, y ∈ D.

For any y, z ∈ D, we have

(Ly, z)− (y, Lz) = [y, z] (b)− [y, z] (a)

= (Γ1y,Γ2z)C2 − (Γ2y,Γ1z)C2 .(3)
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3. MAIN RESULTS

Theorem 1. The triple
(
C2,Γ1,Γ2

)
defined by (2) is a boundary spaces of

the operator L0.

Proof. The proof is obtained from the definition of boundary value space
and (3). �

Recall that a linear operator T (with dense domain D (T ) ) acting on some
Hilbert space H is called dissipative (accretive) if Im (Tf, f) ≥ 0 (Im (Tf, f) ≤
0) for all f ∈ D (T ) and maximal dissipative ( maximal accretive) if it does
not have a proper dissipative (accretive) extension.

From [17-21], the following theorem is obtained.

Theorem 2. For any contraction K in C2 the restriction of the operator L
to the set of functions y ∈ D satisfying either

(4) (K − i) Γ1y + i (K + I) Γ2y = 0

or

(5) (K − i) Γ1y − i (K + I) Γ2y = 0

is respectively the maximal dissipative and accretive extension of the operator
L0. Conversely, every maximal dissipative (accretive) extension of the operator
L0 is the restriction of L to the set of functions y ∈ D satisfying (4) (resp.
(5)), and the extension uniquely determines the contraction K. Conditions
(4) (resp. (5)), in which K is an isometry describe the maximal symmetric
extensions of L0 in L2

∆ (T∗). If K is unitary, these conditions define selfadjoint
extensions. In particular, the boundary conditions

(6) y (a)− h1p (t) y∆ (a) = 0

(7) y (b)− h2 p (t) y∆ (b) = 0

with Imh1 ≥ 0 or h1 = ∞, Imh2 ≥ 0 or h2 = ∞, describe the maximal dissi-
pative (resp. selfadjoint) extensions of L0 with separated boundary conditions.

Throughout the rest of the paper, while proving our results, we will use the
machinery and methods of [2-6].

We will study the maximal dissipative operators LK generated by the con-
ditions (6) - (7) and l. Let us add the “incoming” and “outgoing” subspaces
D− = L2 (−∞, 0) and D+ = L2 (0,∞) to H = L2

∆ (T∗). The orthogonal sum
H=D− ⊕H ⊕D+ is called main Hilbert space of the dilation.

In the space H, we consider the operator L on the set D (L) , its elements
consisting of vectors w = 〈ϕ−, y, ϕ+〉, generated by the expression

(8) L〈ϕ−, y, ϕ+〉 =

〈
i
dϕ−
dξ

, l (y) , i
dϕ+

dξ

〉
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satisfying the conditions: ϕ− ∈W 1
2 (−∞, 0) , ϕ+ ∈W 1

2 (0,∞) , y ∈ H,

y (a)− h1p (t) y∆ (a) = Cϕ− (0) , y (a)− h1p (t) y∆ (a) = Cϕ+ (0) ,

y (b)− h2 p (t) y∆ (b) = 0,

where W 1
2 are Sobolev spaces and C2 := 2ImG, C > 0.

Theorem 3. The operator L is selfadjoint in H. Moreover, it is a selfad-

joint dilation of the operator L̃ (= LK) .

Proof. We first prove that L is symmetric in H. Namely

(Lf, g)H − (f,Lg)
H

= 0.

Let f, g ∈ D (L) , f = 〈ϕ−, y, ϕ+ 〉 and g = 〈ψ−, z, ψ+〉. Then we have

(Lf, g)H − (f,Lg)
H

= (L〈ϕ−, y, ϕ+〉, 〈ψ−, z, ψ+〉)− (〈ϕ−, y, ϕ+〉,L〈ψ−, z, ψ+〉)

=

∫ 0

−∞
iϕ´
−ψ−dξ + (l (y) , z)H +

∫ ∞
0

iϕ
′
+ψ+dξ

−
∫ 0

−∞
iψ´
−ϕ−dξ − (y, l (z))H −

∫ ∞
0

iψ
′́

+ϕ+dξ

=

∫ 0

−∞
iϕ´
−ψ−dξ + [y, z] (b) +

∫ ∞
0

iϕ
′
+ψ+dξ

−
∫ 0

−∞
iψ´
−ϕ−dξ − [y, z] (a)−

∫ ∞
0

iψ
′́

+ϕ+dξ

= iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z] (b)− [y, z] (a)

We obtain by direct computation that

iψ− (0)ϕ− (0)− iϕ+ (0)ψ+ (0) + [y, z] (b)− [y, z] (a) = 0.

Thus, L is a symmetric operator. To prove that L is selfadjoint, we need
to show that L∗ ⊆ L. Take g = 〈ψ−, z, ψ+〉 ∈ D (L∗) . Let L∗g = g∗ =
〈ψ∗−, z∗, ψ∗+〉 ∈ H, so that

(9) (Lf, g)H = (f,L∗g)H = (f, g∗)H .

By choosing elements with suitable components as f ∈ D (L) in (9), it is not
difficult to show that ψ− ∈W 1

2 (−∞, 0) , ψ+ ∈W 1
2 (0,∞) , g ∈ D (L) and g∗ =

Lg, the operator L is defined (8). Therefore (9) is obtained from (Lf, g)H =
(f,Lg)H for all f ∈ D (L∗) . Furthermore, g ∈ D (L∗) satisfies the conditions

y (a)− h1p (t) y∆ (a) = Cϕ− (0) ,

y (a)− h1p (t) y∆ (a) = Cϕ+ (0) .

Hence, D (L∗) ⊆ D (L), i.e., L = L∗.
The selfadjoint operator L generates on H a unitary group Ut = exp (iLt)

(t ∈ R+ = (0,∞)). Let us denote by P : H → H and P1 : H → H the
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mapping acting according to the formulae P : 〈ϕ−, y, ϕ+〉 → y and P1 :
y → 〈0, y, 0〉. Let Zt := PUtP1, t ≥ 0, by using Ut. The family {Zt : t ≥ 0}
of operators is a strongly continuous semigroup of completely non unitary
contraction on H. Let us denote by BG the generator of this semigroup: B
y = lim

t→+0
(it)−1 (Zty − y) . The domain of B consists of all the vectors for

which the limit exists. The operator B is dissipative. The operator L is called

the selfadjoint dilation of B (see [5, 22, 25]). We show that B = L̃, hence L
is selfadjoint dilation of B. To show this, it is sufficient to verify the equality

(10) P (L − λI)−1 P1y =
(
L̃− λI

)−1
y, y ∈ H, Imh < 0.

For this purpose, we set (L − λI)−1 P1y = g = 〈ψ−, z, ψ+〉 which implies
that (L − λI) g = P1y, and hence l (z) − λz = y, ψ− (ξ) = ψ− (0) e−iλξ and
ψ+ (ξ) = ψ+ (0) e−iλξ. Since g ∈ D (L) , then we have ψ− ∈ W 1

2 (−∞, 0) , and
it follows that ψ− (0) = 0, and consequently z satisfies the boundary conditions

y (a) − h1p (t) y∆ (a) = 0, y (b) − h2 p (t) y∆ (b) = 0. Therefore z ∈ D
(
L̃
)
,

and since the point λ with Imλ < 0 cannot be an eigenvalue of dissipative

operator, then z =
(
L̃− λI

)−1
y. Thus

(L − λI)−1 P1y = 〈0,
(
L̃− λI

)−1
y, C−1

(
y (a)− h1p (t) y∆ (a)

)
e−iλξ〉

for y and Imλ < 0. On applying the mapping P, we obtain (10) , and

(
L̃− λI

)−1
= P (L − λI)−1 P1 = −iP

∞∫
0

Ute
−iλtdtP1

= −i

∞∫
Zte
−iλtdt = (B − λI)−1 , Imλ < 0,

so this clearly shows that L̃ = B. �

The unitary group {Ut} has an important property which makes it possible
to apply it to the Lax-Phillips [24]. i.e., it has orthogonal incoming and out-
coming subspaces D− = 〈L2 (−∞, 0) , 0, 0〉 and D+ = 〈0, 0, L2 (0,∞)〉 having
the following properties:

(i) UtD− ⊂ D−, t ≤ 0 and UtD+ ⊂ D+, t ≥ 0;
(ii) ∩

t≤0
UtD− = ∩

t≥0
UtD+ = {0} ;

(iii) ∪
t≥0
UtD− = ∪

t≤0
UtD+ = H;

(iv) D− ⊥ D+.
To be able to prove property (i) for D+ (the proof for D− is similar), we set

Rλ = (L − λI)−1 . For all λ, with Imλ < 0 and for any f = 〈0, 0, ϕ+〉 ∈ D+,
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we have

Rλf = 〈0, 0,−ie−iλξ

ξ∫
0

eiλsϕ+ (s) ds〉.

So we have Rλf ∈ D+. Therefore, if g ⊥ D+, then

0 = (Rλf, g)H = −i

∞∫
0

e−iλt (Utf, g)H dt, Imλ < 0,

which implies that (Utf, g)H = 0 for all t ≥ 0. Hence, for t ≥ 0, UtD+ ⊂ D+,
and property (1) has been proved.

In order to prove the property (ii), we define the mappings P+ : H →
L2 (0,∞) and P+

1 : L2 (0,∞)→ D+ as P+ : 〈ϕ−, ŷ, ϕ+〉 → ϕ+ and P+
1 : ϕ→

〈0, 0, ϕ〉, respectively. We take into consider that the semigroup of isome-
tries U+

t := P+UtP
+
1 (t ≥ 0) is a one-sided shift in L2 (0,∞) . Indeed, the

generator of the semigroup of the one-sided shift Vt in L2 (0,∞) is the differ-

ential operator i
(
d
dξ

)
with the boundary condition ϕ (0) = 0. On the other

hand, the generator S of the semigroup of isometries U+
t (t ≥ 0) is the op-

erator Sϕ = P+LP+
1 ϕ = P+L〈0, 0, ϕ〉 = P+ 〈0, 0, i( ddξ )ϕ〉 = i( ddξ )ϕ, where

ϕ ∈W 1
2 (0,∞) and ϕ (0) = 0. Since a semigroup is uniquely determined by its

generator, it follows that U+
t = Vt, and, hence,

∩
t≥0
UtD+ = 〈0, 0, ∩

t≤0
VtL

2 (0,∞)〉 = {0} ,

so the proof is complete.

Definition 1. The linear operator A with domain D (A) acting in the
Hilbert space H is called completely nonselfadjoint (or simple) if there is
no invariant subspace M ⊆ D (A) (M 6= {0}) of the operator A on which the
restriction A to M is selfadjoint.

To prove the property (iii) of the incoming and outgoing subspaces, let us
prove the following lemma.

Lemma 1. The operator L̃ is completely noselfadjoint (simple).

Proof. Let H´⊂ H be a nontrivial subspace in which L̃ induces a selfadjoint

operator L̃́ with domain D
(
L̃́
)

= H´∩D
(
L̃
)
. If f ∈ D

(
L̃́
)
,then f ∈ D

(
L̃∗
)

and y (a)−h1p (t) y∆ (a) = 0, y (a)−h1p (t) y∆ (a) = 0. It follows that y (a) =

0, y∆ (a) = 0 and y (λ) = 0 for the eigenvectors y (λ) of the operator L̃ that

lie in H´ and are eigenvectors of L̃́. Since all solutions of l (y) = λy belong

to L2
∆ (T∗), from this it can be concluded that the resolvent Rλ

(
L̃
)

is a

compact operator, and the spectrum of L̃ is purely discrete. Consequently, by
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the theorem on expansion in the eigenvectors of the selfadjoint operator L̃́, we

obtain H´ = {0} . Hence the operator L̃ is simple. The proof is complete. �

Let us define H− = ∪
t≥0
UtD−, H+ = ∪

t≤0
UtD+.

Lemma 2. The equality H− +H+ = H holds.

Proof. Considering the property (i) of the subspace D+, it is easy to show
that the subspace H́ = H� (H− +H+) is invariant relative to the group {Ut}
and has the form H́ = 〈0, H ,́ 0〉, where H´ is a subspace in H. Therefore, if
the subspace H́

(
and hence also H

)́
were nontrivial, then the unitary group{

U´
t

}
restricted to this subspace would be a unitary part of the group {Ut},

and hence, the restriction L̃́ of L̃ to H´ would be a selfadjoint operator in H.́

Since the operator L̃ is simple, it follows that H´ = {0} . Hence the lemma is
proved. �

Assume that ϕ (x, λ) and ψ (x, λ) are the solutions of l (y) = λy satisfying
the conditions

ϕ (a, λ) = sinα, p (t)ϕ∆ (a, λ) = − cosα, ψ (a, λ) = cosα, p (t)ψ∆ (0, λ) = sinα.

Then
ψ (x, λ) +m (λ)ϕ (x, λ) ∈ L2

∆(T∗),
where m (λ) is a Titchmarsh-Weyl function. Let us adopt the following nota-
tions (see [20]): θ (x, λ) = ψ (x, λ) +m (λ)ϕ (x, λ) ,

(11) SG (λ) =
m (λ)−G
m (λ)−G

.

We set

U−λ (x, ξ, ζ) = 〈e−iλξ, (m (λ)−G)−1 αθ (x, λ) , SG (λ) e−iλζ〉.

We note that the vectors U−λ (x, ξ, ζ) for real λ do not belong to the space H
. However, U−λ (x, ξ, ζ) satisfies the equation LU = λU and the corresponding
boundary conditions for the operator L.

By means of vector U−λ (x, ξ, ζ) , we define the transformation F− : f →
∼
f− (λ) by

(F−f) (λ) :=
∼
f− (λ) :=

1√
2π

(f, Uλ)H

on the vectors f = 〈ϕ−, ŷ, ϕ+〉 in which ϕ− (ξ) , ϕ+ (ζ) , y (x) are smooth,
compactly supported functions.

Lemma 3. The transformation F− isometrically maps H− onto L2 (R). For
all vectors f, g ∈ H− the Parseval equality and the inversion formulae hold:

(f, g)H =

(
∼
f−,

∼
g−

)
L2

=

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f− (λ)Uλdλ,
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where
∼
f− (λ) = (F−f) (λ) and

∼
g− (λ) = (F−g) (λ) .

Proof. For f, g ∈ D−, f = 〈ϕ−, 0, 0〉, g = 〈ψ+, 0, 0〉, with Paley-Wiener
theorem, we have

∼
f− (λ) =

1√
2π

(f, Uλ)H =
1√
2π

0∫
−∞

ϕ− (ξ) e−iλξdξ ∈ H2
−,

and by using usual Parseval equality for Fourier integrals,

(f, g)H =

∞∫
−∞

ϕ− (ξ)ψ− (ξ)dξ =

∞∫
−∞

∼
f− (λ)

∼
g− (λ)dλ = (F−f, F−g)L2 ,

Here, H2
± denote the Hardy classes in L2 (R) consisting of the functions ana-

lytically extendible to the upper and lower half-planes, respectively.
We now extend the Parseval equality to the whole of H−. We consider

in H− the dense set of H´
− of the vectors obtained as follows from the smooth,

compactly supported functions in D− : f ∈ H´
− if f = UT f0, f0 = 〈ϕ−, 0, 0〉,

ϕ− ∈ C∞0 (−∞, 0) , where T = Tf is a nonnegative number depending on f . If

f, g ∈ H´
− , then for T > Tf and T > Tg we have U−T f, U−T g ∈ D−, moreover,

the first components of these vectors belong to C∞0 (−∞, 0) . Therefore, since
the operators Ut (t ∈ R) are unitary, by the equality

F−Utf = (Utf, Uλ)H = eiλt
(
f, U−λ

)
H = eiλtF−f,

we have

(f, g)H = (U−T f, U−T g)H = (F−U−T f, F−U−T g)L2

(12) (eiλTF−f, e
iλTF−g)L2 =

(
∼
f,
∼
g

)
L2

.

By taking the closure (12) , we obtain the Parseval equality for the space H−.
The inversion formula is obtained from the Parseval equality if all integrals
in it are considered as limits in the of integrals over finite intervals. Finally

F−H− = ∪
t≥0
F−UtD− = ∪

t≥0
eiλtH2

− = L2 (R) , that is F− maps H− onto the

whole of L2 (R). The lemma is proved. �

We set

U+
λ (x, ξ, ζ) = 〈SG (λ) e−iλξ,

(
m (λ)−G

)−1
αθ (x, λ) , e−iλζ〉.

We note that the vectors U+
λ (x, ξ, ζ) for real λ do not belong to the space

H. However, U+
λ (x, ξ, ζ) satisfies the equation LU = λU and the corre-

sponding boundary conditions for the operator L. With the help of the vector

U+
λ (x, ξ, ζ) , we define the transformation F+ : f →

∼
f+ (λ) by (F+f) (λ) :=
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∼
f+ (λ) := 1√

2π

(
f, U+

λ

)
H on the vectors f = 〈ϕ−, y, ϕ+〉 in which ϕ− (ξ) , ϕ+ (ζ)

and y (x) are smooth, compactly supported functions.

Lemma 4. The transformation F+ isometrically maps H+ onto L2 (R). For
all vectors f, g ∈ H+ the Parseval equality and the inversion formula hold:

(f, g)H =

(
∼
f+,

∼
g+

)
L2

=

∞∫
−∞

∼
f+ (λ)

∼
g+ (λ)dλ, f =

1√
2π

∞∫
−∞

∼
f+ (λ)U+

λ dλ,

where
∼
f+ (λ) = (F+f) (λ) and

∼
g+ (λ) = (F+g) (λ) .

Proof. The proof is analogous to that of lemma 3. �

From (11), |SG (λ)| = 1 for −∞ < λ < ∞. Therefore, it explicitly follows
from the formulae for the vectors U−λ and U+

λ that

(13) U−λ = SG (λ)U+
λ .

It follows from Lemmas 3 and 4 that H− = H+. Together with Lemma 2, this
shows that H− = H+ = H, therefore the property (iii) above has been proved
for the incoming and outgoing subspaces. Finally the property (4) is clear.

Thus, the transformation F− isometrically maps H− onto L2 (R) with the
subspace D− mapped onto H2

− and the operators Ut are transformed into the

operators of multiplication by eiλt. This means that F− is the incoming spec-
tral representation for the group {Ut}. Similarly, F+ is the outgoing spectral
representation for the group {Ut} . It follows from (13) that the passage from
the F− representation of an element f ∈ H to its F+ representation is ac-

complished as
∼
f+ (λ) = Sh (λ)

∼
f− (λ) . Consequently, according to [24] we have

proved the following.

Theorem 4. The function SG (λ) is the scattering matrix of the group {Ut}
(of the selfadjoint operator L).

Let S (λ) be an arbitrary non constant inner function (see [25]) on the
upper half-plane (the analytic function S (λ) on the upper half-plane C+ is
called inner function on C+ if |SG (λ)| ≤ 1 for all λ ∈ C+ and |SG (λ)| = 1 for
almost all λ ∈ R). Define K = H2

+�SH
2
+. Then K 6= {0} is a subspace of the

Hilbert space H2
+. We consider the semigroup of operators Zt (t ≥ 0) acting

in K according to the formula Ztϕ = P
[
eiλtϕ

]
, ϕ = ϕ (λ) ∈ K, where P is

the orthogonal projection from H2
+ onto K. The generator of the semigroup

{Zt} is denoted by

Tϕ = lim
t→+0

(it)−1 (Ztϕ− ϕ) ,

where T is a maximal dissipative operator acting in K and with the domain
D(T ) consisting of all functions ϕ ∈ K, such that the limit exists. The operator
T is called a model dissipative operator (we remark that this model dissipative
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operator, which is associated with the names of Lax-Phillips [24], is a special
case of a more general model dissipative operator constructed by Nagy and
Foiaş [25]). The basic assertion is that S (λ) is the characteristic function of
the operator T.

Let K = 〈0, H, 0〉, so that H =D− ⊕K ⊕D+. It follows from the explicit
form of the unitary transformation F− under the mapping F− that

H → L2 (R) , f →
∼
f− (λ) = (F−f) (λ) , D− → H2

−, D+ → SGH
2
+,

K → H2
+ � SGH

2
+, Ut →

(
F−UtF

−1
−

∼
f−

)
(λ) = eiλt

∼
f− (λ) .(14)

The formulas (14) show that the operator L̃ is unitarily equivalent to the
model dissipative operator with the characteristic function SG (λ) . Since the
characteristic functions of unitary equivalent dissipative operators coincide
(see [25]), we have thus proved the following theorem.

Theorem 5. The characteristic function of the maximal dissipative opera-

tor L̃ coincides with the function SG (λ) defined (11) .

Using the characteristic function, the spectral properties of the maximal

dissipative operator L̃ can be investigated. The characteristic function of the

maximal dissipative operator L̃ is known to lead to information of completeness
about the spectral properties of this operator. For instance, the absence of a
singular factor s (λ) of the characteristic function SG (λ) in the factorization
detSG (λ) = s (λ)B (λ) (B (λ) is a Blaschke product) ensures the completeness

of the system of eigenvectors and associated vectors of the operator L̃ in the
space L2 (0,∞) (see [5, 22, 25]).

Theorem 6. For all values of G with ImG > 0, except possibly for a single
value G = G0, the characteristic function SG (λ) of the maximal dissipative

operator L̃ is a Blaschke product. The spectrum of L̃ is purely discrete and

belongs to the open upper half-plane. The operator L̃ has a countable number
of isolated eigenvalues with finite multiplicity and limit points at infinity. The

system of all eigenvectors and associated vectors of the operator L̃ is complete
in the space H.

Proof. From (11) , it is clear that SG (λ) is an inner function in the upper
half-plane, and it is meromorphic in the whole complex λ-plane. Therefore, it
can be factored in the form

(15) SG (λ) = eiλcBG (λ) , c = c (G) ≥ 0,

where BG (λ) is a Blaschke product. It follows from (15) that

(16) |SG (λ)| ≤ e−c(G)Imλ, Imλ ≥ 0.
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Further, for m (λ) in terms of SG (λ) , we find from (11) that

(17) m (λ) =
GSG (λ)− h
SG (λ)− 1

.

If c (G) > 0 for a given value G ( ImG > 0), then (16) implies that
lim

t→+∞
SG (it) = 0, and then (17) gives us that lim

t→+∞
M (it) = −G. Since M (λ)

does not depend on G, which implies that c (G) can be nonzero at not more
than a single point G = G0 (and further G0 = − lim

t→+∞
m (it)). Hence the proof

is complete. �
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Scales, Birkhäuser, Boston, 2003.



92 H.Tuna 13

[17] Gorbachuk, M.L. and Gorbachuk, V.I., Boundary Value Problems for Operator
Differential Equations, Naukova Dumka, Kiev, 1984; English transl. 1991, Birkhauser
Verlag.

[18] Guseinov Gusein, Sh., Self-adjoint boundary value problems on time scales and sym-
metric Green’s functions, Turkish J. Math., 29 (2005), 365–380.

[19] Hilger, S., Analysis on measure chains–a unified approach to continuous and discrete
calculus, Results Math., 18 (1990), 1818–1856.

[20] Huseynov, A., Limit point and limit circle cases for dynamic equations on time scales,
Hacet. J. Math. Stat., 39 (2010), 379–392.

[21] Kochubei, A. N., Extensions of symmetric operators and symmetric binary relations,
Mat. Zametki, 17 (1975), 41–48; transl. in Math. Notes, 17 (1975), 25–28.

[22] Kuzhel, A., Characteristic Functions and Models of Nonselfadjoint Operators, Kluwer
Academic, Dordrecht, 1996.

[23] Lakshmikantham, V., Sivasundaram, S. and Kaymakcalan, B., Dynamic Systems
on Measure Chains, Kluwer Academic Publishers, Dordrecht, 1996.

[24] Lax, P.D. and Phillips, R.S., Scattering Theory, Academic Press, New York, 1967.
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