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AN ANALOG OF TITCHMARSH’S THEOREM
FOR THE DUNKL TRANSFORM IN THE SPACE Lp(Rd, wk(x)dx)

MOHAMED EL HAMMA and RADOUAN DAHER

Abstract. Using a generalized spherical mean operator, we obtain an analog
of Titchmarsh’s theorem for the Dunkl transform for functions satisfying the
(β, k)-Dunkl Lipschitz condition in the space Lp(Rd, wk(x)dx), where 1 < p ≤ 2
and wk is a weight function, invariant under the action of an associated Weyl
group.
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1. INTRODUCTION AND PRELIMINARIES

The theory of Dunkl operators provides generalizations of various multivari-
able analytic structures, among others we mention the exponential function,
the Fourier transform and the translation operator. For more details about
these operators we refer to [1, 2, 4, 7] and the references therein.

In [10] it is proved the following result.

Theorem 1. Let α ∈ (0, 1) and assume that f ∈ L2(R). Then the following
are equivalent:

(1) ‖f(x+ h)− f(x)‖L2(R) = O(hα) as h −→ 0,

(2)
∫
|λ|≥r |f̂(λ)|dλ = O(r−2α) as r −→ +∞,

where f̂ stands for the Fourier transform of f .

The aim of this paper is to establish an analog of Theorem 1 for the Dunkl
transform in the space Lp(Rd, wk(x)dx). For this purpose, we use a general-
ized spherical mean operator.

Let W be a finite reflection group on Rd, associated with a root system R.
Let R+ be the positive subsystem of R (see [1, 3, 4, 5, 8, 9]). We denote by k
a nonnegative multiplicity function defined on R with the property that k is
W-invariant. We associate with k the index

γ =
∑
ξ∈R+

k(ξ) ≥ 0,

and the weight function wk, defined by
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wk(x) =
∏
ξ∈R+

|〈ξ, x〉|2k(α), x ∈ Rd.

Here 〈·, ·〉 denotes the usual euclidean scalar product on Rd with the associated
norm |.|.

For α ∈ Rd \ {0}, let σα be the reflection in the hyperplan Hα ⊂ Rd orthog-
onal to α, i.e.,

σα(x) = x− 2
〈α, x〉
|α|2

α.

Introduced by C. F. Dunkl in [2], the Dunkl operators Dj , 1 ≤ j ≤ d, are
defined by

Djf(x) =
∂f

∂xj
(x) +

∑
α∈R+

k(α)αj
f(x)− f(σα(x))

〈α, x〉
, x ∈ Rd,

where αj := 〈α, ej〉 and {e1, e2, ..., ed} is the canonical basis of Rd.

The Dunkl kernel Ek on Rd×Rd has been introduced by C. F. Dunkl in [3].
For y ∈ Rd the function x 7→ Ek(x, y) can be viewed as the solution on Rd of
the following initial problem{

Dju(x, y) = yju(x, y), for 1 ≤ j ≤ d
u(0, y) = 1, for all y ∈ Rd.

This kernel has a unique holomorphic extension to Cd × Cd. M. Rösler has
proved in [7] the following integral representation for the Dunkl kernel

Ek(x, z) =

∫
Rd

e〈y,z〉dµx(y), x ∈ Rd, z ∈ Cd,

where µx is a probability measure on Rd with support in the closed ball
B(0, |x|) of center 0 and radius |x|.

We recall from [1] the following result.

Proposition 1. Let z, w ∈ C and λ ∈ C. Then the following assertions
hold.

(1) Ek(z, 0) = 1.
(2) Ek(z, w) = Ek(w, z).
(3) Ek(λz,w) = Ek(z, λw).
(4) For all ν = (ν1, ..., νd) ∈ Nd, x ∈ Rd, z ∈ Cd, the inequality

|∂νzEk(x, z)| ≤ |x||ν| exp(|x|Re (z)|)
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holds, where

∂νz =
∂|ν|

∂zν11 ...∂z
νd
d

, |ν| = ν1 + ...+ νd.

In particular,

|∂νzEk(ix, z)| ≤ |x|ν , for all x, z ∈ Rd.

Let η be the normalized surface measure on the unit sphere Sd−1 in Rd and
set

dηk(y) = wk(y)dη(y).

Then ηk is a W-invariant measure on Sd−1. Put dk := ηk(Sd−1).

We denote by Lp,k := Lp(Rd, wk(x)dx), 1 < p ≤ 2, the space of measurable

functions on Rd such that

‖f‖p,k =

(∫
Rd
|f(x)|pwk(x)dx

)1/p

< +∞.

The Dunkl transform is defined for f ∈ Lp,k by

Fk(f)(ξ) = c−1k

∫
Rd
f(x)Ek(−iξ, x)wk(x)dx,

where the constant ck is given by

ck =

∫
Rd

e
−|z|2

2 wk(z)dz.

The inversion formula is then

f(x) =

∫
Rd
Fk(f)(ξ)Ek(ix, ξ)wk(ξ)dξ, x ∈ Rd.

By Plancherel’s theorem and the Marcinliewicz interpolation theorem (see
[10]) we get, for f ∈ Lp,k with 1 < p ≤ 2 and q such that 1

p + 1
q = 1,

(1) ‖Fk(f)‖q,k ≤ C‖f‖p,k,

where C is a positive constant.

K. Trimèche has intoduced in [11] the Dunkl translation operators Th on
Lp,k. For f ∈ Lp,k we have

Fk(Th(f))(ξ) = Ek(ix, ξ)Fk(f)(ξ)

The generalized spherical mean operator of f ∈ Lp,k is defined by

Mhf(x) =
1

dk

∫
Sd−1

Th(f)(hy)dηk(y), for x ∈ Rd and h > 0.
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For α ≥ −1
2 , we introduce the normalized Bessel function of the first kind jα

by

(2) jα(z) = Γ(α+ 1)
∞∑
j=0

(−1)j( z2)2j

j!Γ(j + α+ 1)
, z ∈ C.

We see from (2) that

lim
z→0

jγ+ d
2
−1(z)− 1

z2
6= 0,

hence, there exist c > 0 and η1 > 0 such that

(3) |z| ≤ η1 =⇒ |jγ+ d
2
−1(z)− 1| ≥ c|z|2.

Lemma 1. Let f ∈ Lp,k and fix h > 0. Then Mhf ∈ Lq,k and

Fk(Mhf)(ξ) = jγ+ d
2
−1(h|ξ|)Fk(f)(ξ),

where 1
p + 1

q = 1

Proof. Analog to the proof of Proposition 1.3 in [6]. �

The first and higher order finite differences of f(x) are defined as follows:

∆hf(x) = Mhf(x)− f(x) = (Mh − I)f(x),

∆m
h f(x) = ∆h(∆m−1

h f(x)) = (Mh − I)mf(x) =
m∑
i=0

(−1)m−i(mi )Mi
hf(x),

(4)

where Mhf(x) = f(x), Mi
hf(x) = Mh(Mi−1

h f(x)), i ∈ {1, 2, . . . ,m}, m is a
positive natural number, and I is the unit operator in the space Lp,k.

2. MAIN RESULT

In this section we give the main result of this paper. We need first to define
the (β, k)-Dunkl Lipschitz class.

Definition 1. Let β > 0. A function f ∈ Lp,k is said to be in the (β, k)-
Dunkl Lipschitz class, denoted by Lip(β, p, k), if

‖∆m
h f(x)‖p,k = O(hβ) as h −→ 0,

where m ∈ {1, 2, . . . }.

Theorem 2. Let f(x) belong to Lip(β, p, k). Then∫
|ξ|≥r
|Fk(f)(ξ)|qwk(ξ)dξ = O(r−qβ) as r −→ +∞.
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Proof. Let f ∈ Lip(β, p, k). Then we obtain that

‖∆m
h f(x)‖p,k = O(hβ) as h −→ 0.

The formulas (1) and (4) yield∫
Rd
|1− jγ+ d

2
−1(h|ξ|)|

qm|Fk(f)(ξ)|qwk(ξ)dξ ≤ Cq‖∆m
h f(x)‖qp,k.

We use now formula (3) in order to obtain the inequality∫
η1
2h
≤|ξ|≤ η1

h

|1− jγ+ d
2
−1(h|ξ|)|

qm|Fk(f)(ξ)|qwk(ξ)dξ

≥ cqmη2qm1

22qm

∫
η1
2h
≤|ξ|≤ η1

h

|Fk(f)(ξ)|qwk(ξ)dξ.

Thus there exists K > 0 such that∫
η1
2h
≤|ξ|≤ η1

h

|Fk(f)(ξ)|qwk(ξ)dξ

≤ K
∫
η1
2h
≤|ξ|≤ η1

h

|1− jγ+ d
2
−1(h|ξ|)|

qm|Fk(f)(ξ)|qwk(ξ)dξ

≤
∫
Rd
|1− jγ+ d

2
−1(h|ξ|)|

qm|Fk(f)(ξ)|2wk(ξ)dξ

≤ KCq‖∆m
h f(x)‖qp,k

≤ C1h
qβ,

where C1 := KCq. Thus∫
r≤|ξ|≤2r

|Fk(f)(ξ)|qwk(ξ)dξ = O(r−qβ).

Furthermore, we have that∫
|ξ|≥r
|Fk(f)(ξ)|qwk(ξ)dξ

=

[∫
r≤|ξ|≤2r

+

∫
2r≤|ξ|≤4r

+

∫
4r≤|ξ|≤8r

. . .

]
|Fk(f)(ξ)|qwk(ξ)dξ

≤ C1r
−qβ + C1(2r)

−qβ + C1(4r)
−qβ + . . .

≤ C1r
−qβ(1 + 2−qβ + (2−qβ)2 + (2−qβ)3 + . . . )

≤ C1C2r
−qβ,

where C2 := (1− 2−qβ)−1. This proves that∫
|ξ|≥r
|Fk(f)(ξ)|qwk(ξ)dξ = O(r−qβ) as r −→ +∞,
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which finishes the proof. �
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