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AN ANALOG OF TITCHMARSH’S THEOREM
FOR THE DUNKL TRANSFORM IN THE SPACE LP(R?, wy(z)dz)

MOHAMED EL HAMMA and RADOUAN DAHER

Abstract. Using a generalized spherical mean operator, we obtain an analog
of Titchmarsh’s theorem for the Dunkl transform for functions satisfying the
(B, k)-Dunkl Lipschitz condition in the space L? (R, wy (z)dx), where 1 < p < 2
and wy, is a weight function, invariant under the action of an associated Weyl
group.
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1. INTRODUCTION AND PRELIMINARIES

The theory of Dunkl operators provides generalizations of various multivari-
able analytic structures, among others we mention the exponential function,
the Fourier transform and the translation operator. For more details about
these operators we refer to [1, 2, 4, 7] and the references therein.

In [10] it is proved the following result.

THEOREM 1. Let o € (0,1) and assume that f € L2(R). Then the following
are equivalent:

(1) [f(z+h) = f(@)||L2@) = O(h*) as h — 0,
(2) fIMZT |f(N)|dX = O(r=2%) as r — +o0,

where ]? stands for the Fourier transform of f.

The aim of this paper is to establish an analog of Theorem 1 for the Dunkl
transform in the space LP(RY, wy,(z)dz). For this purpose, we use a general-
ized spherical mean operator.

Let W be a finite reflection group on R?, associated with a root system R.
Let R4 be the positive subsystem of R (see [1, 3, 4, 5, 8, 9]). We denote by k
a nonnegative multiplicity function defined on R with the property that £ is
W-invariant. We associate with k the index

y= ) k=0,

EERL

and the weight function wy, defined by
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wi(x) = [ [(&2)PMY), 2 e RY
§eR4

Here (-, -) denotes the usual euclidean scalar product on R? with the associated
norm |.|.

For a € R?\ {0}, let o, be the reflection in the hyperplan H, C R? orthog-
onal to a, i.e.,

(a,z)
o

Introduced by C. F. Dunkl in [2], the Dunkl operators D;, 1 < j < d, are
defined by

oo(z) =2 —2

D]f(x) = ;:f(x) + Z k‘(a)aj f(l') zaf(x‘;a(x))’ = Rd,
4 a€R4 ’

where o := (o, e;) and {ey, ez, ...,e4} is the canonical basis of R%.
The Dunkl kernel E; on R? x R? has been introduced by C. F. Dunkl in [3].

For y € R? the function x — Ej(z,y) can be viewed as the solution on R of
the following initial problem

Dju(z,y) = yju(z,y), for 1<j<d
u(0,y) =1, for all y € R%

This kernel has a unique holomorphic extension to C% x C%. M. Résler has
proved in [7] the following integral representation for the Dunkl kernel

Bie,2) = [ e 9du(y), 2R, et
]Rd

where (i, is a probability measure on R? with support in the closed ball
B(0, |z|) of center 0 and radius |z|.
We recall from [1] the following result.

ProprosITION 1. Let z,w € C and A € C. Then the following assertions
hold.

Ex(A\z,w) = Ex(z, \w).
For all v = (v1,...,1y) € N¢, 2 € RY, 2 € CY, the inequality

0% Ex (2, 2)| < || exp(|z[Re (2)))
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holds, where

, olvl ]
= ——7F V| =v1+ ... + 14
0.0z

In particular,
|0 Ey(iz, 2)| < |z|”, for all z, z € RY.

Let 1 be the normalized surface measure on the unit sphere S¢! in R% and
set

dnk(y) = wi(y)dn(y)-
Then 7y, is a W-invariant measure on S4~1. Put dj, := n;,(S41).

We denote by L, := LP(R%, wi(x)dz), 1 < p < 2, the space of measurable
functions on R? such that

1/p

s = ([ @ Purr) < 4o
The Dunkl transform is defined for f € Ly, ;. by

FP©) =i [ @) Bt opunla)da,
where the constant ¢ is given by

ck = / o7 wi(z)dz.
Rd

The inversion formula is then

f@)= [ Fu(f)(€)Ex(iz, ) wi(£)dé, z € R

R4

By Plancherel’s theorem and the Marcinliewicz interpolation theorem (see
[10]) we get, for f € L, ; with 1 < p <2 and ¢ such that % + % =1,

(1) 1Fk(llar < Cllf lpks

where C' is a positive constant.

K. Trimeche has intoduced in [11] the Dunkl translation operators T}, on
Ly k. For f € L, we have

Fi(Tn(f))(€) = Ex(iz, &) Fr(f)(&)

The generalized spherical mean operator of f € Ly, is defined by

1

My f(x) = i / Ty (f)(hy)dni(y), for z € R? and h > 0.

Sd—1
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For o > —%, we introduce the normalized Bessel function of the first kind j,
by

(1)

2 ia(z) =T(a+1 ——=—— z€C.
We see from (2) that
j-y+é_1(z) - 1
lim 22—~
zl—r>r(1) 22 7& 07
hence, there exist ¢ > 0 and n; > 0 such that
(3) el <m = 1y pa_y () — 1 > cl2f2

LEMMA 1. Let f € Ly and fix h > 0. Then My f € Ly and
FuOE) = 1, s, (HEDFL(D(E).
1 1 _
where >t o= 1
Proof. Analog to the proof of Proposition 1.3 in [6]. O

The first and higher order finite differences of f(x) are defined as follows:

Apf(z) =Mpf(z) = f(z) = My — 1) f(2),
4 = : :
W AP @) = A(AP (@) = My — D" F @) = 3D IS (a),
i=0
where My f(z) = f(z), M f(z) = Mp(M} ' f(2)), i € {1,2,...,m}, m is a
positive natural number, and I is the unit operator in the space L, .

2. MAIN RESULT

In this section we give the main result of this paper. We need first to define
the (3, k)-Dunkl Lipschitz class.

DEFINITION 1. Let 8 > 0. A function f € L, is said to be in the (3, k)-
Dunkl Lipschitz class, denoted by Lip(f,p, k), if

|AT f(x)||pr = O(RP) as h — 0,
where m € {1,2,...}.

THEOREM 2. Let f(x) belong to Lip(53,p, k). Then

[ DO = 06 as r — o0
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Proof. Let f € Lip(53,p, k). Then we obtain that
IA7 f(@)l|pe = O(hF) as b — 0.
The formulas (1) and (4) yield
/Rd 1= g (RIEDITIFR () () wr (§)AE < CUIAR f ()]
We use now formula (3) in order to obtain the inequality

S e 1L g DI FL O ()

h

cqmn%qm
> [ ARG @
Thus there exists K > 0 such that

/’”<|£<m‘F’“(f)(gﬂqwk(&)df

<K 11—y ay (RIEDIT™ | F(f) (€)[Twi(§)dE
o <lEI<T ?

< /Rd 1= Gy g (RIEDIT™ P (F)(€) P (€)dE

< KCY AR f(2)I}

< Clhqﬂa

where C' := K(C?. Thus

/<§|<2 |Fr(f)(&) ] wg(£)dE = O(r=95).

Furthermore, we have that

/Ié IR

q
/r<|€|<2r ' /2r<|£<4r ! /4r<|§|<8r h ] DI (e

< Oy~ 4+ 01 (2r)" P + Cy(4r) P 4
<Oy P42 (27982 4 (27983 4 L))
< C1Cor™P,

where Cy := (1 —279%)~1. This proves that

/|§ A6 = O s o
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which finishes the proof. U
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