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OLD AND RECENT RESULTS

ON FINITE BOLYAI-LOBACHEVSKY PLANES

GÁBOR KORCHMÁROS and ANGELO SONNINO

Abstract. The revolutionary ideas of János Bolyai opened the way for a far
more general and abstract approach to geometry than had previously been pur-
sued. In the spirit of Bolyai’s ideas, axioms with their mutual relationships and
impacts on geometry had intensively been studied and discussed for a long time.
The historical development is treated in the expository papers appeared in the
volume [75] which commemorated the 200th anniversary of the birth of János
Bolyai, written by leading scientists of non-Euclidean geometry, its history, and
its applications. A recent survey on Bolyai’s work is also found in the survey
paper [44].

Axiom systems proposed for general Bolyai-Lobachevsky planes appeared in
the literature for the first time in the 1940’s. These attempts were strongly influ-
enced by the classical point of view in geometry in that time, and the proposed
definitions included sufficiently many postulates to exclude finite planes, that is,
geometries on a finite set of points; see Topel [88], De Baggis [33] and Baer [5].

It was only in 1962 Graves’ paper [43] that an axiom system for Bolyai-
Lobachevsky planes was proposed that admitted finite geometry. Since then, a
number of models for finite Bolyai-Lobachevsky planes have been constructed;
some of them present interesting properties from different points of view.

The present paper is an account of the known results on finite Bolyai-Loba-
chevsky planes. We focus on the finite analogs of the well known models of the
classical Bolyai-Lobachevsky plane, and show that the finite Beltrami-Cayley
and Poincaré models are related to current research in Finite geometry. We
also discuss some more, typically finite, models arising from unitary polarities
and maximal (k, n)-arcs of finite projective planes. In this context, we inves-
tigate those models which have a large symmetry group. An extensive list of
bibliographic references on finite Bolyai-Lobachevsky planes is also provided.
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1. INTRODUCTION

The finite Bolyai-Lobachevsky planes together with other types of finite
planes are considered as a part of Finite geometry which is the general theory
of geometric structures defined on a finite number of points.

This paper is an expanded version of a plenary lecture given by the first author at
the János Bolyai Memorial Conference held in Budapest-Târgu Mureş/Marosvásárhely 30
August-4 September 2010.
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Perhaps the most important and certainly the best known objects in Finite
geometry are the finite affine and projective planes. The concept of a finite
affine plane is the discrete analog of the concept of a classical affine plane. A
finite affine plane is defined by the following postulates:

(i) given any two distinct points, there is exactly one line that is incident
with both points;

(ii) [Parallel postulate] given a line ` and a point P not incident with `, there
exists exactly one line incident with P parallel to ` (here, two distinct
lines are parallel if either they coincide or no point is incident with both
lines);

(iii) there exists a set of four points, no three of which are incident with the
same line;

(iv) there is a line incident with only a finite number of points.

In Finite geometry, we usually adopt a “geometric language” and identify any
line with the set of points which are incident with a line. A finite affine plane
has order n if at least one line is incident with exactly n points. Then the
plane has n2 points and n2 + n lines; each line is incident with n points, and
each point is incident with n+ 1 lines.

In the usual way, any affine plane can be completed to a projective plane
by adding the infinite line incident with n + 1 infinite points. So the parallel
postulate does not hold in a projective plane and hence Axiom (ii) must be
replaced by the following one:

(ii-Pr) any two distinct lines have exactly one common point.

It is a simple matter to construct examples of finite projective and affine
planes in terms of coordinates in a Galois field. Such planes are called the Ga-
lois planes and are of great interest from various points of view; combinatorics,
finite fields, group theory and algebraic curves in positive characteristics are
the main ingredients in their extensive study. There exists a well developed
and coherent theory of finite affine and projective planes treated in a series
of monographs; see for instance [50, 52, 55] and the bibliographic references
therein.

Finite geometry is a relatively young discipline. The systematic study of
finite affine and projective planes started in the 1940’s; and later it was ex-
tended to finite Möbius, Laguerre, Minkowski planes [14, 24, 37, 65], and
Sperner spaces [79, 80, 81, 82, 83].

In the 1940’s, possible finite versions of Bolyai-Lobachevsky planes were
also considered. The obvious idea was to replace the parallel postulate in the
definition of an affine plane with

(ii-BL) given a line ` and a point P not incident with `, there exists at least
two lines through P which are parallel to `;

Unfortunately, there exist too many and substantially different geometric
structures satisfying the postulates (i), (ii-BL) and (iii). In other words, these
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three postulates define a too general geometric structure, and clearly some
restriction is absolutely necessary. How to do this by adding more postulates
is quite an interesting question. It was addressed by B. J. Topel [88], H. F. De
Baggis [33] and, in particular, by the famous German mathematician R. Baer
[5] who introduced the concept of an abstract Bolyai-Lobachevsky plane. Mo-
tivated by the classical point of view in geometry in that time, the postulates
proposed were too strongly related to the more topological concept of between-
ness, and therefore they necessarily excluded finite geometric structures.

In 1962 L. M. Graves [43] proposed the following system of postulates for
Bolyai-Lobachevsky planes that admits finite geometric structures:

(i) given any two distinct points, there is exactly one line that is incident
with both points;

(ii-BL) given a line ` and a point P not incident with `, there exists at least
two lines through P which are parallel to `;

(iii) there exists a set of four points, no three of which are incident with the
same line;

(iv) there exists at least two points on each line;
(v) given any triangle ∆, the transversal lines of ∆ cover all points, that is,

for every point P there exists a line ` such that P ∈ ` and |` ∩∆| = 2).

Essentially, L. M. Graves added two postulates to get rid of trivial examples
and degenerate geometric structures. Nevertheless, the geometric structure
defined by such five postulates still remains too general even in the finite case, a
number of interesting but somewhat unrelated examples being available in the
literature. The usual restriction in Finite geometry that allows to incorporate
interesting incidence structures in a systematic frame-work is to require the
incidence structure to have some sort of regularity or homogeneity. We discuss
briefly how this can be done for finite Bolyai-Lobachevsky planes.

From a combinatorial point of view, such a symmetry may be either line-
regularity, that is, every line is incident with a constant number of points
or, dually, point-regularity if every point is incident with a constant number
of lines. A finite incidence structure which is both line and point regular is
called regular.

From a geometric point of view, the usual requirement is point-homogeneity,
that is, the automorphism group is transitive on the set of points, or line-
homogeneity, that is, the automorphism group is transitive on the set of lines.
An incidence structure which is both point and line homogeneous is called
homogeneous. A stricter requirement is flag-transitivity, that is the automor-
phism group is transitive on the set of incident point-line pairs. It may be
observed that doubly transitivity on points implies flag-transitivity.

Under such restrictions, deeper results and classification theorems on fi-
nite Bolyai-Lobachevsky planes have been obtained. A survey is given in the
present paper which also includes some recent contributions; see [63]. Our
notation and terminology are standard; see for instance [50].
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2. LINEAR SPACES AND BOLYAI-LOBACHEVSKY PLANES

A linear space is an incidence structure L = (P,L, I) consisting of “points”
and “lines”, with incidence I, satisfying the following axioms:

L1 each two distinct points are incident to exactly one line;
L2 each line is incident to at least two points.

Our notation is standard; see [10] for a detailed description of linear spaces.
If L has a finite number of points, then we call it a finite linear space. For

finite linear spaces, one can further define

• r(P ) = |{ ` ∈ L | P I ` }| for each P ∈ P,
• k(`) = |{P ∈ P | P I ` }| for each P ∈ P,
• km = min |{ k(L) | ` ∈ L}|,
• kM = max |{ k(L) | ` ∈ L}|,
• rm = min |{ r(P ) | P ∈ P }|,
• rM = max |{ r(P ) | P ∈ P }|.

In this context, a finite Bolyai-Lobachevsky plane turns out to be a finite linear
space L = (P,L) satisfying Axioms (i)–(v).

In particular, a line symmetric Bolyai-Lobachevsky plane is a Steiner sys-
tem. Recall that a Steiner system S(2, k, v) is a linear space L = (P,L) con-
sisting of v points, where each line is incident with exactly k points. Steiner
systems have been intensively studied; see [4, 12, 13, 53, 66].

An obvious necessary condition for the existence of an S(2, k, v) is the fol-
lowing:

|L| = v(v − 1)

k(k − 1)
∈ N.

A standard counting argument shows that the number r(P ) of lines through
a point P in a Steiner system S(2, k, v) is constant. To show it, we note that
for any point P and line ` not through P there are exactly k lines through P
meeting `. Each of these lines contains k − 1 points distinct from P , and the
remaining v −

(
k(k − 1) + 1

)
points of our S(2, k, v) are on the other lines;

hence

r(P ) = k +
v −

(
k(k − 1) + 1

)
k − 1

,

where the number of lines through P which are disjoint from ` is

s =
v −

(
k(k − 1) + 1

)
k − 1

.

This gives the following result.

Proposition 2.1. Every line-regular Bolyai-Lobachevsky plane is a Steiner
system S(2, k, v) with r > k. In particular, every line-regular Bolyai-Lobachev-
sky plane is regular.
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Finite Bolyai-Lobachevsky planes with s = 3 are the unique S(2, 2, 6), the
two known S(2, 3, 13) and a hypotetic S(2, 6, 46) the existence of which is yet
an open problem [42].

Finite flag-transitive Bolyai-Lobachevsky planes are line-regular and hence
they are Steiner systems. Therefore, the classification of the automorphism
groups of flag-transitive Steiner systems, depending on the classification of
finite simple groups, has the following corollary; see [25].

Theorem 2.2. If G is a flag-transitive automorphism group of a finite
Bolyai-Lobachevsky plane B, then one of the following holds:

• Affine case: G has an elementary abelian minimal normal subgroup T ,
acting regularly on the points of B.
• Almost simple case: G has a nonabelian simple subgroup N such that
N EG ≤ AutN , and the only possibilities are:

– B = PG(d, q) with d > 2 over GF(q) and N = PSL(d + l, q),
except for the sporadic example B = PG(3, 2) with G = Alt(7);

– B is a Hermitian unital UH(q) and N = PSU(3, q);
– B is a Ree unital UH(32e+ 1) with e > 1 and N = 2G2(32e+ 1);
– B is a Witt-Bose-Shrikhande space W (2e) with e > 3 and N =

PSL(2, 2e).

In each ease, the action of N on B is the usual one.

In [35] A. Delandtsheer introduced the more general concept of an n-fold
finite Bolyai-Lobachevsky space and provided a classification of 2-fold Bolyai-
Lobachevsky spaces.

An n-fold Bolyai-Lobachevsky space is a finite linear space for which there
is an integer s > 0 such that for any set consisting of n mutually disjoint lines
`1, `2,. . . , `n any point lying outside their union `1 ∪ `2 ∪ · · · ∪ `n is on exactly
s lines disjoint from `1 ∪ `2 ∪ · · · ∪ `n.

Recall that a generalised projective space is a linear space satisfying the
Veblen-Young axiom, that is, for every couple of lines ` and `′, with ` ∩ `′ =
{P}, any two lines not through P and intersecting both ` and `′ intersect, in
turn, at a point Q.

Theorem 2.3 (A. Delandtsheer). For a 2-fold finite Bolyai-Lobachevsky
space one of the following occurs:

(a) S is a projective space of dimension at most 3;
(b) S is either a degenerate projective plane, or a generalised projective space

of dimension 3 consisting of two disjoint lines with the same size and all
another lines with two points, or a generalised projective space in which
all lines have exactly 2 points;

(c) S is a projective plane of order q from which k points lying on one of its
lines are removed, with 0 ≤ k ≤ q + 1 and k 6= q;

(d) S is an affine plane from which either one point or one line has been
removed.
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3. FINITE ANALOGS OF THE MODELS OF THE CLASSICAL

BOLYAI-LOBACHEVSKY PLANE

To pick up the significative aspects of the finite Bolyai-Lobachevsky planes,
it is useful to look into the classical models.

The Beltrami-Klein model, also called the projective model, the Klein disk
model, and the Cayley-Klein model, is a model of Bolyai-Lobachevsky plane
in which points are represented by the points in the interior of the unit disk,
and lines are represented by the chords, that is, straight line segments with
endpoints on the boundary circle. It made its first appearance in a memoir of
the Italian mathematician E. Beltrami published in 1868 [11].

3.1. Finite Bolyai-Lobachevsky planes arising from ovals. In [74] T. G.
Ostrom showed that the Beltrami–Klein model can be defined in any finite
projective plane of odd order provided that the plane contains an oval. Recall
that an oval Ω in a projective plane π of order n is a set of points such that

• no three points of Ω are collinear;
• for each point P of Ω there exists a unique line through P which meets

Ω only in P ; such a line is the tangent to Ω at P .

Well known examples of ovals are the irreducible conics in the projective
plane PG(2, n) defined over the finite field GF(n), where n is a power of a
prime. B. Segre [77] proved that every oval in PG(2, n) with n odd consists of
all points of an irreducible conic.

Assume that n is odd. Then Ω resembles the basic properties of an irre-
ducible conic of the real projective plane. Further, the points of PG(2, n) fall
in three disjoint classes:

• the points in Ω, each lying on exactly one tangent line;
• the exterior points, which lie on exactly two tangent lines;
• the interior points, which lie on no tangent lines.

It follows that

• there are 1
2n(n− 1) interior points;

• no tangent line contains any interior points;
• each secant line contains 1

2(n− 1) interior points;

• each exterior line contains exactly 1
2(n+ 1) interior points.

There is a vast literature on ovals and their generalisations; see for instance
[50, 62].

A geometric structure arises from the set of interior points of Ω when lines
are defined to be the set-theoretic intersections of the non-tangent lines with
the interior points. This geometric structure is the Beltrami-Klein model of a
finite Bolyai-Lobachevsky plane.

In the case where the plane is a Galois plane of odd order n (and hence
the oval is a conic by Segre’s theorem [77]), then the Beltrami-Klein model is
point-homogeneous, as it was pointed out by T. G. Ostrom in [74].
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Finite point-homogeneous Beltrami-Klein models are strongly related with
the following result; see [41].

Theorem 3.1 (M. R. Enea, G. Korchmáros). Let G be collineation group
of a projective plane of odd order n that fixes an oval Ω and acts transitively
on the set of all internal points to Ω. Then n is a prime power and either

(I) G is 2-transitive on Ω, the plane is of Galois and Ω is a conic, or
(II) G fixes a point X ∈ Ω and acts on Ω \ {X} as an affine-type primitive

permutation group. If, in addition, each involution in G is a homology,
then G is 2-transitive on Ω \ {X}, and one of the following holds:
(a) n = q, and G ≤ AGL(1, q).
(b) n = p2 with p ∈ {5, 7, 11, 23, 29, 594}, and G acts on Ω \ {X} as

a sharply 2-transitive permutation group arising from an irregular
nearfield of order p2.

A finite Beltrami-Klein model cannot be line-transitive, as no collineation
fixing Ω may take an internal line to an external line.

A finite Beltrami-Klein model is not regular, since a line has either 1
2(n−1)

or 1
2(n+ 1) points according as the line is a secant or an external line.

3.2. Finite Bolyai-Lobachevsky planes arising from triangles. In [76]
R. Sandler presented the following construction for a class of finite Bolyai-
Lobachevsky planes. Let π be a finite projective plane of order n ≥ 7, and
π0 the set of points obtained by removing from π the points on three non-
concurrent lines, say `1, `2 and `3.

Now consider an incidence structure B = (P,L) where P = π0, lines of L
are the lines of π except `1, `2 and `3, with the points contained in `1, `2 and
`3 removed. The following facts are obvious.

(1) Every point of P is in exactly n+ 1 lines of L.
(2) Every line of L contains either n− 1 or n+ 1 points, according as whether

a line passes through an inersection `i ∩ `j or not, with i, j ∈ {1, 2, 3}.
(3) Two distinct points of P determine a unique line of L.
(4) Through each point P ∈ P not on a line ` ∈ L there pass at least two lines

of L which do not intersect `.

Actually, properties (3) and (4) are the first two axioms for a finite Bolyai-
Lobachevsky plane.

Note that if π is Desarguesian, then the finite Bolyai-Lobachevsky plane B
so obtained is homogeneous, that is, its collineation group is transitive on its
points. In fact, any collineation of π preserving a triangle induces a collineation
of B, and if π is Desarguesian its collineation group is known to be transitive
on quadrilaterals. Hence, the subgroup of the collineation group of π fixing
the three points `i ∩ `j , with i, j ∈ {1, 2, 3}, will induce a collineation group of
B which is transitive on P.
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Sandler’s construction can be extended either to the case where more than
three lines are removed from π, or to the case where π is infinite, in order to
obtain new examples of (perhaps infinite) Bolyai-Lobachevsky planes.

3.3. Finite Bolyai-Lobachevsky planes arising from inversive planes.
In a series of papers [30, 31, 32], D. W. Crowe proposed a finite Poincaré model
for Bolyai-Lobachevsky planes based on finite inversive planes.

An inversive plane is an incidence structure I consisting of “points” and
“circles” satisfying the following axioms.

I1. Any three points lie on exactly one circle.
I2. If C is a circle, P is a point on C, and Q is a point not on C, then there is

exactly one circle C′ containing both P and Q and intersecting C only in
P .

I3. There exist four points not all in the same circle.

If there exists an integer n such that each circle of I contains exactly n + 1
points, then I is called a finite inversive plane of order n. A comprehensive
account on inversive planes can be found in [37].

An orthogonality relation on an inversive plane I is a symmetric binary
relation ⊥ on circles of I with the following properties.

O1 If P and Q are two distinct points and C is a circle through P , then there
is exactly one circle C′ through both P and Q such that C ⊥ C′.

O2 If C and C′ are two distinct circles, each through the distinct points P and
Q, and if C′′ is a circle such that C ⊥ C′ ⊥ C′′ then C′′ ⊥ X for all circles
X through P and Q.

Recall that a finite inversive plane can have at most one orthogonality relation;
see [37]. Let I be a finite inversive plane. If the order of I is even, then
orthogonality coincides with tangency. If instead I has odd order, then two
orthogonal circles in I are either disjoint or have two common points.

Further, the most useful combinatorial tool in this context is represented
by the following result; see [32, 85].

Theorem 3.2. Let rm, rM , km and kM be as in Page 62. Then, any finite
linear space satisfying

rm ≥ kM + 2,

km(km − 1) ≥ rM ,

is a hyperbolic plane.

Every finite inversive plane equipped with an orthogonality gives rise to
a finite Poincaré model of a Bolyai-Lobachevsky plane. In order to describe
Crowe’s construction we need to recall the following result; see [38].

Lemma 3.3. Let P be a point and C a circle not through P in a finite
inversive plane equipped with orthogonality. Then there exists a point P 6= P
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not on C such that for all circles X through P the relation X ⊥ C holds if and
only in P is not on X .

Now let I be a finite inversive plane of order n with orthogonality and C a
fixed circle in I. Define an incidence structure FC(I) of “points” and “lines”
as follows:

• points are the sets {P, P} where P is not on C as in Lemma 3.3;
• lines are the circles L which are orthogonal to C.

Note that the point {P, P} is on L if and only if either P or P is on L (and
hence both are). Further, if {P, P} and {Q,Q} are distinct points, then in
I there is exactly one circle L containing P , P and Q (hence also Q). So,
L is the unique line of FC(I) through the distinct points {P, P} and {Q,Q}.
Thus FC(I) is a finite linear space. If n is even, then k = 1

2n, while if n is

odd then km = 1
2(n − 1) and kM = 1

2(n + 1). Hence, by Theorem 3.2, FC(I)
is a hyperbolic plane for all n > 7. It can be shown directly that FC(I) is a
hyperbolic plane also for n = 7, but not for n < 7. Further, FC(I) is regular
if and only if n is even.

Finite inversive planes arise from ovoids, in particular from quadrics in a
three-dimensional projective space over a Galois field. Interestingly, in the
even order case there exist ovoids other than quadrics. They are called Tits
ovoids, and are strongly related to the simple Suzuki groups; see [67, Chap-
ter IV]. It would be interesting to investigate the geometric properties of these
particular finite Poincaré models.

3.4. Finite Bolyai-Lobachevsky planes arising from unitals. Bumcrot
pointed out in [26] that the set of all absolute points of a unitary polarity
provides an example of a finite regular Bolyai-Lobachevsky plane. Such a set
is called classical unital. Here, the projective plane π must be a Galois plane
of order n = m2, and a canonical form of the classical unital is

Xm+1 + Y m+1 + Zm+1 = 0.

This model of a finite regular Bolyai-Lobachevsky plane is called the unitary
model. This model is as nice as possible, since its symmetry group is doubly
point-transitive—hence line-homogeneous—and regular.

The classical unital consists of m3 + 1 points. It has exactly one tangent
at each of its points, and each other line is an (m+ 1)-secant. Therefore, the
unitary unital model has m3 + 1 points, m2(m2 − m + 1) lines, each line is
incident with m+ 1 points and each point is incident with m3 lines.

Actually, to show that a classical unital gives rise to Bolyai-Lobachevsky
plane, the above combinatorial properties are enough; the fact that they are
absolute points of an unitary polarity is unnecessary. So, a unital model
of a Bolyai-Lobachevsky plane exists in every projective plane of order m2

containing an unital. Unitals other than the classical ones exist even in finite
Galois planes; see [2, 23, 51, 70]. In fact, one of the main problems in Finite
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Geometry is to classify unitals in Galois planes. There exists a vast literature
on unitals; see the monograph [9].

The inherited symmetry group of a finite Bolyai-Lobachevsky arising from
a unital U is the subgroup G of the collineation group of the plane which
preserves U . In this context, “line-homogeneity” is meant “transitivity of G
on the set of all secants to U”. From a result by M. Biliotti and the first
author; see [18, 19], a line-homogeneous unital model of a Bolyai-Lobachevsky
plane is necessarily a unitary model. For more results on collineation groups
preserving unitals see [28, 29].

3.5. Finite Bolyai-Lobachevsky planes arising from maximal (k, n)-
arcs. Other nice models of finite regular Bolyai-Lobachevsky planes can be
obtained from particular configurations in a finite projective plane, called max-
imal (k, n)-arcs. A (k, n)-arc in a projective plane π of order q is a set of k
points meeting each line in at most n points and some line in exactly n points.
A (k, n)-arc has at most (n− 1)q + n points and it is said to be maximal if it
has that many. If this is the case then k|n. The dual of a maximal (k, n)-arc
Ω, that is, the set of external lines to Ω together with the points outside Ω,
is a ((q + 1 − n)q/n, q/n)-arc in the dual plane π∗ of π. Formally, any point
is a maximal (1, 1)-arc, and its dual, that is, the complement of a line, is a
maximal (q2, q)-arc. However they behave as trivial examples in the context
of (k, n)-arcs and are not considered in our discussion.

For n > 2, the set of all points of a maximal (k, n)-arc together with its
secants gives a further example of a finite regular Bolyai-Lobachevsky plane.
Such a model has (n−1)q+n points, (q2+q+1)k/n lines, each line is incident
with n points and each point is incident with q2 + q + 1 lines.

Maximal arcs have been used to construct interesting new partial geome-
tries, strongly regular graphs, 2-weight codes, and resolvable Steiner 2-designs.

It was proved by S. Ball, A. Blokhuis and F. Mazzocca [7] that maximal
arcs do not exist in any Galois plane of odd order.

Another known (sporadic) example of a point-homogeneous dual hyperoval
arises from the Lunelli-Sce hyperoval in PG(2, 16); see [58]. Other families
of maximal (k, n)-arcs in Galois planes of even order were constructed by
R. H. F. Denniston, R. Mathon and N. Hamilton; see [39, 45, 46, 69]. Apart
from hyperovals and their duals, there are three classes of non-trivial maximal
arcs known in PG(2, q), they are those due to R. H. F. Denniston and two
classes due to J. A. Thas; see [86, 87] Maximal (k, n)-arcs are also related
with algebraic plane curves with many rational points; see [1].

In [47] Hamilton and Penttila investigated collineation groups of maximal
(k, n)-arcs in a Galois plane of even order.

Theorem 3.4 (N. Hamilton, T. Penttila). Let K be a maximal arc in
PG(2, q) with q = 2h and h ≥ 2. If a collineation group G preserving K
acts transitively on the points of K then one of the following cases occur:
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(i) K is a regular hyperoval in PG(2, 2), or PG(2, 4), or a Lunelli-Sce
hyperoval in PG(2, 16).

(ii) K is the dual of a translation oval in PG(2, q) for any even q.

We state a corollary on Bolyai-Lobacevsky planes.

Theorem 3.5. Let K be a maximal (k, n)-arc with n > 2 in a Galois plane
of order q = 2h such that the finite Bolyai-Lobacevsky plane arising from K
is point-homogeneous as it has an inherited point-transitive symmetry group
G. Then K is a the dual of a hyperoval Ω. Furthermore, Ω is either a regular
hyperoval, or a translation oval. In the latter case G preserves the special
secant ` of Ω and acts on the points of Ω outside ` as a sharply 2-transitive
permutation group.

The following result provides a useful classification of collineation groups
preserving maximal arcs; see [36].

Theorem 3.6 (A. Delandtsheer, J. Doyen). Let K be a maximal (k, n)-arc
in a projective plane of order q. If a collineation goup G preserving K acts
transitively on the set of all secant lines to K then one of the following holds:

(i) q = 2h, h ≥ 3, n = q/2, K is the dual of a regular hyperoval in
PG(2, 2h), and PSL(2, 2h) ≤ G ≤ PΓL(2, 2h).

(ii) q = 4, n = 2, K is a regular hyperoval in PG(2, 4) and G is isomorphic
to one of the groups Alt(6), Sym(6), Alt(5), Sym(5).

As a corollary we have the following result on Bolyai-Lobacevsky planes.

Theorem 3.7. Let K be a maximal (k, n)-arc with n > 2 in a projective
plane of even order q such that the finite Bolyai-Lobacevsky plane arising from
K is line-homogeneous as it has an inherited line-transitive symmetry group
G. Then (i) of Theorem 3.6 holds.

We end our discussion by a generalization of Theorem 3.4 to any projective
plane of order q = 2h; see [63].

Theorem 3.8. Let π be a projective plane of order q = 2h containing a hy-
peroval Ω. Let G be a collineation group of π preserving Ω that acts transitively
on the set of all external lines to Ω. If G contains no planar collineation, then
either π is a Galois plane and Ω is regular hyperoval, or Ω is a translation
oval, G preserves the special secant ` of Ω and acts on the points of Ω outside
` as a sharply 2-transitive permutation group.

Corollary 3.9. Let Ω be a hyperoval in a projective plane of order q = 2h

such that the finite Bolyai-Lobacevsky plane arising from the dual of Ω is point-
homogeneous as it has an inherited point-transitive symmetry group G. If G
contains no planar collineations then Ω is either a Galois plane and Ω is
regular hyperoval, or Ω is a translation oval, G preserves the special secant `
of Ω and acts on the points of Ω outside ` as a sharply 2-transitive permutation
group.
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[20] Biliotti, M. and Korchmáros, G., Some new results on collineation groups preserving
an oval of a finite projective plane, Combinatorics ’88, Vol. 1 (Ravello, 1988), Res.
Lecture Notes Math., Mediterranean, Rende, 1991, pp. 159–170.
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[63] Korchmáros, G. and Sonnino, A., Finite Bolyai-Lobachevskii planes, Acta Math.
Hungar., 134 (2012), 405–415.

[64] M. Kut′in, A., Finite geometries and the Steiner systems S(2,m, n), Combinatorial-
algebraic and probability methods in applied mathematics (Russian), Gor′kov. Gos.
Univ., Gorki, 1988, pp. 49–53.
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