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FIELD EXTENSIONS AND CLIFFORD THEORY

DANA DEBORA GLIŢIA and ANDREI MARCUS

Abstract. We study Clifford theory in connection with the action of the Galois
group of a field extension in the context of group graded algebras.
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1. INTRODUCTION

Let G be a finite group, let K/F be an algebraic field extension, and let R =⊕
g∈GRg be a finite dimensional strongly G-graded F -algebra. A simple R1-

module, as well as a simple K ⊗F R1-module, define a “Clifford theory”. The
main idea is that the R-module induced from a simple R1-module generates
an abelian subcategory of the category of R-module which is equivalent to
the category of modules over its endomorphism algebra. In this paper we
investigate the relationships between these theories. One of the main results
below says that a G-graded derived equivalence over F preserves the Clifford
theory defined by corresponding simple modules, and also preserves Galois
actions and Schur indices.

In Section 2 we present Dade’s treatment [1], [2] of Clifford theory for
strongy G-graded F -algebras, while in Section 3 we discuss the scalar extension
from F to K and the action of the Galois group Gal(K/F ) on K⊗FR-modules.
Section 4 is devoted to the relationship between the Clifford theories over F
and over K.

An important motivation for this paper is Turull’s approach to Clifford the-
ory and Schur indices via G-algebras. He considers the Clifford theory defined
by an R-module lying over a simple (or semisimple) R1-module and introduces
the notion of endoisomorphism to formalize the idea of two modules determin-
ing the same Clifford theory. We show in Section 5 that a G-graded derived
equivalence over F induces an endoisomorphism between two corresponding
simple R-modules. This is related to the results of [7].

In what follows, groups are finite, and algebras and modules are finite di-
mensional. We consider only algebras over fields, but this is enough for our
purposes, as we essetially deal with simple modules. Our notations are stan-
dard. If H is a subgroup of the group G, we denote by [G/H] a set of repre-
sentatives for the left cosets of H in G. The reader is referred to [4] for general
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results on field extensions and Schur indices, and to [5] for results on G-graded
algebras.

2. CLIFFORD THEORY FOR STRONGLY G-GRADED ALGEBRAS

The results presented in this section are Dade’s version [1], [2] of the Clifford
correspondence for group graded algebras.

2.1. As in the introduction, let G be a finite group, F a field, and let
R =

⊕
g∈GRg be a finite dimensional strongly G-graded F -algebra.

The group G acts on the set of isomorphism classes of simple R1-modules.
If V be a simple R1-module, we denote gV = Rg ⊗R1 V , and let

GV := {g ∈ G | Rg ⊗R1 V ' V as R1-modules}

be the stabilizer in G of V .

Theorem 2.2. If M is a simple R-module, then there exists a simple R1-
module V such that V is a direct summand in M . More precisely, R1M is a
semisimple R1-module and has the structure

R1M ' n
⊕

g∈[G/GV ]

gV ,

for some positive integer n.

2.3. Let M and V be as above. Because we have a monomorphism V
ι
↪→

R1M , there exists the surjective R-homomorphism

R⊗R1 V →M, r ⊗ v 7→ rι(v).

Definition 2.4. We denote by (R|V )-mod the full subcategory of R-mod
consiting of R-modules M for which there exists an R-epimorphism

(R⊗R1 V )(I) →M → 0

for some set I. Then (R|V )-mod is called the category of R-modules above V .

Theorem 2.5. The category (R|V )-mod is abelian, and coincides with the
full subcategory of R-mod consisting of R-modules M that viewed as R1-
modules have the structure as in Theorem (2.2).

2.6. If we denote

E := EndR(R⊗R1 V )op,

then E is a G-graded algebra, and R ⊗R1 V is a G-graded (R,E)-bimodule.
Moreover, we have that Eg = 0 for g ∈ G\GV (because in this case V 6' gV ),
hence E = EGV may be regarded as a strongly GV -graded algebra.
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Theorem 2.7. We have the commutative diagram of equivalences of cate-
gories

(R|V )-mod

HomR(R⊗R1
V,−)

//

(−)GV
��

E-mod
(R⊗R1

V )⊗E−
oo

(RGV |V )-mod

R⊗RGV −
OO

HomGV (RGV ⊗R1
V,−)

//
EGV -mod.

(RGV ⊗R1
V )⊗EGV −

oo

Remark 2.8. Recall that the inverse of the equivalence R⊗RGV − is de-

fined as follows. For any object M in (R|V )-mod there exists a unique RGV -
submodule U of M such that R1U ' nV , and then MGV = U (see for instance
[5, Theorem 2.3.10]. In other words, any object M of (R|V )-mod is naturally
(G/GV )-graded, so we may write

M =
⊕

x∈G/GV

Mx,

and then the inverse of R⊗RGV − is (−)GV .

3. FIELD EXTENSIONS AND GALOIS ACTION

Let A be a finite dimensional F -algebra. We suppose that A is defined over
a perfect subfield of F , that is, A ' F ⊗F0 A0, where F0 is a perfect field and
A0 is an F0-algebra. This is obviously the case when A is a group algebra.

3.1. Let F ≤ K be an algebraic normal field extension, and consider the
Galois group Ĝ := Gal(K/F ). Then Ĝ acts on the set of isomorphism classes
of simple K ⊗F A-modules, and if W is a simple K ⊗F A-module, denote

ĜW := {σ ∈ Ĝ | σW 'W as K ⊗F A-modules}
the stabilizer of W , and let

Ŵ :=
⊕

σ∈[Ĝ/ĜW ]

σW

be the sum of distinct Ĝ-conjugates of W .

In this case we have results similar to Clifford theory, due to Schur and
Noether (see [4, Theorem 8.1.11]).

Theorem 3.2. With the above notations, the following statements hold.

1) If V is a simple A-module, then K ⊗F V is a semisimple K ⊗F A-
module.

2) Let W be a simple K⊗FA-module that is a direct summand of K⊗F V ,
where V is a simple A-module. Then

K ⊗F V ' m
⊕

σ∈[Ĝ/ĜW ]

σW
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for some positive integer m.
3) For any simple K ⊗F A-module W , there exists a simple A-module V ,

unique up to isomorphism, such that W is a summand of K ⊗F V .

4. GALOIS ACTION AND CLIFFORD CORRESPONDENCE

Let R =
⊕

g∈GRg be a finite dimensional strongly G-graded F -algebra, and

let F ≤ K be an algebraic normal field extension. Denote Ĝ := Gal(K/F )
and KR := K ⊗F R, which is a strongly G-graded K-algebra. We suppose
that R1 (and hence R) is defined over a perfect subfield of F .

4.1. Let W be a simple KR1-module and V a simple R1-module. Denote
also

Ê := EndKR(KR⊗KR1 Ŵ )op.

One can see that Ê = ÊGŴ , so Ê is strongly GŴ -graded.

Notation 4.2. We consider the following stabilizers, also called inertia
groups:

• IG(V ) := GV = {g ∈ G | Rg ⊗R1 V ' V as R1-modules},
• IG(W ) := GW = {g ∈ G | KRg ⊗KR1 W 'W as KR1-modules},
• IG,F (W ) := {g ∈ G | there exists σ ∈ Ĝ such that

KRg ⊗KR1 W ' σW as KR1-modules},
• IG(K⊗FV ) := {g ∈ G | KRg⊗KR1K⊗FV ' K⊗FV as KR1-modules}.

We will also denote T := IG,F (W ). We obviously have that

IG(W ) ≤ IG,F (W ) = T ≤ G.

Notation 4.3. Apart from the subcategory (R|V )-mod introduced in Sec-
tion 2, we consider the following full subcategories:

• (KR|W )-mod, consisting of KR-modules M such that there exists an
epimorphism

(KR⊗KR1 W )(I) →M → 0

of KR-modules, for some set I,
• (KR|W,F )-mod consisting of KR-modules M such that KR1M is iso-

morphic to a direct sum of G× Ĝ-conjugates of W ,
• (KR|K⊗F V )-mod consisting of KR-modules M such that there exists

an epimorphism

(KR⊗KR1 K ⊗F V )(I) →M → 0

of KR-modules, for some set I.

Theorem 4.4. With the above notation, assume that W is a direct sum-
mand of K ⊗F V . Then the following statements hold.

1) IG,F (W ) = IG(K ⊗F V ).
2) The categories (KR|W,F )-mod and (KR|K ⊗F V )-mod coincide.
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3) We have the following commutative diagram of equivalences of categories:

(KR|W,F )-mod
HomKR(KR⊗KR1

Ŵ ,−)
//

'
��

Ê-mod
(KR⊗KR1

Ŵ )⊗Ê−
oo

(KRGŴ |W,F )-mod

KR⊗KRG
Ŵ
−

OO

HomKRG
Ŵ

(KRG
Ŵ
⊗KR1

Ŵ ,−)
//
ÊGŴ -mod.

(KRG
Ŵ
⊗KR1

Ŵ )⊗Ê−
oo

Proof. 1) The actions of G and Ĝ on KR1-modules commute, so, for any
g ∈ G, we have the isomorphisms

g(K ⊗F V ) ' g(m
⊕

σ∈[Ĝ/ĜW ]

σW ) ' m
⊕

σ∈[Ĝ/ĜW ]

σ(gW )

of KR1-modules, and therefore the statement follows now immediately from
the definitions. Note also that the group IG(K⊗F V ) equals the stabilizer GŴ
of Ŵ in G.

2) We have that

(KR|Ŵ )-mod = (KR|K ⊗F V )-mod,

since, by Theorem 3.2, K ⊗F V ' mŴ as KR1-modules, and hence the G-
graded KR-modules KR ⊗KR1 Ŵ and KR ⊗KR1 V generate the same full
subcategory of KR-mod. Now the equality

(KR|Ŵ )-mod = (KR|W,F )-mod

is a consequence of Theorem 2.5.
3) This follows by statements 1) and 2), and by Theorem 2.7, with KR

instead of R and Ŵ instead of V . �

Remark 4.5. It is easy to see that we have the isomorphism

EndKR1(K ⊗F V ) 'Mm(EndKR1(Ŵ ))

of K-algebras, and moreover,

EndKR(K ⊗F (R⊗R1 V )) 'Mm(EndKR(KR⊗KR1 Ŵ ))

as GŴ -graded K-algebras.

4.6. We next discuss the relationship between the inertia groups IG(V ) and
T = IG(K ⊗F V ), and between the subcategories (R|V )-mod and (KR|K ⊗F
V )-mod. We denote

KE := EndKR(KR⊗KR1 (K ⊗F V ))op,

which is justified, since we have the isomorphisms

KE ' EndKR(K ⊗F (R⊗R1 V ))op

' K ⊗F EndR(R⊗R1 V )op = K ⊗F E.
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As before, KE = KET may be regarded as a strongly T -graded K-algebra.

Lemma 4.7. 1) IG(V ) ≤ IG(K ⊗F V ) = T .
2) The extension of scalars K ⊗F − : R-mod → KR-mod induces by re-

striction a functor

K ⊗F − : (R|V )-mod→ (KR|K ⊗F V )-mod.

Proof. 1) If g ∈ IG(V ) then Rg ⊗R1 V ' V as R1-modules, and

KRg ⊗KR1 (K ⊗F V ) ' K ⊗F (Rg ⊗R1 V ) ' K ⊗F V

as KR1-modules, hence g ∈ IG(K ⊗F V ).
2) If there is an epimorphism

(R⊗R1 V )(I) →M → 0

of R-modules, then we also have an epimorphism

(KR⊗KR1 K ⊗F V )(I) → K ⊗F M → 0

of KR-modules. �

Corollary 4.8. We have the following commutative diagram of categories
and functors:

(R|V )-mod
//

**VVVVVVVVV E-modoo

**UUUUUUUUUUUUUUUUUUUU

tthhhhhhhhhhhhhhhhhhhh

(RT |V )-mod

R⊗RT−
OO 44hhhhhhhhhhhhhhhhhhhh

**VVVVVVVVVVVVVVVVVV
(KR|K ⊗F V )-mod

//
KE-modoo

iiiiiiiiiiiiiiiiii

ttiiiiiiiiiiiiiiiiii

(KRT |K ⊗F V )-mod.

44iiiiiiiiiiiiiiiiii
KR⊗KRT−

OO

Proof. The commutativity of the first triangle follows from Theorem 2.7,
by noting that, since GV is a subgroup of G, the functor

R⊗RT − : (RT |V )-mod→ (R|V )-mod.

The commutativity of the second triangle follows by Theorem 4.4 and Re-
mark 4.5. For the remaining three diagrams, it is known that we have the
following isomorphisms

K ⊗F HomR(R⊗R1 V,−) ' HomKR1(KR⊗KR1 V,K ⊗F −)

and

K ⊗F (R⊗RT −) ' KR⊗KRT −
of functors. �

Remark 4.9. Finally, we describe the relationship between the Clifford
theory of K ⊗F V (that is, of Ŵ ) and the Clifford theory of W .
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a) If σ ∈ Ĝ, then IG(W ) = IG(σW ), because the actions of G and Ĝ on
KR1-modules commute. Indeed, if W is a KR1-module, we have

KRg ⊗KR1
σW ' σ(KRg ⊗KR1 W )

for all g ∈ G and σ ∈ Ĝ, since KR is defined over F .
b) The element σ induces an F -linear equivalence of categories

(KR|W )-mod
σ(−)−→ (KR|σW )-mod.

5. QUASIHOMOGENEOUS R-MODULES

Turull [8], [9] considers the “Clifford theory determined by an R-module”
instead of an R1-module. We discuss here the connections with the point of
view of the preceding sections. Let W be a simple KR1-module as before.

Definition 5.1. Let M be an R-module. We say M is W -quasihomo-
geneous if K ⊗F M ∈ (KR|W )-mod.

The first question is whether the Clifford theory depends on the choice of a
W -quasihomogeneous module. The next result says that it does not depend.

Theorem 5.2. Assume that M and M ′ are W -quasihomogeneous R-mod-
ules. Then there exists a G-equivariant Morita equivalence between the G-
algebras EndR1(M) and EndR1(M ′).

Proof. There is a unique simple R1-module V such that W is a summand of
K ⊗F V . The restriction ResRR1

− and the scalar extension K ⊗F − commute,
and, since W is also a summand of K ⊗F M , it follows that V is an R1-
submodule of M . Moreover, any simple R1-submodule of M must be a G-
conjugate of V . This implies that there is an R-epimorphism

(R⊗R1 V )(I) →M → 0

for some set I, that is, M belongs to the subcategory (R|V )-mod. But this
subcategory coincides with (R|R1M)-mod, which, by Theorem 2.7, is equiv-
alent to EndR(R ⊗R1 M)op. Clearly, this equivalence preserves grading of
modules.

The same is true for M ′ instead of M , hence there is a G-graded Morita
equivalence between EndR(R⊗R1 M) and EndR(R⊗R1 M

′).
Since M is an R-module, we have that EndR1(M) is a G-algebra, and we

have the isomorphism

EndR1(M) ∗G ' EndR(R⊗R1 M)

of G-graded algebras. By [6, Theorem 2.13], a G-graded Morita equivalence
between EndR(R⊗R1M) and EndR(R⊗R1M

′) is the same as a G-equivariant
Morita equivalence between EndR1(M) and EndR1(M). �
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5.3. We next consider the following context. Let R and R′ be G-graded
F -algebras. Let M be a W -quasihomogeneous R-module and M ′ be a W ′-
quasihomogeneous R′-module, where W is a KR1-module and W ′ a KR′1-
module. Then the question is: when is the Clifford theory determined by M
equivalent to the Clifford theory determined by M ′?

Corollary 5.4. If there exists an isomorphism

ε : EndR1(M)→ EndR′
1
(M ′),

of G-algebras over F , then there exist an equivalence of categories

(KR|W,F )-mod ' (KR′|W ′, F )-mod.

that preserves the gradings of modules and commutes with the action of the
Galois group Ĝ.

Proof. The G-algebra isomorphism ε induces an insomorphism

EndR(R⊗R1 M) ' EndR(R⊗R1 M
′)

of G-graded algebras. We have that EndR(R ⊗R1 M)op-mod is equivalent to
(R|R1M)-mod, while by the proof of Theorem 5.2, we have that (KR|W,F )-
mod is equivalent to (KR|KR1(K ⊗F M))-mod. The statement now follows
by Corollary 4.8.

Alternatively, observe that scalar extension K⊗F− induces an isomorphism

EndKR(KR⊗KR1 (K ⊗F M)) ' EndKR′(KR′ ⊗KR′
1

(K ⊗F M ′))

of G-graded K-algebras, and use that K ⊗F M (respectively K ⊗F M ′) is a

direct sum of copies of Ŵ (respectively, Ŵ ′).
The compatibility with Galois action easily follows since the isomorphism ε

is defined over F . �

An isomorphism

EndR(R⊗R1 M) ' EndR(R⊗R1 M
′)

of G-graded algebras is called an endoisomorphism in [9].
Finally, when does an endoisomorphism exist?

Theorem 5.5. Assume that there is a Rickard equivalence between the G-
graded F -algebras R and R′. Let M be a simple W -quasihomogeneous R-
module and let M ′ be the corresponding R′-module. Then the following asser-
tions hold.

1) There exists an isomorphism

ε : EndR1(M)→ EndR′
1
(M ′)

of G-algebras over F , induced by Rickard equivalences.
2) The simple KR1-module W also corresponds to a simple KR′1-module

W ′, and the derived equivalence induces the equivalence

(KR|W,F )-mod ' (KR′|W ′, F )-mod.
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of Corollary 5.4.

Proof. 1) Use the well-known fact that a derived equivalence sends a simple
module to a simple module (as the category of R-modules naturally embeds
into the derived category), and since the equivalence is G-graded, it commutes
with the restriction from R to R1 and preserves the action of G on R1-modules
(see also [5, Corollary 5.2.6]).

2) Clearly, by applying the scalar extension K ⊗F −, we also obtain a
G-graded derived equivalence between KR and KR′, and these equivalences
preserve the action of the Galois group Ĝ. �

Remark 5.6. We have that EndR1(M) is a central simple G-algebra, and
it can be regarded as representative for the Brauer-Clifford class of W (see
Turull [8], and also Gliţia [3] for the version for strongly G-graded algebras).
Then Theorem 5.2 says that the Brauer-Clifford class of W does not depend
on the choice of a W -quasihomogeneous R-module, while Theorem 5.5 says
that a G-graded derived equivalence over F “preserves Brauer-Clifford classes”
(see also [7, Theorem 5.3]).
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