MATHEMATICA, Tome 55 (78), N° 2, 2013, pp. 172-177

JACK'S LEMMA AND A CLASS OF POLYNOMIAL INEQUALITIES

RICHARD FOURNIER

Abstract

We study Jack's lemma from the point of view of a class of polynomial inequalities involving bound-preserving operators. MSC 2010. 30C80, 30C10. Key words. Jack's lemma, polynomial inequalities, bound-preserving operators.

1. INTRODUCTION

Let \mathbb{D} denote the unit disc $\{z \in \mathbb{C}||z|<1\}$ of the complex plane \mathbb{C} and $\mathcal{H}(\mathbb{D})$ the set of functions analytic on \mathbb{D}. We define for $f \in \mathcal{H}(\mathbb{D})$

$$
|f|_{\mathbb{D}}:=\sup _{z \in \mathbb{D}}|f(z)| .
$$

Let also \mathcal{P}_{n} denote the set of polynomials of degree at most n with coefficients in \mathbb{C}. The inequality (valid for any $p \in \mathcal{P}_{n}$)

$$
\begin{equation*}
\left|z p^{\prime}(z) / n-p(z)\right|+\left|z p^{\prime}(z) / n\right| \leq|p|_{\mathbb{D}}, \quad|z| \leq 1, \tag{1}
\end{equation*}
$$

is a well-known refinement of the classical Bernstein inequality for polynomials on the unit disc. The paper [1] contains references concerning various proofs of (1).

It has been observed by Sheil-Small [7, p. 152] that equality holds in (1) for any $p \in \mathcal{P}_{n}$ and any u in the closed unit disc $\overline{\mathbb{D}}$ such that $|p(u)|=|p|_{\mathbb{D}}$. (The only other case of equality, as proved in [1], occurs when $p(z)=A z^{n}+B$ at any point u with $|u|=1$). This leads to a painless proof of Jack's lemma for polynomials: indeed if $p \in \mathcal{P}_{n}$ and $|p(u)|=|p|_{\mathbb{D}}$ for some $|u|,(|u|=1)$, then

$$
\begin{equation*}
\left|u p^{\prime}(u) / n-p(u)\right|+\left|u p^{\prime}(u) / n\right|=|p|_{\mathbb{D}}=|p(u)| \tag{2}
\end{equation*}
$$

and (2) is easily seen to amount to

$$
\begin{equation*}
0 \leq \frac{u p^{\prime}(u)}{n p(u)} \leq 1, \tag{3}
\end{equation*}
$$

which is a version of Jack's lemma for polynomials. It has been established in [4] and [3] that $0<\frac{u p^{\prime}(u)}{p(u)}$ unless the polynomial p is constant or equivalently that $\frac{u p^{\prime}(u)}{p(u)}<n$ unless p is a monomial of degree n. We refer to the book of Miller and Mocanu [5] concerning Jack's lemma and its applications in geometric function theory.

Let $P_{1 / 2}$ denote the class of functions F in $\mathcal{H}(\mathbb{D})$ with $F(0)=1$ and $\operatorname{Re} F(z)>\frac{1}{2}$ if $z \in \mathbb{D}$; let also \star denote the usual Hadamard product of functions in $\mathcal{H}(\mathbb{D})$. Ruscheweyh [6, p. 128] proved that for $p \in \mathcal{P}_{n}$

$$
\begin{equation*}
|W \star p(z)|+|\widetilde{W} \star p(z)| \leq|p|_{\mathbb{D}}, \quad|z| \leq 1, \tag{4}
\end{equation*}
$$

where $W \in \mathcal{P}_{n-1} \cap P_{1 / 2}$ and $\widetilde{W}(z):=z^{n} \overline{W(1 / z)} \in \mathcal{P}_{n}$. Given the fact that $W(z):=\sum_{k=0}^{n-1}\left(1-\frac{k}{n}\right) z^{k} \in \mathcal{P}_{n-1} \cap P_{1 / 2}$, we see that (4) is a striking generalization of (1). It was proved in [4] that a corresponding generalization of Jack's lemma follows from (4).

Let $F(z):=1+\sum_{k=1}^{\infty} A_{k} z^{k} \in P_{1 / 2}$ where, for a given $n \geq 1$, the associated Toeplitz $(n+1) \times(n+1)$ determinant $D_{n}(F)$ with first row $\left(1, A_{1}, \ldots, A_{n}\right)$ is strictly positive. We recently established in [2] the existence of a constant $d_{n}=d_{n}(F)$ such that $0<d_{n}(F) \leq 1$ and for any $p \in \mathcal{P}_{n}$

$$
\begin{equation*}
|p \star F(z)|+d_{n}|p(z)-p \star F(z)| \leq|p|_{\mathbb{D}}, \quad|z| \leq 1 . \tag{5}
\end{equation*}
$$

In some sense, (5) is an extension of (1) which corresponds to the case where $F(z)=\sum_{k=0}^{n}\left(1-\frac{k}{n}\right) z^{k} \in P_{1 / 2}$ with the associated strictly positive Toeplitz determinant and of course $d_{n}(F)=1$. We define

$$
P_{1 / 2}^{\star}:=\left\{F \in P_{1 / 2} \mid D_{n}(F)>0 \text { and } d_{n}(F)=1\right\} \neq \emptyset .
$$

For $F \in P_{1 / 2}^{\star}$ we have

$$
\begin{equation*}
|p \star F(z)|+|p(z)-p \star F(z)| \leq|p| \mathbb{D}, \quad|z| \leq 1, \tag{6}
\end{equation*}
$$

and if for some $p \in \mathcal{P}_{n}$ and $u \in \partial \mathbb{D}$ we have $|p(u)|=|p|_{\mathbb{D}}$, we obtain by (6)

$$
|p \star F(u)|+|p(u)-p \star F(u)|=|p(u)|
$$

and clearly

$$
\begin{equation*}
0 \leq \frac{p \star F(u)}{p(u)} \leq 1 \text { if } F \in P_{1 / 2}^{\star}, p \in \mathcal{P}_{n} \quad \text { and } \quad|p(u)|=|p|_{\mathbb{D}} . \tag{7}
\end{equation*}
$$

In particular $0 \leq A_{k} \leq 1$ if $F(z)=1+\sum_{k=1}^{n} A_{k} z^{k}+o\left(z^{n}\right)$. At first sight, (7) looks like an exciting extension of Jack's lemma [1]. The main result of this note shows that this is not indeed the case. We shall prove

Theorem 1. The members of $P_{1 / 2}^{\star}$ are of the type

$$
F_{t}(z)=\sum_{k=0}^{n}\left(1-t \frac{k}{n}\right) z^{k}+o\left(z^{n}\right)
$$

with $0 \leq t \leq 1$.
According to (7), we obtain for any $p \in \mathcal{P}_{n}$ with $|p(u)|=|p|_{\mathbb{D}}$

$$
0 \leq \frac{p \star F_{t}(u)}{p(u)}=1-t \frac{u p^{\prime}(u)}{n p(u)} \leq 1
$$

i.e., nothing more than (3)!

2. PROOF OF THE THEOREM

We shall rely on the following
Lemma 1. For any $n \geq 2$, there exists a polynomial $p \in \mathcal{P}_{n}$ and $u \in \partial \mathbb{D}$ such that $|p(u)|=|p|_{\mathbb{D}}$ and $\frac{p(0)}{p(u)}$ is not real.

Proof. Let $p(z)=1-z-z^{2}$. Then $\left|p\left(\mathrm{e}^{\mathrm{i} \theta}\right)\right|=\left|1-\mathrm{e}^{\mathrm{i} \theta}-\mathrm{e}^{2 \mathrm{i} \theta}\right|=|-1-2 \mathrm{i} \sin (\theta)|$ and clearly $|p(\mathrm{i})|=|p|_{\mathbb{D}}$ but $\frac{p(0)}{p(\mathrm{i})}=\frac{1}{2-\mathrm{i}}$ is not real.

When $n>2$, we set $p(z)=(1+z)\left(1-z^{n-1}\right)$. We have

$$
p\left(\mathrm{e}^{\mathrm{i} \theta}\right)=\left(1+\mathrm{e}^{\mathrm{i} \theta}\right)\left(1-\mathrm{e}^{\mathrm{i}(n-1) \theta}\right)=4 \mathrm{e}^{\mathrm{i}\left(\frac{n}{2} \theta+\frac{n}{2}\right)} \cos \left(\frac{\theta}{2}\right) \sin \left(\frac{n-1}{2} \theta\right)
$$

Clearly if $p\left(\mathrm{e}^{\mathrm{i} \theta}\right)= \pm|p|_{\mathbb{D}}$, then

$$
\sin \left(\frac{n}{2} \theta+\frac{\pi}{2}\right)=\cos \left(\frac{n}{2} \theta\right)=0
$$

and $\frac{\mathrm{d}}{\mathrm{d} \theta} \cos \frac{\theta}{2} \sin \frac{n-1}{2} \theta= \pm \frac{(n-2)}{2} \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)= \pm \frac{(n-2)}{4} \sin \theta=0$. This is impossible, because $p(1)=p(-1)=0$, and again in this case $\frac{p(0)}{p(u)}$ is not real.

Proof of Theorem 1. We shall prove our Theorem by induction on $n \geq 1$. When $n=1$, let $F(z)=1+A_{1} z+o(z)$ and $p(z)=a_{0}+a_{1} z \in \mathcal{P}_{1}$ satisfy (6). This is easily seen to amount to

$$
\left|a_{0}\right|+\left|A_{1}\right|\left|a_{1}\right|+\left|a_{1}\right|\left|1-A_{1}\right| \leq\left|a_{0}\right|+\left|a_{1}\right|
$$

and since this must hold for an arbitrary polynomial in \mathcal{P}_{1}, we obtain $\left|A_{1}\right|+$ $\left|1-A_{1}\right| \leq 1$, i.e., $0 \leq A_{1} \leq 1$. We then have

$$
1+A_{1} z+o\left(z^{n}\right)=\sum_{k=0}^{n}\left(1-t \frac{k}{n}\right) z^{k}+o\left(z^{n}\right) \text { for } n=1 \quad \text { and } \quad t=1-A_{1}
$$

Let us now assume our result valid for $n-1$ and consider $Q(z)=1+$ $\sum_{k=1}^{n} A_{k} z^{k}+o\left(z^{n}\right) \in P_{1 / 2}^{\star}$. We then have, by the induction hypothesis, for any $p \in \mathcal{P}_{n-1} \subset \mathcal{P}_{n}$

$$
\begin{aligned}
\left|\left(Q(z)-A_{n} z^{n}\right) \star p(z)\right|+\mid p(z)- & \left(Q(z)-A_{n} z^{n}\right) \star p(z) \mid \\
& =|Q \star p(z)|+|p(z)-Q(z) \star p(z)| \leq|p|_{\mathbb{D}}
\end{aligned}
$$

and therefore, for some $t \in[0,1]$,

$$
\begin{equation*}
Q(z)=\sum_{k=0}^{n-1}\left(1-t \frac{k}{n-1}\right) z^{k}+A_{n} z^{n} \tag{8}
\end{equation*}
$$

It follows that for any $p(z)=a_{n} z^{n}+\cdots$ in \mathcal{P}_{n},

$$
\begin{align*}
\frac{Q \star p(z)}{p(z)} & =\frac{p(z)-a_{n} z^{n}-\frac{t}{n-1}\left(z p^{\prime}(z)-n a_{n} z^{n}\right)+A_{n} a_{n} z^{n}}{p(z)} \tag{9}\\
& =1-\frac{1}{n-1} \frac{z p^{\prime}(z)}{p(z)}+\frac{a_{n} z^{n}}{p(z)}\left[-1+\frac{n t}{n-1}+A_{n}\right] .
\end{align*}
$$

Assuming now that $|u|=1$ and $|p(u)|=|p|_{\mathbb{D}}$, it follows from (3) and (7) that $0 \leq \frac{u p^{\prime}(u)}{p(u)}$ and $0 \leq \frac{Q \star p(u)}{p(u)}$. We therefore obtain from (9) that $\frac{a_{n} u^{n}}{p(u)}\left[-1+\frac{n t}{n-1}+\right.$ A_{n}] is real and $A_{n}=1-t \frac{n}{n-1}$, because otherwise $\frac{a_{n} u^{n}}{p(u)}$ would be real; this is a violation of Lemma 1, because p is arbitrary. We therefore have $A_{n}=1-t \frac{n}{n-1}$ and, by (8),

$$
\begin{aligned}
Q(z) & =\sum_{k=0}^{n-1}\left(1-t \frac{k}{n-1}\right) z^{k}+\left(1-t \frac{n}{n-1}\right) z^{n}+o\left(z^{n}\right) \\
& =\sum_{k=0}^{n}\left(1-\tau \frac{k}{n}\right) z^{k}+o\left(z^{n}\right)
\end{aligned}
$$

where $0 \leq \tau=\frac{n t}{n-1} \leq 1$, because, by (7), $1-t \frac{n}{n-1} \geq 0$. This concludes the proof of our Theorem.

3. CONCLUSION

We first remark that cases of equality in (6) for $F=F_{t}$ are not difficult to establish. Indeed, if for some $0 \leq t \leq 1, u \in \partial \mathbb{D}$ and $p \in \mathcal{P}_{n}$ we have

$$
|p|_{\mathbb{D}}=\left|p(u)-t \frac{u p^{\prime}(u)}{n}\right|+\left|t \frac{u p^{\prime}(u)}{n}\right|
$$

then

$$
\begin{align*}
|p|_{\mathbb{D}} & =\left|t\left(p(u)-\frac{u p^{\prime}(u)}{n}\right)+(1-t) p(u)\right|+t\left|\frac{u p^{\prime}(u)}{n}\right| \tag{10}\\
& \leq t\left(\left|p(u)-\frac{u p^{\prime}(u)}{n}\right|+\left|\frac{u p^{\prime}(u)}{n}\right|\right)+(1-t)|p(u)| \\
& \leq t|p|_{\mathbb{D}}+(1-t)|p|_{\mathbb{D}}
\end{align*}
$$

and equality holds everywhere in (10). It then follows from our introduction that either $p \in \mathcal{P}_{n}$ and $|p(u)|=|p|_{\mathbb{D}}$ if $0 \leq t \leq 1$ or else $p(z)=A z^{n}+B$ with $u \in \partial \mathbb{D}$ if $t=1$.

We have so far identified all functions F satisfying (6) for all $p \in \mathcal{P}_{n}$: these are the functions $F_{t}, 0 \leq t \leq 1$, introduced in Theorem 1. These functions also satisfy

$$
\begin{equation*}
0 \leq \frac{F \star p(u)}{p(u)} \leq 1, \quad p \in \mathcal{P}_{n},|p(u)|=|p|_{\mathbb{D}} \tag{11}
\end{equation*}
$$

It is a natural question to ask if other functions $F \in \mathcal{H}(\mathbb{D})$ with $F(0)=1$ may also satisfy (11), since a negative answer would in some sense assert some sort
of unicity in the statement of Jack's lemma for polynomials of fixed degree n (which is equivalent to (7) with $F=F_{t}$ and $0 \leq t \leq 1$). As a matter of fact, the induction argument used in the proof of Theorem 1 can also be used to prove that only functions of the type F_{t} can satisfy (11). We supply a sketch of the induction argument.

Let us assume that any $F \in \mathcal{H}(\mathbb{D})$ satisfying (11) and $F(0)=1$ is of the type

$$
F(z)=\sum_{k=0}^{n}\left(1-\frac{t k}{n}\right) z^{k}+o\left(z^{n}\right)
$$

for some $0 \leq t \leq 1$. Let now

$$
\begin{equation*}
0 \leq \frac{G \star p(u)}{p(u)} \leq 1, \quad p \in \mathcal{P}_{n+1}, \quad|p(u)|=|p|_{\mathbb{D}} \tag{12}
\end{equation*}
$$

for some G in $\mathcal{H}(\mathbb{D})$ with $G(0)=1+\cdots+A_{n+1} z^{n+1}+o\left(z^{n+1}\right)$.
Then of course

$$
0 \leq\left.\frac{\left(G(z)-A_{n+1} z^{n+1}\right) \star p(z)}{p(u)}\right|_{z=u} \leq 1
$$

for all $p \in \mathcal{P}_{n}$ with $|p(u)|=|p|_{\mathbb{D}}$. By the induction hypothesis, for some $0 \leq t \leq 1$

$$
G(z)=\sum_{k=0}^{n}\left(1-t \frac{k}{n}\right) z^{k}+A_{n+1} z^{n+1}+o\left(z^{n+1}\right)
$$

with

$$
\begin{align*}
G \star g(z) & =g(z)-a_{n+1} z^{n+1}-\frac{t}{n}\left(z g^{\prime}(z)-(n+1) a_{n+1} z^{n+1}\right)+A_{n+1} a_{n+1} z^{n+1} \tag{13}\\
& =g(z)-\frac{t}{n} z g^{\prime}(z)+a_{n+1} z^{n+1}\left(-1+\frac{(n+1) t}{n}+A_{n+1}\right)
\end{align*}
$$

for any $g \in \mathcal{P}_{n+1}$ with leading coefficient $a_{n+1} \neq 0$. If we also assume that $|g(u)|=|g|_{\mathbb{D}}$ for some $u \in \partial \mathbb{D}$, it shall follow from (12), (13) and the standard Jack's lemma that

$$
\frac{a_{n+1} u^{n+1}}{g(u)}\left(-1+\frac{(n+1) t}{n}+A_{n+1}\right) \quad \text { is real. }
$$

Because g is arbitrary, this shall contradict our lemma if $A_{n+1} \neq 1-\frac{(n+1) t}{n}$. We therefore obtain

$$
\begin{aligned}
G(z) & =\sum_{k=0}^{n}\left(1-t \frac{k}{n}\right) z^{k}+\left(1-t \frac{(n+1)}{n}\right) z^{n+1}+o\left(z^{n+1}\right) \\
& =\sum_{k=0}^{n+1}\left(1-t \frac{k}{n}\right) z^{k}+o\left(z^{n+1}\right) \\
& =\sum_{k=0}^{n+1}\left(1-\tau \frac{k}{n+1}\right) z^{k}+o\left(z^{n+1}\right)
\end{aligned}
$$

with $\tau=\frac{t(n+1)}{n} \in[0,1]$, because, as above,

$$
0 \leq A_{n+1}=1-\frac{(n+1)}{n} t \leq 1 .
$$

REFERENCES

[1] Fournier, R., Cases of equality for a class of bound-preserving operators over \mathcal{P}_{n}, Comput. Methods Funct. Theory, 4 (2004), 183-188.
[2] Fournier, R., A new class of inequality for polynomials, submitted (2013).
[3] Fournier, R., Some remarks on Jack's lemma, Mathematica, 43 (2001), 43-50.
[4] Fournier, R. and Serban, M., An extension of Jack's lemma to polynomials of fixed degree, Comput. Methods Funct. Theory, 7 (2007), 371-378.
[5] Miller, S.S. and Mocanu, P.T., Differential subordinations, Marcel Dekker Inc., New York, 2000.
[6] Ruscheweyh, St., Convolutions in geometric function theory, Les Presses de l'Université de Montréal, Montréal, 1982.
[7] Sheil-Small, T., Complex polynomials, Cambridge University Press, Cambridge, 2002.

Received April 22, 2013
Accepted October 5, 2013

Université de Montréal
CRM and DMS
C.P. 6128, succ. Centre-ville

Montréal, QC H3C 3J, Canada
E-mail: richard.fournier@umontreal.ca
E-mail: fournier@dms.umontreal.ca

