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JACK’S LEMMA AND A CLASS OF POLYNOMIAL
INEQUALITIES
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Abstract. We study Jack’s lemma from the point of view of a class of polyno-
mial inequalities involving bound-preserving operators.
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1. INTRODUCTION

Let D denote the unit disc{z ∈ C | |z| < 1} of the complex plane C and
H(D) the set of functions analytic on D. We define for f ∈ H(D)

|f |D := sup
z∈D
|f(z)|.

Let also Pn denote the set of polynomials of degree at most n with coefficients
in C. The inequality (valid for any p ∈ Pn)

(1) |zp′(z)/n− p(z)|+ |zp′(z)/n| ≤ |p|D, |z| ≤ 1,

is a well-known refinement of the classical Bernstein inequality for polynomials
on the unit disc. The paper [1] contains references concerning various proofs
of (1).

It has been observed by Sheil–Small [7, p. 152] that equality holds in (1) for
any p ∈ Pn and any u in the closed unit disc D such that |p(u)| = |p|D. (The
only other case of equality, as proved in [1], occurs when p(z) = Azn + B at
any point u with |u| = 1). This leads to a painless proof of Jack’s lemma for
polynomials: indeed if p ∈ Pn and |p(u)| = |p|D for some |u|, (|u| = 1), then

(2) |up′(u)/n− p(u)|+ |up′(u)/n| = |p|D = |p(u)|

and (2) is easily seen to amount to

(3) 0 ≤ up′(u)
np(u) ≤ 1,

which is a version of Jack’s lemma for polynomials. It has been established in

[4] and [3] that 0 < up′(u)
p(u) unless the polynomial p is constant or equivalently

that up′(u)
p(u) < n unless p is a monomial of degree n. We refer to the book

of Miller and Mocanu [5] concerning Jack’s lemma and its applications in
geometric function theory.
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Let P1/2 denote the class of functions F in H(D) with F (0) = 1 and

ReF (z) > 1
2 if z ∈ D; let also ? denote the usual Hadamard product of

functions in H(D). Ruscheweyh [6, p. 128] proved that for p ∈ Pn
(4) |W ? p(z)|+ |W̃ ? p(z)| ≤ |p|D, |z| ≤ 1,

where W ∈ Pn−1 ∩ P1/2 and W̃ (z) := znW (1/z) ∈ Pn. Given the fact that

W (z) :=
∑n−1

k=0

(
1 − k

n

)
zk ∈ Pn−1 ∩ P1/2, we see that (4) is a striking gener-

alization of (1). It was proved in [4] that a corresponding generalization of
Jack’s lemma follows from (4).

Let F (z) := 1 +
∑∞

k=1Akz
k ∈ P1/2 where, for a given n ≥ 1, the associated

Toeplitz (n + 1) × (n + 1) determinant Dn(F ) with first row (1, A1, . . . , An)
is strictly positive. We recently established in [2] the existence of a constant
dn = dn(F ) such that 0 < dn(F ) ≤ 1 and for any p ∈ Pn
(5) |p ? F (z)|+ dn|p(z)− p ? F (z)| ≤ |p|D, |z| ≤ 1.

In some sense, (5) is an extension of (1) which corresponds to the case where
F (z) =

∑n
k=0

(
1 − k

n

)
zk ∈ P1/2 with the associated strictly positive Toeplitz

determinant and of course dn(F ) = 1. We define

P ?1/2 := {F ∈ P1/2 | Dn(F ) > 0 and dn(F ) = 1} 6= ∅.

For F ∈ P ?1/2 we have

(6) |p ? F (z)|+ |p(z)− p ? F (z)| ≤ |p|D, |z| ≤ 1,

and if for some p ∈ Pn and u ∈ ∂D we have |p(u)| = |p|D, we obtain by (6)

|p ? F (u)|+ |p(u)− p ? F (u)| = |p(u)|
and clearly

(7) 0 ≤ p?F (u)
p(u) ≤ 1 if F ∈ P ?1/2, p ∈ Pn and |p(u)| = |p|D.

In particular 0 ≤ Ak ≤ 1 if F (z) = 1 +
∑n

k=1Akz
k + o(zn). At first sight, (7)

looks like an exciting extension of Jack’s lemma [1]. The main result of this
note shows that this is not indeed the case. We shall prove

Theorem 1. The members of P ?1/2 are of the type

Ft(z) =
n∑
k=0

(
1− t kn

)
zk + o(zn)

with 0 ≤ t ≤ 1.

According to (7), we obtain for any p ∈ Pn with |p(u)| = |p|D

0 ≤ p ? Ft(u)

p(u)
= 1− tup

′(u)
np(u) ≤ 1

i.e., nothing more than (3)!



174 R. Fournier 3

2. PROOF OF THE THEOREM

We shall rely on the following

Lemma 1. For any n ≥ 2, there exists a polynomial p ∈ Pn and u ∈ ∂D
such that |p(u)| = |p|D and p(0)

p(u) is not real.

Proof. Let p(z) = 1−z−z2. Then |p(eiθ)| = |1−eiθ−e2iθ| = |−1−2i sin(θ)|
and clearly |p(i)| = |p|D but p(0)

p(i) = 1
2−i is not real.

When n > 2, we set p(z) = (1 + z)(1− zn−1). We have

p(eiθ) = (1 + eiθ)
(

1− ei(n−1)θ
)

= 4ei
(
n
2 θ+

n
2

)
cos
(
θ
2

)
sin
(
n−1
2 θ
)
.

Clearly if p(eiθ) = ±|p|D, then

sin
(
n
2 θ + π

2

)
= cos

(
n
2 θ
)

= 0

and d
d θ cos θ2 sin n−1

2 θ = ± (n−2)
2 sin( θ2

)
cos
(
θ
2

)
= ± (n−2)

4 sin θ = 0. This is

impossible, because p(1) = p(−1) = 0, and again in this case p(0)
p(u) is not

real. �

Proof of Theorem 1. We shall prove our Theorem by induction on n ≥ 1.
When n = 1, let F (z) = 1 + A1z + o(z) and p(z) = a0 + a1z ∈ P1 satisfy (6).
This is easily seen to amount to

|a0|+ |A1| |a1|+ |a1| |1−A1| ≤ |a0|+ |a1|

and since this must hold for an arbitrary polynomial in P1, we obtain |A1|+
|1−A1| ≤ 1, i.e., 0 ≤ A1 ≤ 1. We then have

1 +A1z + o(zn) =
n∑
k=0

(
1− t kn

)
zk + o(zn) for n = 1 and t = 1−A1.

Let us now assume our result valid for n − 1 and consider Q(z) = 1 +∑n
k=1Akz

k + o(zn) ∈ P ?1/2. We then have, by the induction hypothesis, for

any p ∈ Pn−1 ⊂ Pn

|(Q(z)−Anzn) ? p(z)|+ |p(z)− (Q(z)−Anzn) ? p(z)|

= |Q ? p(z)|+ |p(z)−Q(z) ? p(z)| ≤ |p|D

and therefore, for some t ∈ [0, 1],

(8) Q(z) =

n−1∑
k=0

(
1− t k

n−1
)
zk +Anz

n.
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It follows that for any p(z) = anz
n + · · · in Pn,

Q?p(z)
p(z) =

p(z)−anzn− t
n−1 (zp

′(z)−nanzn)+Ananzn

p(z)(9)

= 1− 1
n−1

zp′(z)
p(z) + anzn

p(z)

[
− 1 + nt

n−1 +An
]
.

Assuming now that |u| = 1 and |p(u)| = |p|D, it follows from (3) and (7) that

0 ≤ up′(u)
p(u) and 0 ≤ Q?p(u)

p(u) . We therefore obtain from (9) that anun

p(u)

[
−1+ nt

n−1 +

An
]

is real and An = 1− t n
n−1 , because otherwise anun

p(u) would be real; this is a

violation of Lemma 1, because p is arbitrary. We therefore have An = 1−t n
n−1

and, by (8),

Q(z) =

n−1∑
k=0

(
1− t k

n−1
)
zk +

(
1− t n

n−1
)
zn + o(zn)

=
n∑
k=0

(
1− τ kn

)
zk + o(zn),

where 0 ≤ τ = nt
n−1 ≤ 1, because, by (7), 1 − t n

n−1 ≥ 0. This concludes the
proof of our Theorem. �

3. CONCLUSION

We first remark that cases of equality in (6) for F = Ft are not difficult to
establish. Indeed, if for some 0 ≤ t ≤ 1, u ∈ ∂D and p ∈ Pn we have

|p|D =
∣∣p(u)− tup

′(u)
n

∣∣+
∣∣tup′(u)n

∣∣,
then

|p|D =
∣∣t(p(u)− up′(u)

n

)
+ (1− t)p(u)

∣∣+ t
∣∣up′(u)

n

∣∣(10)

≤ t
(∣∣p(u)− up′(u)

n

∣∣+
∣∣up′(u)

n

∣∣)+ (1− t)|p(u)|

≤ t|p|D + (1− t)|p|D
and equality holds everywhere in (10). It then follows from our introduction
that either p ∈ Pn and |p(u)| = |p|D if 0 ≤ t ≤ 1 or else p(z) = Azn + B with
u ∈ ∂D if t = 1.

We have so far identified all functions F satisfying (6) for all p ∈ Pn: these
are the functions Ft, 0 ≤ t ≤ 1, introduced in Theorem 1. These functions
also satisfy

(11) 0 ≤ F?p(u)
p(u) ≤ 1, p ∈ Pn, |p(u)| = |p|D.

It is a natural question to ask if other functions F ∈ H(D) with F (0) = 1 may
also satisfy (11), since a negative answer would in some sense assert some sort
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of unicity in the statement of Jack’s lemma for polynomials of fixed degree n
(which is equivalent to (7) with F = Ft and 0 ≤ t ≤ 1). As a matter of fact,
the induction argument used in the proof of Theorem 1 can also be used to
prove that only functions of the type Ft can satisfy (11). We supply a sketch
of the induction argument.

Let us assume that any F ∈ H(D) satisfying (11) and F (0) = 1 is of the
type

F (z) =
n∑
k=0

(
1− tk

n

)
zk + o(zn)

for some 0 ≤ t ≤ 1. Let now

(12) 0 ≤ G?p(u)
p(u) ≤ 1, p ∈ Pn+1, |p(u)| = |p|D

for some G in H(D) with G(0) = 1 + · · ·+An+1z
n+1 + o(zn+1).

Then of course

0 ≤ (G(z)−An+1z
n+1) ? p(z)

p(u)

∣∣∣∣
z=u

≤ 1

for all p ∈ Pn with |p(u)| = |p|D. By the induction hypothesis, for some
0 ≤ t ≤ 1

G(z) =

n∑
k=0

(
1− t k

n

)
zk +An+1z

n+1 + o(zn+1)

with

G ? g(z) = g(z)−an+1zn+1−
t

n
(zg′(z)−(n+1)an+1z

n+1)+An+1an+1z
n+1(13)

= g(z)− t

n
zg′(z) + an+1z

n+1

(
− 1 +

(n+ 1)t

n
+An+1

)
for any g ∈ Pn+1 with leading coefficient an+1 6= 0. If we also assume that
|g(u)| = |g|D for some u ∈ ∂D, it shall follow from (12), (13) and the standard
Jack’s lemma that

an+1un+1

g(u)

(
− 1 + (n+1)t

n +An+1

)
is real.

Because g is arbitrary, this shall contradict our lemma if An+1 6= 1 − (n+1)t
n .

We therefore obtain

G(z) =
n∑
k=0

(
1− t kn

)
zk +

(
1− t (n+1)

n

)
zn+1 + o(zn+1)

=

n+1∑
k=0

(
1− t kn

)
zk + o(zn+1)

=

n+1∑
k=0

(
1− τ k

n+1

)
zk + o(zn+1)
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with τ = t(n+1)
n ∈ [0, 1], because, as above,

0 ≤ An+1 = 1− (n+1)
n t ≤ 1.
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[7] Sheil-Small, T., Complex polynomials, Cambridge University Press, Cambridge, 2002.

Received April 22, 2013

Accepted October 5, 2013
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