MATHEMATICA, Tome 55 (78), N° 2, 2013, pp. 172–177

JACK'S LEMMA AND A CLASS OF POLYNOMIAL INEQUALITIES

RICHARD FOURNIER

Abstract. We study Jack's lemma from the point of view of a class of polynomial inequalities involving bound-preserving operators.

MSC 2010. 30C80, 30C10.

 ${\bf Key}$ words. Jack's lemma, polynomial inequalities, bound-preserving operators.

1. INTRODUCTION

Let \mathbb{D} denote the unit disc $\{z \in \mathbb{C} \mid |z| < 1\}$ of the complex plane \mathbb{C} and $\mathcal{H}(\mathbb{D})$ the set of functions analytic on \mathbb{D} . We define for $f \in \mathcal{H}(\mathbb{D})$

$$|f|_{\mathbb{D}} := \sup_{z \in \mathbb{D}} |f(z)|.$$

Let also \mathcal{P}_n denote the set of polynomials of degree at most n with coefficients in \mathbb{C} . The inequality (valid for any $p \in \mathcal{P}_n$)

(1)
$$|zp'(z)/n - p(z)| + |zp'(z)/n| \le |p|_{\mathbb{D}}, |z| \le 1,$$

is a well-known refinement of the classical Bernstein inequality for polynomials on the unit disc. The paper [1] contains references concerning various proofs of (1).

It has been observed by Sheil–Small [7, p. 152] that equality holds in (1) for any $p \in \mathcal{P}_n$ and any u in the closed unit disc $\overline{\mathbb{D}}$ such that $|p(u)| = |p|_{\mathbb{D}}$. (The only other case of equality, as proved in [1], occurs when $p(z) = Az^n + B$ at any point u with |u| = 1). This leads to a painless proof of Jack's lemma for polynomials: indeed if $p \in \mathcal{P}_n$ and $|p(u)| = |p|_{\mathbb{D}}$ for some |u|, (|u| = 1), then

(2)
$$|up'(u)/n - p(u)| + |up'(u)/n| = |p|_{\mathbb{D}} = |p(u)|$$

and (2) is easily seen to amount to

(3)
$$0 \le \frac{up'(u)}{np(u)} \le 1,$$

which is a version of Jack's lemma for polynomials. It has been established in [4] and [3] that $0 < \frac{up'(u)}{p(u)}$ unless the polynomial p is constant or equivalently that $\frac{up'(u)}{p(u)} < n$ unless p is a monomial of degree n. We refer to the book of Miller and Mocanu [5] concerning Jack's lemma and its applications in geometric function theory.

Let $P_{1/2}$ denote the class of functions F in $\mathcal{H}(\mathbb{D})$ with F(0) = 1 and Re $F(z) > \frac{1}{2}$ if $z \in \mathbb{D}$; let also \star denote the usual Hadamard product of functions in $\mathcal{H}(\mathbb{D})$. Ruscheweyh [6, p. 128] proved that for $p \in \mathcal{P}_n$

(4)
$$|W \star p(z)| + |W \star p(z)| \le |p|_{\mathbb{D}}, |z| \le 1,$$

where $W \in \mathcal{P}_{n-1} \cap P_{1/2}$ and $\widetilde{W}(z) := z^n \overline{W(1/z)} \in \mathcal{P}_n$. Given the fact that $W(z) := \sum_{k=0}^{n-1} (1 - \frac{k}{n}) z^k \in \mathcal{P}_{n-1} \cap P_{1/2}$, we see that (4) is a striking generalization of (1). It was proved in [4] that a corresponding generalization of Jack's lemma follows from (4).

Jack's lemma follows from (4). Let $F(z) := 1 + \sum_{k=1}^{\infty} A_k z^k \in P_{1/2}$ where, for a given $n \ge 1$, the associated Toeplitz $(n + 1) \times (n + 1)$ determinant $D_n(F)$ with first row $(1, A_1, \ldots, A_n)$ is strictly positive. We recently established in [2] the existence of a constant $d_n = d_n(F)$ such that $0 < d_n(F) \le 1$ and for any $p \in \mathcal{P}_n$

(5)
$$|p \star F(z)| + d_n |p(z) - p \star F(z)| \le |p|_{\mathbb{D}}, \quad |z| \le 1.$$

In some sense, (5) is an extension of (1) which corresponds to the case where $F(z) = \sum_{k=0}^{n} (1 - \frac{k}{n}) z^k \in P_{1/2}$ with the associated strictly positive Toeplitz determinant and of course $d_n(F) = 1$. We define

$$P_{1/2}^{\star} := \{F \in P_{1/2} \mid D_n(F) > 0 \text{ and } d_n(F) = 1\} \neq \emptyset.$$

For $F \in P_{1/2}^{\star}$ we have

(6)
$$|p \star F(z)| + |p(z) - p \star F(z)| \le |p|_{\mathbb{D}}, \quad |z| \le 1$$

and if for some $p \in \mathcal{P}_n$ and $u \in \partial \mathbb{D}$ we have $|p(u)| = |p|_{\mathbb{D}}$, we obtain by (6)

$$p \star F(u)| + |p(u) - p \star F(u)| = |p(u)|$$

and clearly

(7)
$$0 \leq \frac{p \star F(u)}{p(u)} \leq 1 \quad \text{if} \quad F \in P_{1/2}^{\star}, \ p \in \mathcal{P}_n \quad \text{and} \quad |p(u)| = |p|_{\mathbb{D}}.$$

In particular $0 \le A_k \le 1$ if $F(z) = 1 + \sum_{k=1}^n A_k z^k + o(z^n)$. At first sight, (7) looks like an exciting extension of Jack's lemma [1]. The main result of this note shows that this is not indeed the case. We shall prove

THEOREM 1. The members of $P_{1/2}^{\star}$ are of the type

$$F_t(z) = \sum_{k=0}^n (1 - t\frac{k}{n}) z^k + o(z^n)$$

with $0 \le t \le 1$.

According to (7), we obtain for any $p \in \mathcal{P}_n$ with $|p(u)| = |p|_{\mathbb{D}}$

$$0 \le \frac{p \star F_t(u)}{p(u)} = 1 - t \frac{up'(u)}{np(u)} \le 1$$

i.e., nothing more than (3)!

2. PROOF OF THE THEOREM

We shall rely on the following

LEMMA 1. For any $n \geq 2$, there exists a polynomial $p \in \mathcal{P}_n$ and $u \in \partial \mathbb{D}$ such that $|p(u)| = |p|_{\mathbb{D}}$ and $\frac{p(0)}{p(u)}$ is not real.

Proof. Let $p(z) = 1 - z - z^2$. Then $|p(e^{i\theta})| = |1 - e^{i\theta} - e^{2i\theta}| = |-1 - 2i\sin(\theta)|$ and clearly $|p(i)| = |p|_{\mathbb{D}}$ but $\frac{p(0)}{p(i)} = \frac{1}{2-i}$ is not real. When n > 2, we set $p(z) = (1+z)(1-z^{n-1})$. We have

$$p(e^{i\theta}) = (1 + e^{i\theta}) \left(1 - e^{i(n-1)\theta}\right) = 4e^{i\left(\frac{n}{2}\theta + \frac{n}{2}\right)} \cos\left(\frac{\theta}{2}\right) \sin\left(\frac{n-1}{2}\theta\right).$$

Clearly if $p(e^{i\theta}) = \pm |p|_{\mathbb{D}}$, then

$$\sin\left(\frac{n}{2}\theta + \frac{\pi}{2}\right) = \cos\left(\frac{n}{2}\theta\right) = 0$$

and $\frac{d}{d\theta}\cos\frac{\theta}{2}\sin\frac{n-1}{2}\theta = \pm\frac{(n-2)}{2}\sin(\frac{\theta}{2})\cos(\frac{\theta}{2}) = \pm\frac{(n-2)}{4}\sin\theta = 0$. This is impossible, because p(1) = p(-1) = 0, and again in this case $\frac{p(0)}{p(u)}$ is not real.

Proof of Theorem 1. We shall prove our Theorem by induction on $n \geq 1$. When n = 1, let $F(z) = 1 + A_1 z + o(z)$ and $p(z) = a_0 + a_1 z \in \mathcal{P}_1$ satisfy (6). This is easily seen to amount to

$$|a_0| + |A_1| |a_1| + |a_1| |1 - A_1| \le |a_0| + |a_1|$$

and since this must hold for an arbitrary polynomial in \mathcal{P}_1 , we obtain $|A_1| +$ $|1 - A_1| \le 1$, i.e., $0 \le A_1 \le 1$. We then have

$$1 + A_1 z + o(z^n) = \sum_{k=0}^n \left(1 - t \frac{k}{n} \right) z^k + o(z^n) \text{ for } n = 1 \text{ and } t = 1 - A_1.$$

Let us now assume our result valid for n-1 and consider Q(z) = 1 + 1 $\sum_{k=1}^{n} A_k z^k + o(z^n) \in P_{1/2}^{\star}$. We then have, by the induction hypothesis, for any $p \in \mathcal{P}_{n-1} \subset \mathcal{P}_n$

$$|(Q(z) - A_n z^n) \star p(z)| + |p(z) - (Q(z) - A_n z^n) \star p(z)|$$

= $|Q \star p(z)| + |p(z) - Q(z) \star p(z)| \le |p|_{\mathbb{D}}$

and therefore, for some $t \in [0, 1]$,

(8)
$$Q(z) = \sum_{k=0}^{n-1} \left(1 - t \frac{k}{n-1}\right) z^k + A_n z^n.$$

It follows that for any $p(z) = a_n z^n + \cdots$ in \mathcal{P}_n ,

(9)
$$\frac{Q \star p(z)}{p(z)} = \frac{p(z) - a_n z^n - \frac{t}{n-1} (zp'(z) - na_n z^n) + A_n a_n z^n}{p(z)}$$
$$= 1 - \frac{1}{n-1} \frac{zp'(z)}{p(z)} + \frac{a_n z^n}{p(z)} \left[-1 + \frac{nt}{n-1} + A_n \right].$$

Assuming now that |u| = 1 and $|p(u)| = |p|_{\mathbb{D}}$, it follows from (3) and (7) that $0 \leq \frac{up'(u)}{p(u)}$ and $0 \leq \frac{Q \star p(u)}{p(u)}$. We therefore obtain from (9) that $\frac{a_n u^n}{p(u)} \left[-1 + \frac{nt}{n-1} + A_n \right]$ is real and $A_n = 1 - t \frac{n}{n-1}$, because otherwise $\frac{a_n u^n}{p(u)}$ would be real; this is a violation of Lemma 1, because p is arbitrary. We therefore have $A_n = 1 - t \frac{n}{n-1}$ and, by (8),

$$Q(z) = \sum_{k=0}^{n-1} \left(1 - t \frac{k}{n-1}\right) z^k + \left(1 - t \frac{n}{n-1}\right) z^n + o(z^n)$$
$$= \sum_{k=0}^n \left(1 - \tau \frac{k}{n}\right) z^k + o(z^n),$$

where $0 \le \tau = \frac{nt}{n-1} \le 1$, because, by (7), $1 - t\frac{n}{n-1} \ge 0$. This concludes the proof of our Theorem.

3. CONCLUSION

We first remark that cases of equality in (6) for $F = F_t$ are not difficult to establish. Indeed, if for some $0 \le t \le 1$, $u \in \partial \mathbb{D}$ and $p \in \mathcal{P}_n$ we have

$$|p|_{\mathbb{D}} = \left| p(u) - t \frac{up'(u)}{n} \right| + \left| t \frac{up'(u)}{n} \right|,$$

then

(10)
$$|p|_{\mathbb{D}} = \left| t \left(p(u) - \frac{up'(u)}{n} \right) + (1-t)p(u) \right| + t \left| \frac{up'(u)}{n} \right|$$
$$\leq t \left(\left| p(u) - \frac{up'(u)}{n} \right| + \left| \frac{up'(u)}{n} \right| \right) + (1-t)|p(u)|$$
$$\leq t |p|_{\mathbb{D}} + (1-t)|p|_{\mathbb{D}}$$

and equality holds everywhere in (10). It then follows from our introduction that either $p \in \mathcal{P}_n$ and $|p(u)| = |p|_{\mathbb{D}}$ if $0 \le t \le 1$ or else $p(z) = Az^n + B$ with $u \in \partial \mathbb{D}$ if t = 1.

We have so far identified all functions F satisfying (6) for all $p \in \mathcal{P}_n$: these are the functions F_t , $0 \le t \le 1$, introduced in Theorem 1. These functions also satisfy

(11)
$$0 \leq \frac{F \star p(u)}{p(u)} \leq 1, \quad p \in \mathcal{P}_n, \ |p(u)| = |p|_{\mathbb{D}}.$$

It is a natural question to ask if other functions $F \in \mathcal{H}(\mathbb{D})$ with F(0) = 1 may also satisfy (11), since a negative answer would in some sense assert some sort R. Fournier

of unicity in the statement of Jack's lemma for polynomials of fixed degree n(which is equivalent to (7) with $F = F_t$ and $0 \le t \le 1$). As a matter of fact, the induction argument used in the proof of Theorem 1 can also be used to prove that only functions of the type F_t can satisfy (11). We supply a sketch of the induction argument.

Let us assume that any $F \in \mathcal{H}(\mathbb{D})$ satisfying (11) and F(0) = 1 is of the type

$$F(z) = \sum_{k=0}^{n} \left(1 - \frac{tk}{n}\right) z^k + o(z^n)$$

for some $0 \le t \le 1$. Let now

(12)
$$0 \leq \frac{G \star p(u)}{p(u)} \leq 1, \quad p \in \mathcal{P}_{n+1}, \quad |p(u)| = |p|_{\mathbb{D}}$$

for some G in $\mathcal{H}(\mathbb{D})$ with $G(0) = 1 + \dots + A_{n+1}z^{n+1} + o(z^{n+1})$. Then of course

$$0 \le \frac{(G(z) - A_{n+1}z^{n+1}) \star p(z)}{p(u)} \Big|_{z=u} \le 1$$

for all $p \in \mathcal{P}_n$ with $|p(u)| = |p|_{\mathbb{D}}$. By the induction hypothesis, for some $0 \le t \le 1$

$$G(z) = \sum_{k=0}^{n} \left(1 - t\frac{k}{n} \right) z^{k} + A_{n+1} z^{n+1} + o(z^{n+1})$$

with

(13)
$$G \star g(z) = g(z) - a_{n+1} z^{n+1} - \frac{t}{n} (zg'(z) - (n+1)a_{n+1} z^{n+1}) + A_{n+1} a_{n+1} z^{n+1}$$
$$= g(z) - \frac{t}{n} zg'(z) + a_{n+1} z^{n+1} \left(-1 + \frac{(n+1)t}{n} + A_{n+1} \right)$$

for any $g \in \mathcal{P}_{n+1}$ with leading coefficient $a_{n+1} \neq 0$. If we also assume that $|g(u)| = |g|_{\mathbb{D}}$ for some $u \in \partial \mathbb{D}$, it shall follow from (12), (13) and the standard Jack's lemma that

$$\frac{a_{n+1}u^{n+1}}{g(u)} \left(-1 + \frac{(n+1)t}{n} + A_{n+1} \right)$$
 is real.

Because g is arbitrary, this shall contradict our lemma if $A_{n+1} \neq 1 - \frac{(n+1)t}{n}$. We therefore obtain

$$G(z) = \sum_{k=0}^{n} \left(1 - t\frac{k}{n}\right) z^{k} + \left(1 - t\frac{(n+1)}{n}\right) z^{n+1} + o(z^{n+1})$$
$$= \sum_{k=0}^{n+1} \left(1 - t\frac{k}{n}\right) z^{k} + o(z^{n+1})$$
$$= \sum_{k=0}^{n+1} \left(1 - \tau\frac{k}{n+1}\right) z^{k} + o(z^{n+1})$$

with $\tau = \frac{t(n+1)}{n} \in [0, 1]$, because, as above,

$$0 \leq A_{n+1} = 1 - \frac{(n+1)}{n}t \leq 1.$$

REFERENCES

- [1] FOURNIER, R., Cases of equality for a class of bound-preserving operators over \mathcal{P}_n , Comput. Methods Funct. Theory, 4 (2004), 183–188.
- [2] FOURNIER, R., A new class of inequality for polynomials, submitted (2013).
- [3] FOURNIER, R., Some remarks on Jack's lemma, Mathematica, 43 (2001), 43-50.
- [4] FOURNIER, R. and SERBAN, M., An extension of Jack's lemma to polynomials of fixed degree, Comput. Methods Funct. Theory, 7 (2007), 371–378.
- [5] MILLER, S.S. and MOCANU, P.T., *Differential subordinations*, Marcel Dekker Inc., New York, 2000.
- [6] RUSCHEWEYH, ST., Convolutions in geometric function theory, Les Presses de l'Université de Montréal, Montréal, 1982.
- [7] SHEIL-SMALL, T., Complex polynomials, Cambridge University Press, Cambridge, 2002.

Received April 22, 2013 Accepted October 5, 2013 Université de Montréal CRM and DMS C.P. 6128, succ. Centre-ville Montréal, QC H3C 3J7, Canada E-mail: richard.fournier@umontreal.ca E-mail: fournier@dms.umontreal.ca