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SOME REMARKS ON UNIVERSAL COVERS AND GROUPS

RENATA GRIMALDI and CORRADO TANASI

Abstract. We give a quick review of problems concerning the topological be-
havior of contractible covering spaces, from the point of view of the topology
at infinity. In particular, we briefly describe the evolution of the notion of the
simple connectivity at infinity, from low-dimensional topology to the asymptotic
topology of discrete groups, also highlighting the work done by V. Poénaru on
these topics.
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1. INTRODUCTION

In this short note we will present a concise panoramic view of some more or
less recent research on the geometry and topology at infinity of open manifolds
and discrete groups, with an emphasis on universal covering spaces of closed
aspherical (3)-manifolds M (i.e. with πi(M) = 0, i > 1).

More precisely, we will introduce and review some results concerning the
well-known (3-dimensional) Universal Covering Conjecture, and the
related problems about the asymptotic topology of universal covers and finitely
presented groups, also following the line of V. Poénaru’s research and results in
the last decades. In particular, we will briefly explain Poénaru’s contributions
(of around the 80’s) to the above mentioned Conjecture, as well as his more
recent progresses, which have largely generalized the question.

2. CONTRACTIBLE UNIVERSAL COVERS

First of all, let us say that, what we call Universal Covering Conjecture is
actually a Theorem nowadays, thanks to the impressive recent advances in 3-
dimensional geometry and topology after Perelman’s works [30, 31, 32] proving
both the Poincaré Conjecture and the Thurston’s Geometrization Conjecture
[49] (for a detailed proof see [1]).

Before going on, we state what the Conjecture affirms:

Conjecture 1 (Theorem). The universal covering space of a closed, ori-
entable, aspherical 3-manifold M is homeomorphic to the Euclidian space R3.

The authors wish to thank V. Poénaru for his constant support, friendship and help
during their careers, as well as L. Funar for his suggestions and remarks.
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Here some comments are needed. First of all, observe that the previous
Conjecture was indeed one of the main problems in 3-dimensional topology,
together with Poincaré Conjecture. On the other hand, in higher dimensions,
this problem-conjecture was studied as well for several years, but without
finding a complete solution (in positive or negative) until the 80’s (see e.g.
[22] or [26]).

The far more general origin of the issue of understanding the topology of
closed aspherical manifolds actually goes back to the 50’s, when A. Borel asked
the question whether two aspherical manifolds with isomorphic fundamental
groups are homeomorphic or not.

Notice that the class of aspherical (closed) manifolds (i.e. manifolds with a
contractible universal covering space) plays an important rôle in various fields
of geometry and topology: aspherical manifolds are, doubtless, very interesting
and rich objects.

Some of the main natural questions about them are the following ones:

• Which manifolds admit a contractible universal covering space?
• Which topological notion may ‘detect’ the class of contractible univer-

sal covering spaces?
• Which groups occur as fundamental groups of aspherical closed mani-

folds?

On the other hand, it is known that, topologically, there exist uncountably
many distinct contractible open topological manifolds of any dimension ≥ 3
[16] (but, of course, not all of them may support a “nice” group action!).

Obviously, Euclidean spaces Rn are examples of both open contractible
manifolds and universal covering spaces. Hence, one may ask the following
two correlated problems:

• Are they the only open manifolds of such a type (namely, which are
both contractible and universal covers)?
• If not, is it possible to find some necessary and sufficient topological

conditions for an open manifold to be homeomorphic to Rn?

The first attempts for ‘detecting’ Euclidean spaces among open contractible
topological manifolds go back to L. Siebenmann’s Thesis in the 60’s. In [44],
he eventually managed to prove that Rn, for n ≥ 5, may be characterized by a
homotopy criterion: the simple connectivity at infinity (which generalizes the
condition that complements of large compacts are simply connected). To be
more precise, before this theorem, J. Stallings had also proved a similar result
in [45], but for PL and differentiable manifolds (and using a slightly stronger
topological condition at infinity). Notice that the same conclusion holds true
in dimension 4 too, but only topologically (and not in the PL or differentiable
categories): this is a deep result by Freedman in [7]. Finally, in dimension
3, and assuming the validity of Poincaré Conjecture (and hence simplifying
considerably the task) the same result was proved in [5].

To sum up, we can now state the following very deep and difficult result:
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Theorem 1 (J. Stallings, [45]; L. Siebenmann, [44]; M. Freedman, [7]; G.
Perelman, [30, 31, 32], [1]). For any n ≥ 3, the simple connectivity at infinity
characterizes Euclidean spaces Rn among open contractible n-manifolds. [Only
topologically for n = 4, and, for n = 3 the manifold has to be irreducible.]

At this point it is worthy to recall that a feature of 3-manifolds, in con-
trast to higher dimensions, is that there is no essential difference between
smooth, piecewise linear (PL), and topological manifolds. For instance, it was
shown by Bing and Moise in the 50’s that every topological 3-manifold has
a unique smooth structure, and the classifications up to diffeomorphism and
homeomorphism coincide.

Coming back to the Conjecture 1, the origin of the systematic study of
the topology at infinity of the universal covering spaces of closed aspherical
n-manifolds, actually dates back to the late 60’s, when S. Novikov asked a num-
ber of related questions concerning closed n-manifolds Mn which are K(π, 1):
he was maybe the first who started wondering about the simple connectivity
at infinity of theirs universal covers.

Then, in [20], it was conjectured for the first time that Conjecture 1 may
possibly be true in all dimensions, and, in the subsequent [21], even some
partial results of this “generalized conjecture” were proved.

The reason why people at that time thought that, for any n ≥ 3, the only
contractible universal cover may be Rn, is indeed very simple: for a long
time Euclidean spaces were the only known examples of such type; and so
was actually until the 80’s (see e.g. [22]). Eventually, the story of aspherical
manifolds of higher dimension changed towards an exotic panorama when
M. Davis, in his seminal paper [4], provided the very first construction of
closed, aspherical manifolds whose universal covers are not simply connected
at infinity. What he proved implies for instance (after Theorem 1) that there
are, in every dimension ≥ 4, contractible manifolds not homeomorphic to the
Euclidean spaces, but still admitting a proper free action of some discrete
group (e.g. Coxeter or hyperbolic) with compact orbit space. This result
opened a very active research field for understanding topologically the exotic
behavior at infinity of contractible manifolds and discrete groups.

Theorem 2 (M. Davis, [4]). For each n ≥ 4, there is a closed aspherical
n-manifold such that its universal cover is not homeomorphic to Rn.

Thanks to this Theorem, we know today that Conjecture 1 does not extend
in higher dimensions; however, the original 3-dimensional problem remained
totally unsolved until Perelman’s proof of the full Thurston Geometrization
Conjecture (see [1, 30, 31, 32, 49]). But what is even more surprising, is that
until now, as far as we know, there is still no “direct” topological proof of
this important theorem, i.e. a result which makes no use of the complicated
Ricci flow analytic techniques. It is clear that such a proof would be very
interesting: V. Poénaru has recently proposed a new strategy for a even more
general (conjectural) result (for the announcement see [39], and see also [26]).
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2.1. The case of dimension 3. Let us recall now some basics on the topology
and geometry of 3-manifolds. A connected closed 3-manifold M is said to
be prime if it cannot be expressed as a non-trivial connected sum of two 3-
manifolds, and it is called irreducible if any embedded sphere bounds a ball.
Obviously, an irreducible closed 3-manifold is prime, while a prime closed 3-
manifold is irreducible, provided it is not an S2-bundle over S1. Finally, a
closed orientable 3-manifold is aspherical if and only if it is irreducible and
has infinite fundamental group (by the Sphere Theorem, see [49]).

By Thurston Geometrization Conjecture, it follows that a closed 3-manifold
is aspherical if and only if its universal cover is homeomorphic to R3. (For
more details on the Conjecture see [49], for its proof see [1, 30, 31, 32])

Roughly speaking, Thurston Geometrization Conjecture affirms that ev-
ery compact, orientable 3-manifold M can be decomposed (canonically) into
finitely many pieces Pi, each of which admits a unique geometric structure
(as a complete, locally homogeneous, Riemannian manifold); and the decom-
position is done by cutting the manifold along certain 2-spheres and tori.
Furthermore, the universal cover P̃i of each component Pi, carries a complete,
homogeneous metric in which the covering transformations are isometries, and
hence P̃i is called the geometry on which Pi is modelled. And moreover, only
eight possible homogeneous geometries can arise in the geometrization con-
jecture. These are the following ones. Firstly, those of constant curvature,
namely: the sphere S3 of curvature +1, the Euclidean space R3 of curvature 0,
and the hyperbolic space H3 having curvature −1. Then, there are the prod-
uct metrics on S2 ×R1 and H2 ×R1. Finally, the last three are: the universal
cover of SL(2,R), the Heisenberg group H (of upper triangular 3× 3 matrices
with diagonal entries 1), and the geometry Sol, which, as H, can be thought
of as R3 with specific multiplication and metric.

Thus, the only contractible 3-dimensional covers with compact quotient are
all, topologically, the Euclidean 3-space R3, so that Conjecture 1 may be stated
as a Theorem today.

Nevertheless, as one sees, it is needed the full comprehension of the whole
word of the topology and the geometry of 3-manifolds, in order to understand
“just” the (a priori easier) topological behavior at infinity of covering spaces
of aspherical 3-manifolds.

For this reason, the recent strategy by V. Poénaru announced in [39], for
possibly showing that all finitely presented groups share the same topologi-
cal condition (namely the quasi-simple filtration, or qsf property) should be
considered very useful and interesting, besides its own interest per se in the
world of geometric group theory (for more on the qsf property see [3] as well
as [11, 26]). Un to now, there is no written detailed proof of this conjectural
statement (only the very first part in [40]), but the whole subject deserves to
be studied more and carefully verified (for more see also [27, 28, 29, 43]).
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More precisely, if one admits that all groups are qsf, then in particular
all 3-manifold groups will be qsf too. Now, it is a feature of dimension 3
that, for open manifolds, being qsf is equivalent, to the property of having
an exhaustion by compact and simply connected sub-manifolds (the so-called
weak geometric simple connectivity), which is, in turn, equivalent (and this
again only in dimension 3) to the simple connectivity at infinity (see [3, 34] and
also [8, 11, 25]). Hence, the previously discussed topological characterization
of Rn (in dimension at least 3) completes the proof of Conjecture 1.

In this way, the main conjectural result of [39] could furnish the first purely
topological proof of Conjecture 1, i.e. bypassing the geometric and analytical
methods of Perelman’s technology.

Another consequence of Poénaru’s conjectural result in the announcement
[39], would be the proof of the following statement, which largely generalizes
Conjecture 1 (and which was stated as a conjecture in [47, 8, 11, 26]):

Conjecture 2 ([47, 8]). In any dimension, the universal covering space of
a closed, aspherical manifold is qsf.

Remark 1. Notice there exist infinitely many open contractible manifolds
which are not qsf by results in [8, 9]: the so-called Whitehead-types manifolds.
These manifolds generalize the classical Whitehead 3-manifold [50], that is a
contractible open 3-manifold W which is not simply connected at infinity (nor
qsf), and hence not homeomorphic to R3 (even if, it turns out that the product
of W with an open interval, W × (0, 1), is homeomorphic to R4).

It is still an open problem whether one of these contractible manifolds could
cover a closed manifold: this would follow from Poénaru’s (conjectural) state-
ment of [39].

We end this section by noticing that another recent reformulation and gen-
eralization of Conjecture 1 may be found in [9].

3. END-TOPOLOGY OF GROUPS

What is also interesting in the above mentioned paper [21], is that one may
find there some connections between the topology at infinity of the universal
cover of a closed manifold M with the end-topology of its fundamental group.
More precisely, the main result in [21] (see also [19]) states that the generalized
universal covering conjecture is true if and only if the fundamental group of
M is one-ended, stable at infinity and simply connected at infinity.

Recall that a non compact space X is said to be one-ended, if for every
compact subset C ⊂ X, there is another compact D, with C ⊂ D ⊂ X, such
that X−D has only one connected component. [This simply means that there
is only one way to move to infinity within the space].

If one considers discrete groups, the definition above may be adapted as
follows: the ends of a finitely generated group are defined to be the ends
of the corresponding Cayley graph, and this definition is “insensitive” to the
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choice of the generating set (see [13]). Unlike general topological spaces, every
finitely generated group has either 1, 2, or infinitely many ends (this is a
classical result by Hopf, see [33]); moreover, Stallings Theorem on ends of
groups (see [46]), provides even a decomposition (as amalgamated products
or HNN-extensions) for groups with more than one end (see also [33] for a
detailed proof and for the connections with the topology of 3-manifolds).

Following Gromov’s program on the quasi-isometry classification of discrete
groups [17], it was shown in [2] that the number of ends of a group is a
geometric invariant (meaning invariant under quasi-isometry). Furthermore,
it is also possible to “measure the kind of one-endedness” defining the end-
depth of a one-ended metric space as the growth-rate of the depth of bounded
connected components of complements of compacts (see [24]); nevertheless,
for finitely presented groups such a function turns out to be always linear [12].

For non-compact topological spaces, since Siebenmann’s Thesis (as well as
[20]), one started to try to define the notion of the fundamental group of an end,
by means of inverse limits of (fundamental) groups associated to exhaustions
of non compact spaces. Roughly speaking, Siebenmann defined an end of a
non-compact space X to be semi-stable if, in the tower of fundamental groups
π1(X−Ki), associated to the exhaustion of connected compacts X = ∪Ki, all
the morphisms are surjective. The end is called stable if the morphisms are
all isomorphisms (for precise definitions and results see [13]).

Successively, Geoghegan and Mihalik in [14], defined and studied the fun-
damental group at infinity for the class of groups which are semistable at
infinity. For a non-compact complex X, a proper map from [0,∞) to X is
called a proper ray, and two proper rays are said to define the same end if
their restrictions to the subset of natural numbers are properly homotopic.
Finally, an end of X is called semistable at ∞ if any two proper rays defining
this end are properly homotopic.

These notions may be defined for groups too: a finitely presented group G
is said semistable at ∞ (respectively, it has semi-stable ends) if there exists
a compact polyhedron X, with G as π1, whose universal covering space is
semistable at ∞ (resp. has semistable ends).

Many classes of finitely generated groups are known to be semistable at ∞,
and actually, is is still unknown if all finitely presented groups are semistable
at ∞ or not. Whenever a finitely presented group G is semistable at ∞, then
one can define the fundamental group at an end of G, and this definition is
independent of choice of base points and on the rays in some associated space
(see [14]). The main results and references concerning the semistability at
infinity may be found in [13, 14], but see also the recent interesting paper [9]
for connections with 3-dimensional manifolds.

Of course, whenever the fundamental group at∞ is trivial, the end is called
simply connected at infinity. However, there is a simpler and just topological
(bur still very useful) notion of simple connectivity at infinity, which makes no
use of inverse limits and proper rays.
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Definition 1. A connected complex X is simply connected at infinity (sci)
if for each compact C ⊂ X there exists a compact D ⊂ X such that loops in
X −D are homotopically trivial in X − C. (This simply means that any far
away loop bounds a disk which is enough far away).

Simple connectivity at infinity implies semistability at ∞, and, as it, the
idea of simple connectivity at infinity can be extended from spaces to discrete
groups as follows (for an extensive discussion on the subject see [13]).

Definition 2. A finitely presented group G is simply connected at infinity
if there exists a compact complex X such that π1X = G and whose universal
covering space is simply connected at infinity.

It turns out that this definition does not depend neither on the finite pre-
sentation of the group nor on the compact space X one may choose: for a
topological proof see [48], for a more geometrical proof see [23]). What is also
interesting is that the simple connectivity at infinity for groups is an asymp-
totic invariant, in the sense that it is preserved by quasi-isometries (see [2]
and, for a geometric group theory proof, [10]). Summarizing up, one has:

Theorem 3 (S. Brick, [2], see also [10, 23, 48]). The simple connectivity at
infinity is a well-defined quasi-isometry invariant of finitely presented groups
(i.e. if Γ = π1X with X a finite complex whose universal cover is simply
connected at infinity, then any other compact space with Γ as fundamental
group has a simply connected at infinity universal cover; moreover, any group
H quasi-isometric to Γ, will also be simply connected at infinity).

Further generalizations were investigated in [10, 12], where the authors
somehow “refined” the notion of simple connectivity at infinity, trying to com-
pute it metrically: they defined a function, called the rate of vanishing of the
sci, or sci-growth, that measures the growth rate of how far one needs to go
in order to kill loops outside large compacts

(
i.e., given r, how large needs to

be R(r) to be able to kill all loops in X −B(R) outside B(r)
)
.

In [10, 12] it is shown that the sci-growth is an asymptotic invariant too,
and, moreover, that it is linear (i.e. trivial) in many (geometric) cases, such
as 3-manifold groups, (most) lattices in Lie groups, or sci hyperbolic groups.
Nevertheless, it is still an open question whether there exist groups with a
super-linear sci-growth (or if it is always linear for discrete groups).

To end this section, we state some properties of the simple connectivity at
infinity for groups, and we present some examples and classes of sci groups.

First of all, it follows from the definition that, a finitely presented group
is sci if and only if a finite index subgroup of it is sci (their respective stan-
dard 2-complexes have the same universal cover). Furthermore, the class of
groups that are simply connected at infinity is closed under amalgamated free
products over one-ended groups (but not over multi-ended groups, see [18]).
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Another source of examples of sci groups comes from extensions: in [19] it
is proved that if 1 → H → G → K → 1 is a short exact sequence of infinite
finitely presented groups and either H or K is 1-ended, then G is sci. A
further implementation of these results may be given as follows (see [13]): if
N �H �G are groups with N and G finitely presented and N 1-ended, then,
if G/H or H/N is infinite, then G is simply connected at infinity.

Other examples of sci groups are, of course, fundamental groups of closed,
aspherical 3-manifolds; on the other hand, the above discussed examples of [4]
consist actually of closed manifolds whose fundamental groups are semistable
at infinity, but are not sci (and hence these manifolds are not covered by Rn).
Note that all of these (fundamental) groups are in fact finite index subgroups
of finitely generated Coxeter groups (which are semistable at infinity, see [13]).

4. POÉNARU’S CONTRIBUTION

In this final section we come back to the Universal Covering Conjecture in
dimension 3 and to some attempts to prove it.

Despite all the efforts, the understanding of the structure at infinity of
open simply connected 3-manifold was not so deep until the 90’s. Things
then changed when A. Casson and V. Poénaru (see in particular [15] and
[37]) initiated (independently of one other) a group-theoretical approach to
Conjecture 1 (following Gromov’s new theory of the geometry of groups):
they developed some ideas about the metric geometry of the Cayley graph
of the fundamental group of manifolds to solve the 3-dimensional Conjecture
for those closed 3-manifolds whose fundamental groups possess some “nice”
geometric conditions. A typical result may be stated as follows:

Theorem 4 (A. Casson, [15]; V. Poénaru, [34, 35, 37, 41, 42]). Take G =
π1M

3 where M3 is a closed 3-manifold. Assume that the group G satisfies
a “nice geometric condition” such as: hyperbolicity (in the sense of Gromov
[17]), automaticity, or, more generally, combability (in the sense of Thurston

[49]), or Casson’s condition Ĉα (see [15]). Then M̃3 is simply connected at

infinity. [If, in addition, one assumes that M3 is irreducible, then M̃3 = R3].

Although these results are today superseded by Perelman’s breakthrough
(as well as by Poénaru’s recent announcement [39]), it is still worthy to spend
some comments about them in order to understand the main ideas, and to be
able to state and insert these results in a more recent viewpoint.

More precisely, in [35, 37], Poénaru illustrated several conditions on π1M
3 =

G, each implying that the universal cover of M3 is simply connected at infinity.
A first condition is that G should be almost convex (in the sense of Cannon)
with respect to a finite set of generators (and this roughly means that the
“curvature” of the n-sphere in the Cayley graph of the group is bounded
from below, independently of the radius n), while the second condition is that
G should admit a quasi-Lipschitz combing in the sense of Thurston.

[
Note
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that this implies, in particular, that the result holds true both for Gromov-
hyperbolic groups and for automatic groups, see [6]

]
.

Both results were then extended by Poénaru and Tanasi, respectively in [41]
for more general combings (called Hausdorff combings) and in [42], where they
defined the class of weakly almost convex groups, which generalizes Cannon’s
original almost convexity condition.

More interestingly, in [34], the first of this series of papers concerning this
issue, Poénaru also related the problem of the simple connectivity at infinity
of an open simply connected 3-manifold to the geometric simple connectivity
(i.e. the condition of possessing a handlebody decomposition without handles
of index one) of its stabilization with a ball. In particular he proved that:

Theorem 5 (V. Poénaru, [34]). Let V 3 be a smooth open 3-manifold. Then,
the existence of a handlebody decomposition without handles of index one for
V 3×Bp, p ≥ 1, implies the simple connectivity at infinity of the manifold V 3.

Notice that, in order to be able to apply the techniques and the results of all
these papers especially in dimension 3, namely to prove the above mentioned
theorems concerning Conjecture 1, Poénaru made use of his own “Dehn-type
lemma” (proved in [34]), which is a result of independent interest in dimen-
sion 3, but which does not admit a generalization in higher dimensions (and
so the above theorems are purely 3-dimensional results). This lemma says,
more or less, that an open and simply connected 3-manifold which is Dehn-
exhaustible (which roughly means that any compact subset of the manifold
is homeomorphically contained in the image of a simply connected abstract
compact) possesses actually itself an exhaustion by compact and simply con-
nected sub-manifolds (and hence, as already said, being in dimension 3, this
implies that the manifold is simply connected at infinity).

However, if one looks more carefully at all these papers, and if one does
not pay attention to the (somehow irrelevant) dimension issues, then, in a
more appropriate and recent language, what they really do prove is that: “a
finitely presented group G which satisfies one of the nice geometric conditions
mentioned before (e.g. almost convex, combable, hyperbolic, automatic, etc.),
admits an easy-representation” (for this condition we refer to [38, 43, 39] and
to [26, 27, 29]). Then, thanks to this result, it can be shown that the manifold
V 3 is Dehn-exhaustible, and this completes the proof (this is actually the
common strategy to all these papers by Poénaru, even if it was not explicitly
mentioned in this way).

Thus, the underlying idea of all these papers and proofs is actually this
particular notion of (inverse) representation (of manifolds and discrete groups
G), following the original ideas already developed in [36] (see also [38]).

Roughly speaking, a group G is “presented” as the fundamental group of a
compact singular 3-manifold M3(G), and an inverse representation is a certain

kind of non-degenerate simplicial map f : X2 → M̃3(G), satisfying several
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topological conditions (e.g. the 2-complex X2 at the source has to be geo-
metrically simply connected). If, in addition, the set of double points of f ,
M2(f) ⊂ X2, is closed (and this in not always verified), then the (representa-
tion and the) group G admitting such a representation is called easy.

We do not want to go further into these topics, but let us just remark that a
very nice open question now is to understand the relations between this notion
of easy-representability and the qsf property, and to see whether or not all
groups are easy. Some first results concerning this problems may be found in
[27, 28], the general idea being that the qsf should be equivalent, following
[11], to the easy-representability condition for groups (see also [26, 29]).
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