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ON EXTENDED CONVERGENCE DOMAINS
FOR THE NEWTON-KANTOROVICH METHOD

IOANNIS K. ARGYROS and SANTHOSH GEORGE

Abstract. We present results on extended convergence domains and their appli-
cations for the Newton-Kantorovich method (NKM), using the same information
as in previous papers. Numerical examples are provided to emphasize that our
results can be applied to solve nonlinear equations using (NKM), in contrast
with earlier results which are not applicable in these cases.
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1. INTRODUCTION

Newton’s method is one of the most fundamental tools in Computational
Analysis, Operations Research, and Optimization [6, 9, 12, 16, 23, 24, 25,
26, 29]. One can find applications in management science, in industrial and
financial research, in data mining, as well in linear and nonlinear programming.
In particular, interior point algorithms in convex optimization are based on
Newton’s method.

The basic idea of Newton’s method is linearization. Given a differentiable
function F : R→ R, we formulate the equation

(1.1) F (x) = 0.

Starting from an initial guess, we consider the linear approximation of F (x)
in a neighborhood of x0 : F (x0 +s) ≈ F (x0) +F ′(x0)s, and solve the resulting
linear equation F (x0) + F ′(x0)s = 0, leading to the recurrence formula

(1.2) xn+1 = xn − F ′(xn)−1F (xn) (n ≥ 0).

This is Newton’s method as proposed in 1669 by I.Newton (for polynomials).
One can also use the slower modified Newton-Kantorovich method (MNKM)

(1.3) yn+1 = yn − F ′(y0)−1F (yn) (n ≥ 0).

It was J.Raphson, who proposed the usage of Newton’s method for general
functions F. That is why the method is often called the Newton-Raphson
method.

Later in 1818, Fourier proposed that the method converges quadratically
in a neighborhood of the root, while Cauchy (1829, 1847) provided the mul-
tidimensional extension of Newton’s method (1.2). In 1948, L.V.Kantorovich
published an important paper [23], extending Newton’s method for functional
spaces (the Newton-Kantorovich method (NKM)), i.e., F : D ⊆ X → Y, where
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X,Y are Banach spaces, and D is an open convex set [6, 23, 26, 29]. Since
then thousands of papers have been written in the Banach space setting for
the (NKM) as well as for Newton-type methods and their applications. We
refer the reader to the recent results (see also, the references therein) [1]–[45].

It is stated in the (NKT) theorem that (NKM) (1.2) converges provided the
Kantorovich hypothesis (KH) (see (C6)′), which is famous for its simplicity
and clarity, is satisfied. (KH) uses the information (x0, F, F

′). Any successful
attempt for weakening (KH) under the same information is extremely impor-
tant in computational mathematics, since this will imply the extension of the
applicability of (NKM) (1.2). We have already provided conditions weaker
than (KH), [2]–[12] by introducing the center Lipschitz condition, which is a
special case of the Lipschitz condition.

In this study we provide new sufficient convergence conditions for Newton’s
method, weaker than (KH). Moreover, there are presented numerical examples,
where our results can be applied to solve nonlinear equations, but earlier
results are not applicable.

2. CONVERGENCE ANALYSIS FOR (NKM) AND (MNKM)

The following semilocal convergence theorem for the (NKM) and (MNKM)
methods can be found in [23]:

Theorem 2.1. (Newton-Kantorovich Theorem for Solving Nonlinear Equa-
tions) Let F : D ⊆ X → Y be differentiable. Assume that there exist x0 ∈ D
and constants b > 0, L > 0, η > 0 such that

F ′(x0)
−1 ∈ L(Y,X), ‖F ′(x0)−1‖ ≤ b,

‖F ′(x0)−1F (x0)‖ ≤ η,
‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for all x, y ∈ D,

h∗ = 2bLη ≤ 1,

and
U(x0, s

∗) ⊆ D,
where

s∗ =
1−
√

1− h∗
Lb

.

Then the sequences {yn}, {xn} are well-defined, remain in U(x0, s
∗) for all

n ≥ 0, and converge to a unique solution x∗ of equation F (x) = 0 in U(x0, s
∗).

Moreover, the following estimates hold:

‖yn+1 − yn‖ ≤ qn‖y1 − y0‖ ≤ qnη,

‖yn − x∗‖ ≤
qn

1− q
η,

‖xn+2 − xn+1‖ ≤
Lb(sn+1 − sn)2

2(1− Lbsn+1)
,
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and
‖xn − x∗‖ ≤ s∗ − sn, s∗ = lim

n→∞
sn,

where

s0 = 0, s1 = η, sn+2 = sn+1 +
Lb(sn+1 − sn)2

2(1− Lbsn+1)
(n ≥ 0),

and
q = 1−

√
1− h∗.

Let us provide a numerical example where the main hypothesis in Theorem
2.1 is violated.

Example 2.2. Let X = Y = R, D = U(1, 1 − a
2 ), a < 2, and define the

scalar function F on D by

(2.4) F (x) =
1

5
x3 − a.

Using Theorem 2.1, and (2.4), we get b = 5
3 , η = 5

3 |
1
5 − a|, and L = 3

5(4− a).
Let a = 0.1226. Then

h∗ = 2Lbη = 1.0003692 > 1.

That is there is no guarantee that by (NKM) the sequence {xn} converges to
x∗ = 0.849480652, starting at x0 = 1.

Remark 2.3. There is a plethora of estimates on the distances ‖xn+1−xn‖,
‖xn − x∗‖, ‖yn+1 − yn‖, ‖yn − x∗‖ (n ≥ 0), [1]–[45]. However we decided to
list only the estimates related to what we need in this study. In the case of
Newton’s method, the following improvement of Theorem 2.1 was proved in
[2]-[6], [11, 12].

Theorem 2.4. Let F : D ⊆ X → Y be differentiable. Assume that there
exist x0 ∈ D and constants b > 0, L0 > 0, η ≥ 0 such that

F ′(x0)
−1 ∈ L(Y,X), ‖F ′(x0)−1‖ ≤ b,
‖F ′(x0)−1F (x0)‖ ≤ η,

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖ for all x ∈ D,
‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for all x, y ∈ D,

hAH = 2bL1η ≤ 1, L1 =
1

8
(L+ 4L0 +

√
L2 + 8L0L),

U(x0, t
∗) ⊆ D,

where

t0 = 0, t1 = η, tn+2 = tn+1 +
Lb(tn+1 − tn)2

2(1− L0btn+1)
(n ≥ 0),

and

t∗ = lim
n→∞

tn ≤
2η

2− L2
= t∗0, L2 =

1

2

− L

L0
+

√(
L

L0

)2

+
8L

L0

 .



6 I. K. Argyros and S. George 4

Then the sequence {xn} (n ≥ 0) generated by Newton’s method is well-defined,
remains in U(x0, t

∗) for all n ≥ 0, and converges to a unique solution x∗ of
equation F (x) = 0 in U(x0, t

∗). Moreover the following estimates hold for all
n ≥ 0 :

‖xn+1 − xn‖ ≤ tn+1 − tn,
‖xn − x∗‖ ≤ t∗ − tn,

tn ≤ sn,(2.5)

tn+1 − tn ≤ sn+1 − sn,(2.6)

and

(2.7) t∗ − tn ≤ s∗ − sn.

Remark 2.5. Note also that (2.5) and (2.6) hold as strict inequalities if
L0 < L. Moreover, we have:

(2.8) h∗ ≤
1

2
⇒ hAH ≤

1

2
,

but not vice versa unless L0 = L. That is, under the same computational cost
we managed to weaken the (KH) condition, since in practice the computation

of L also requires the computation of L0. In particular, hAH
hK
→ 1

4 as L0
L → 0.

Hence, Theorem 2.4 quadruples (at most) the application of (NKM).

Remark 2.6. Returning back to Example 2.2, we find L0 = 3
5(3− a

2 ), L1 =
1.94528028, and hAH = 2bL1η = 0.83635 < 1. That is, Theorem 2.4 guarantees
the convergence of (NKM) to x∗.

Theorem 2.7. ([5]) Let F : D ⊆ X → Y be differentiable. Assume that
there exist x0 ∈ D and constants b > 0, L0 > 0, η ≥ 0 such that

F ′(x0)
−1 ∈ L(Y,X), ‖F ′(x0)−1‖ ≤ b,

‖F (x0)‖ ≤ η,

‖F ′(x)− F ′(x0)‖ ≤ L0‖x− x0‖ for all x ∈ D,

h0 = 2bL0η ≤ 1,

and

(2.9) U(x0, s
∗
0) ⊆ D,

where

s∗0 =
1−
√

1− h0
bL0

.

Then the sequence {yn} (n ≥ 0) generated by the modified Newton’s method
is well-defined, remains in U(x0, s

∗
0) for all n ≥ 0, and converges to a unique
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solution x∗ of equation F (x) = 0 in U(x0, s
∗
0). Moreover, the following esti-

mates hold for all n ≥ 0 :

‖yn+1 − yn‖ ≤ tq∗0‖y1 − y0‖,

‖yn − x∗‖ ≤
qn0

1− q0
η,

where

q0 = 1−
√

1− h0.

Remark 2.8. If L0 = L, the Theorems 2.4 and 2.7 reduce to Theorem 2.1.
In the other cases these theorems constitute improvements of it. Indeed, use
(2.5)–(2.8) and notice that

q0 < q

and

s∗0 < s∗.

Notice also that h∗ ≤ 1 implies hAH ≤ 1 or h0 ≤ 1.
In [5], we showed that one can start with method (1.3) and after a finite

number of steps continue with the faster method (1.2).

Remark 2.9. Returning back to Example 2.2, we have: h0 = 2bL0η =
0.7581846 < 1. That is, Theorem 2.7 guarantees the convergence of (MNKM)
to x∗.

In order to cover the local convergence of methods (1.2) and (1.3) we state
the following theorem.

Theorem 2.10. ([2, 3, 6, 9, 12]) Let F : D ⊆ X → Y be differentiable.
Assume that there exist x∗ ∈ D and constants b∗ > 0, L > 0, η ≥ 0 such that:

(2.10) F ′(x∗)−1 ∈ L(Y,X), F (x∗) = 0, ‖F ′(x∗)−1‖ ≤ b∗,

(2.11) ‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for all x ∈ D,
and

(2.12) U(x∗, rTR) ⊆ D,
where

(2.13) rTR =
2

3b∗L
,

then

(a) the sequence {xn} generated by Newton’s method (1.2) is well-defined,
remains in U(x∗, rTR) for all n ≥ 0, converges to x∗ provided that
x0 ∈ U(x∗, rTR) and

(2.14) ‖xn+1 − x∗‖ ≤
Lb∗‖xn − x∗‖2

2(1− Lb∗‖xn − x∗‖)
(n ≥ 0).
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Suppose that

(2.15) U(x∗, rTRM ) ⊆ D
is satisfied, where

(2.16) rTRM =
2

5b∗L
,

then
(b) the sequence {yn} generated by the modified Newton method (1.3) is

well-defined, remains in U(x∗, rTRM ) for all n ≥ 0, converges to x∗

provided that x0 ∈ U(x∗, rTRM ), and

(2.17) ‖yn+1 − x∗‖ ≤
Lb∗[‖y0 − x∗‖+ 1

2‖yn − x
∗‖]

(1− Lb∗‖y0 − x∗‖
‖yn − x∗‖ (n ≥ 0).

Proof. The proof of (a) can be found in [2, 3, 6, 9, 12]. The proof of part (b)
is a special case of the proof of part (b) of Theorem 2.11 (see also [41]). �

It follows from (2.11) that there exists L0 ∈ (0, L) such that:

(2.18) ‖F ′(x)− F ′(x∗)‖ ≤ L0‖x− x∗‖ for all x ∈ D.
Then using a combination of conditions (2.11) and (2.18) for method (1.2),
and only condition (2.18) for method (1.3) we can show:

Theorem 2.11. Let F : D ⊆ X → Y be differentiable. Assume that there
exist x∗ ∈ D and constants b∗ > 0, L > 0, η ≥ 0 such that:

F ′(x∗)−1 ∈ L(Y,X), F (x∗) = 0, ‖F ′(x∗)−1‖ ≤ b∗,

‖F ′(x)− F ′(x∗)‖ ≤ L0‖x− x∗‖ for all x ∈ D,
‖F ′(x)− F ′(y)‖ ≤ L‖x− y‖ for all x, y ∈ D,

and

(2.19) U(x∗, rAH) ⊆ D,
where

(2.20) rAH =
2

(2L0 + L)b∗
.

Then

(a) the sequence {xn} generated by Newton’s method (1.2) is well-defined,
remains in U(x∗, rAH) for all n ≥ 0, converges to x∗ provided that
x0 ∈ U(x∗, rAH), and

(2.21) ‖xn+1 − x∗‖ ≤
Lb∗‖xn − x∗‖2

2(1− L0b∗‖xn − x∗‖)
(n ≥ 0).

Suppose that

(2.22) U(x∗, rAM ) ⊆ D
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and hypothesis (2.18) are satisfied, where

(2.23) rAM =
2

5b∗L0
,

then
(b) the sequence {yn} generated by (MNKM) is well-defined, remains in

U(x∗, rTRM ) for all n ≥ 0, converges to x∗ if x0 ∈ U(x∗, rTRM ), and

(2.24) ‖yn+1 − x∗‖ ≤
Lb∗[‖y0 − x∗‖+ 1

2‖yn − x
∗‖]

(1− Lb∗‖y0 − x∗‖
‖yn − x∗‖ (n ≥ 0).

Remark 2.12. In general,

(2.25) L0 ≤ L

holds and L
L0

can be arbitrarily large ([2, 3, 6, 9, 12]). If L0 = L, Theorem 2.11
reduces to Theorem 2.10. Otherwise, Theorem 2.11 improves Theorem 2.10
under the same hypotheses for method (1.2), and the same or less computa-
tional cost for method (1.3); finer estimates on the distances ‖xn−x∗‖ (n ≥ 0)
are obtained and the radius of convergence is enlarged. In particular, we have

(2.26) rRN < rAN ,

(2.27) rRM < rAM .

Moreover, since

(2.28) rRM < rRN ,

iterates from method (1.3) cannot be used to find the initial guess x0 for
the faster method (1.2). The convergence domain in the Newton-Kantorovich
Theorem 2.1 can be extended if

(C1)
1

2Lb
< η ≤ 1

2L0b
.

Indeed, according to Theorem 2.7 there exists a solution x∗ of equation F (x) =
0, which can be found as the limit of (MNKM). In this case we can only show
linear convergence. However, if

(C2) ‖x0 − x∗‖ ≤ rTR (or ≤ rAH),

then according to Theorem 2.10, the solution x∗ can be obtained as the limit
of the quadratically convergent (NKM). It follows from Theorem 2.7 (since
x∗ ∈ U(x∗, s∗0)) that conditions (C1) and (C2) can be replaced by

(C3)
1

2bL
< η ≤ 1

2bL0

[
1− (1− 2L0b

3Lb∗
)2
]

=
2

3Lb∗

(
1− L0b

3Lb∗

)
and

2bL0

3Lb∗
≤ 1
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or

(C4)
1

2bL
< η ≤ 1

2bL0

and
2L0b

3Lb∗
> 1

or

(C5)
1

2bL
< η ≤ 1

2bL0

[
1−

(
1− 2L0b

(2L∗ + L) b∗

)2
]

and
2L0b

(2L∗ + L)b∗
≤ 1

or

(C6)
1

2bL
< η ≤ 1

2bL0

and
2L0b

3Lb∗
> 1.

In an analogous way the convergence domain of Theorem 2.4 can be extended,
if

(H1)
1

2bL1
< η ≤ 1

2bL0

and (C2) hold or

(H2)
1

2bL1
< η ≤ 1

2bL0

and
2L0b

3Lb∗
> 1

or

(H3)
1

2bL1
< η ≤ 1

2bL0

[
1−

(
1− 2L0b

3Lb∗

)2
]

and
2L0b

3Lb∗
≤ 1,

or

(H4)
1

2bL1
< η ≤ 1

2bL0

and
2L0b

3Lb∗
> 1,
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or

(H5)
1

2bL1
< η ≤ 1

2bL0

[
1−

(
1− 2L0b

(2L∗ + L)b∗

)2
]

and
2L0b

(2L∗ + L)b∗
≤ 1,

or

(H6)
1

2bL1
< η ≤ 1

2bL0

and
2L0b

3Lb∗
≥ 1.

Remark 2.13. Returning back to Example 2.2, we see that b∗ = 2.309626568,
‖x0 − x∗‖ = 0.150519348, and rAH = 0.154668289 > ‖x0 − x∗‖. Hence, condi-
tions (C1) and (C2) hold.

Remark 2.14. In practice, we shall test the (C) or (H) conditions (or the
conditions of Theorems 2.1, 2.4, 2.7) to which ones apply. Finally, the results
obtained here can be given in an affine invariant form if the hypotheses hold
for the operator F ′(x0)

−1F in the semilocal case, and for F ′(x∗)−1F in the
local case. Other numerical examples can be found in [2, 3, 6, 9, 12].
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