
MATHEMATICA, Tome 55 (78), No 2, 2013, pp. 142–158

REAL-VALUED FUNCTIONS OF FINITE ENERGY ON THE
SIERPINSKI GASKET

BRIGITTE E. BRECKNER

Abstract. We present, including all necessary computation, the harmonic ex-
tension procedure on the Sierpinski gasket in the n-dimensional Euclidean space.
Thus we complete the results of [10] where this procedure is performed only in
the cases n ∈ {1, 2}. Moreover, we derive from this procedure certain properties
of real-valued functions of finite energy defined on the Sierpinski gasket. We
stress on the Hölder continuity, since we haven’t found in the literature a proof
for it in the case n ≥ 3.
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1. INTRODUCTION

The domain of analysis on fractals has emerged in the last three decades,
motivated by Mandelbrot’s book [9], where fractals are proposed as models
for different physical phenomena. Over the years, there have been developed
suitable instruments, allowing the study of these models, i.e., of differential
equations and of partial differential equations (PDEs) on fractals. There have
been taken different approaches (for instance, for defining differential oper-
ators) that are adapted to certain classes of fractals. An overview of these
researches can be found in the introduction of R.S. Strichartz’s book [10].
Here we only point out the important contributions of J. Kigami (e.g., [5]–[8])
who developed a suitable framework for studying PDEs on the so-called post-
critically-finite (p.c.f.) fractals. Kigami’s pioneering paper in this direction is
[5], where he founded his theory in the case of the Sierpinski gasket, which
is typical for the more general class of p.c.f. fractals. Having the definition
of the Laplacian on the unit interval of R as a model, Kigami introduced
in [5] the Laplacian on the Sierpinski gasket in the n-dimensional Euclidean
spaces. Kigami’s work has considerably influenced subsequent papers devoted
to PDEs on the Sierpinski gasket. A list of them, including also several recent
contributions, may be found in the introduction of the paper [1].

A central concept in Kigami’s approach is that of harmonic functions on
fractals. Kigami introduced in [5] the harmonic functions on the Sierpinski
gasket through harmonic differences. The ideas developed by Kigami in [5]
have been used by M. Fukushima and T. Shima to define in [4] a certain energy
form on the Sierpinski gasket. In [10] there has been taken another approach as
in the previously mentioned papers [4] and [5] to introduce harmonic functions
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and the energy form on the Sierpinski gasket. Both concepts arise in a natural
way via the harmonic extension procedure. This procedure is presented in
detail, including all necessary computation, in Section 1.3 of [10] only for the
Sierpinski gasket in R (i.e., for the unit interval) and for the Sierpinski gasket
in R2 (i.e., for the Sierpinski triangle). In Section 3 of the present paper we
perform all computation involved in the harmonic extension procedure for the
Sierpinski gasket in Rn, where n is an arbitrary nonzero natural number. In
Section 4 we then prove several properties of real-valued functions of finite
energy on the Sierpinski gasket. Among them, the Hölder continuity is the
most prominent. Although the exponent for the Hölder condition is mentioned,
for instance, in [3], we haven’t found in the literature a proof for this fact in
Euclidean spaces of dimension n ≥ 3. The proof given in Theorem 4.4 below
(for arbitrary nonzero natural dimensions n) reveals the importance of the
symmetric structure of the Sierpinski gasket.

By presenting in detail all aspects involved in the harmonic extension pro-
cedure for the Sierpinski gasket in Euclidean spaces of arbitrary dimension,
the paper represents an important contribution to the theory of harmonic
functions defined on p.c.f. fractals.

Notations. We denote by N the set of natural numbers {0, 1, 2, . . . }, by
N∗ := N \ {0} the set of positive naturals, by | · | the Euclidean norm on the
spaces Rn, n ∈ N∗, and by 〈·, ·〉 : Rn ×Rn → R the inner product which gives
rise to the norm | · |. The spaces Rn are endowed, throughout the paper, with
the Euclidean topology induced by | · |. If M is a nonempty subset of Rn, then
diamM stands for the diameter of M , i.e., diamM := sup{|x−y| | x, y ∈M}.
If M is a subset of Rn, then M denotes the closure of M , and card(M) the
cardinality of M .

2. THE SIERPINSKI GASKET

Let N ≥ 2 be a natural number and let p1, . . . , pN ∈ RN−1 be so that
|pi − pj | = 1 for i 6= j. Define, for i ∈ {1, . . . , N}, the map Si : RN−1 → RN−1
by

Si(x) =
1

2
x+

1

2
pi .

Denote by S : P(RN−1)→ P(RN−1) the map assigning to a subset A of RN−1
the set

S(A) =

N⋃
i=1

Si(A).

It is known (see, for example, Theorem 9.1 in [2]) that there is a unique
nonempty compact subset V of RN−1 such that S(V ) = V (that is, V is a
fixed point of the map S). The set V is called the Sierpinski gasket (SG for
short) in RN−1. In the sequel V is considered to be endowed with the relative
topology induced from the Euclidean topology on RN−1.
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In order to construct the SG, put

(2.1) V0 := {p1, . . . , pN}, Vm+1 := S(Vm), for m ∈ N, and V∗ :=
⋃
m≥0

Vm.

It can be proved that V∗ is compact and a fixed point of S, thus

V = V∗.

Denoting by C the convex hull of the set {p1, . . . , pN} and observing that

(2.2) Si(C) ⊆ C, for all i ∈ {1, . . . , N},
we get that Vm ⊆ C for every m ∈ N, so V ⊆ C.

Remark 2.1. In the particular case N = 2 the SG coincides with the
compact interval of R determined by p1 and p2, i.e., with C. If N = 3 the SG
becomes the Sierpinski triangle whose construction goes back to the Polish
mathematician W. Sierpinski.

Since |pi − pj | = 1 for i, j ∈ {1, . . . , N}, i 6= j, we get that for i, j, k ∈
{1, . . . , N} with i 6= j the following equalities hold

(2.3) 〈pk − pj , pi − pj〉 =


0, if k = j

1, if k = i
1
2 , if k ∈ {1, . . . , N} \ {i, j}.

It follows that, for i ∈ {1, . . . , N} fixed, the set {pk−pi | k ∈ {1, . . . , N}\{i}}
is linearly independent in RN−1. This yields the following basic fact concerning
the set C.

Lemma 2.2. Let i, j ∈ {1, . . . , N} with i 6= j. Then

Si(C) ∩ Sj(C) = {Si(pj)} = {Sj(pi)}.

For every m ∈ N∗ let Wm := ({1, . . . , N})m. An element w ∈Wm is called
a word of length m. For w = (w1, . . . , wm) ∈ Wm put Sw := Sw1 ◦ · · · ◦ Swm .
The inclusions (2.2) yield that

Sw(C) ⊆ C, for every w ∈Wm.

Using a straightforward induction argument, we thus obtain from Lemma 2.2
the following result.

Proposition 2.3. Let m ∈ N∗ and w, w′ ∈Wm with w 6= w′. Then

card (Sw(C) ∩ Sw′(C)) ≤ 1.

We determine in the next proposition the diameter of the sets Sw(C).

Proposition 2.4. Let m ∈ N∗ and w ∈Wm. Then

diamSw(C) =
1

2m
.
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Proof. We prove first that

(2.4) diamC = 1.

For this, pick x, y ∈ C, and consider ti, si ∈ [0, 1], i ∈ {1, . . . , N}, such

that

N∑
i=1

ti =

N∑
i=1

si = 1, x =

N∑
i=1

tipi and y =

N∑
i=1

sipi. Since, for every

j ∈ {1, . . . , N}, we have that

|x− pj | =

∣∣∣∣∣
N∑
i=1

ti(pi − pj)

∣∣∣∣∣ ≤
N∑
i=1

ti|pi − pj | ≤
N∑
i=1

ti = 1,

we get that

|x− y| =

∣∣∣∣∣
N∑
i=1

si(x− pi)

∣∣∣∣∣ ≤
N∑
i=1

si|x− pi| ≤
N∑
i=1

si = 1,

showing that diamC ≤ 1. On the other hand, |p1 − p2| = 1 yields that
diamC ≥ 1, thus (2.4) holds.

Using induction, it can be readily verified that

(2.5) Sw(x)− Sw(y) =
1

2m
(x− y), for all x, y ∈ C.

The statement follows now from (2.4). �

Let m ∈ N∗. The equality V = S(V ) clearly yields

(2.6) V =
⋃

w∈Wm

Sw(V ).

Equation (2.6) is the level m decomposition of V , and each Sw(V ), w ∈Wm,
is called a cell of level m, or, for short, an m-cell. We refer to V as the 0-cell.
Since V ⊆ C, Proposition 2.3 implies the following result concerning these
m-cells.

Corollary 2.5. Let m ∈ N∗. Then every two distinct m-cells are either
disjoint or intersect at a single point.

Definition 2.6. Let m ∈ N∗. Two m-cells that intersect at a single point
are said to be adjacent.

Remark 2.7. Let i, j ∈ {1, . . . , N} with i 6= j. Since V0 ⊆ V ⊆ C, Lemma
2.2 implies that

Si(V ) ∩ Sj(V ) = {Si(pj)} = {Sj(pi)}.
Hence every two distinct 1-cells are adjacent.

Remark 2.8. The inclusions V0 ⊆ V ⊆ C imply, according to (2.4) and to
Proposition 2.4, that diamV = 1 and that

diamSw(V ) =
1

2m
, for every w ∈Wm, m ∈ N∗.
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We state, for later use, the following results, which can be proved easily.

Proposition 2.9. Let m ∈ N∗ and w, w′ ∈ Wm be such that Sw(V ) and
Sw′(V ) are adjacent. Then there exist i, j ∈ {1, . . . , N} with i 6= j such that

Sw(V ) ∩ Sw′(V ) = {Sw(pi)} = {Sw′(pj)}.

Proposition 2.10. Let m ∈ N∗, w ∈Wm, and i, j ∈ {1, . . . , N} with i 6= j.
Then Sw(Si(pj)) /∈ Vm.

3. THE HARMONIC EXTENSION PROCEDURE

In order to describe this procedure, consider the sets Vm, m ∈ N, defined in
(2.1). The equalities pi = Si(pi), i ∈ {1, . . . , N}, imply the inclusion V0 ⊆ V1.
It follows inductively that Vm ⊆ Vm+1 for every m ∈ N.

We introduce now a binary relation on the sets Vm, m ∈ N. For x, y ∈ Vm
we set x ∼

m
y if there is a cell of level m containing both x and y. Note that

x ∼
0
y for every x, y ∈ V0. If m ≥ 1, then, for x, y ∈ Vm, we have that x ∼

m
y

if and only if there exist w ∈ Wm and i, j ∈ {1, . . . , N} with

x = Fw(pi) and y = Fw(pj).

Obviously, if x, y ∈ Vm with x 6= y, then x ∼
m
y ⇔ |x− y| = 1

2m .

The key tools in the harmonic extension procedure are certain energy forms
Em attached to the sets Vm. More exactly, given m ∈ N, define for every
u : Vm → R

(3.1) Em(u) :=
∑

x,y∈Vm
x∼
m

y

(u(x)− u(y))2.

The harmonic extension procedure consists in the following: Given m ∈ N
and the map u : Vm → R, find a harmonic extension ũ : Vm+1 → R of u to
Vm+1, i.e., an extension of u to Vm+1 (hence ũ|Vm = u) that minimizes the
energy Em+1 for all extensions of u to Vm+1. Thus, for every other extension
u′ : Vm+1 → R of u to Vm+1, the inequality

Em+1(ũ) ≤ Em+1(u
′)

has to hold.

Theorem 3.1. Let m ∈ N. Then every u : Vm → R has a unique harmonic
extension ũ : Vm+1 → R. Moreover, the following equality holds

Em+1(ũ) =
N

N + 2
Em(u).

Proof. The key element in the proof is to show that the statement holds
for m = 0. Thus assume that u : V0 → R is given. For simplicity denote by
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ai := u(pi), for i ∈ {1, . . . , N}. Then

(3.2) E0(u) =
1

2

N∑
i=1

N∑
j=1

(u(pi)− u(pj))
2 =

1

2

N∑
i=1

N∑
j=1

(ai − aj)2.

Note that

V1 \ V0 = {Si(pj) | i, j ∈ {1, . . . , N}, i 6= j}.
For an extension u′ : V1 → R of u we have

E1(u
′) =

N∑
k=1

E0(u
′ ◦ Sk),

where, for every k ∈ {1, . . . , N},

E0(u
′ ◦ Sk) =

1

2

N∑
i=1

N∑
j=1

(
(u′(Sk(pi))− u′(Sk(pj))

)2
.

For i, j ∈ {1, . . . , N} set

xij :=

{
u′(Si(pj)), if i 6= j

ai, if i = j.

Then

xij = xji, for all i, j ∈ {1, . . . , N},
and

(3.3) E1(u
′) =

1

2

N∑
k=1

N∑
i=1

N∑
j=1

(xki − xkj)2.

Thus E1(u
′) is a (real-valued) expression depending on the (real) variables xij ,

1 ≤ i < j ≤ N . Denote by f : R
N(N−1)

2 → R the function that assigns to these
variables the value E1(u

′) according to (3.3). To find a harmonic extension of
u is equivalent to determine a global minimum of f . Since f is convex and
differentiable, the global minima of f are exactly the stationary points of f .
The latter are the solutions of the following system of linear equations

(3.4)

N∑
i=1

(xk` − xki) +

N∑
i=1

(x`k − xli) = 0,∀ k, ` ∈ {1, . . . , N} with k 6= `.

Note that xk` and x`k represent the same variable, but, for symmetry reasons
and in order to simplify computation, we write both of them in the above
system. The system (3.4) is equivalent to

(3.5) 2Nxk` −
N∑
i=1

xki −
N∑
i=1

x`i = 0,∀ k, ` ∈ {1, . . . , N} with k 6= `.



148 B.E. Breckner 7

Fix now k ∈ {1, . . . , N}. By summing up all equations containing the first
term 2Nxkj , for j ∈ {1, . . . , N} \ {k}, we obtain from (3.5) that

2N
N∑
j=1
j 6=k

xkj − (N − 1)
N∑
i=1

xki −
N∑
j=1
j 6=k

N∑
i=1

xji = 0.

A straightforward computation implies that this equation is equivalent to

(N + 2)

N∑
i=1

xki − 2Nxkk −
N∑
j=1

N∑
i=1

xji = 0,

thus

(3.6)
N∑
i=1

xki =
2N

N + 2
xkk +

1

N + 2

N∑
j=1

N∑
i=1

xji, ∀ k ∈ {1, . . . , N}.

Adding the equations (3.6) for all k ∈ {1, . . . , N}, we get

N∑
k=1

N∑
i=1

xki =
2N

N + 2

N∑
k=1

xkk +
N

N + 2

N∑
j=1

N∑
i=1

xji,

hence

(3.7)
N∑
j=1

N∑
i=1

xji = N
N∑
i=1

xii.

From (3.6) and (3.7) we derive

(3.8)
N∑
i=1

xki =
2N

N + 2
xkk +

N

N + 2

N∑
i=1

xii,∀ k ∈ {1, . . . , N}.

From (3.5) and (3.8) we finally obtain

xk` =
xkk + x``
N + 2

+
1

N + 2

N∑
i=1

xii,∀ k, ` ∈ {1, . . . , N} with k 6= `.

Denoting by

(3.9) σ :=
N∑
i=1

ai,

we thus get

(3.10) xk` =
ak + a` + σ

N + 2
, ∀ k, ` ∈ {1, . . . , N} with k 6= `.

A simple computation yields that these values are indeed solutions of the
system (3.4). We conclude that the values given by (3.10) determine uniquely
the harmonic extension ũ : V1 → R of u.
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We compute now E1(ũ). Consider that xk`, k 6= `, are given by (3.10).
Recall that

E1(ũ) =
N∑
k=1

E0(ũ ◦ Sk) =
1

2

N∑
k=1

N∑
i=1

N∑
j=1

(xki − xkj)2.

Taking into account that for i, j, k ∈ {1, . . . , N}

xki − xkj =


ai−aj
N+2 , if i 6= k and j 6= k

ai−ak
N+2 + σ−Nak

N+2 , if i 6= k and j = k,

we obtain that

E0(ũ ◦ Sk) =
E0(u)

(N + 2)2
+

N + 1

(N + 2)2
(σ −Nak)2, ∀ k ∈ {1, . . . , N},

so

(3.11) E1(ũ) =
N

(N + 2)2
E0(u) +

N + 1

(N + 2)2

N∑
k=1

(σ −Nak)2.

On the other hand, denoting by

s :=

N∑
i=1

a2i ,

we have, by (3.2) and (3.9), that

E0(u) =
1

2

N∑
i=1

N∑
j=1

(a2i − 2aiaj + a2j ) = Ns−
N∑
i=1

N∑
j=1

aiaj = Ns− σ2

and

N∑
k=1

(σ −Nak)2 =

N∑
k=1

(σ2 − 2Nσak +N2a2k) = N2s−Nσ2 = NE0(u).

Using (3.11), we conclude that

(3.12) E1(ũ) =
N

(N + 2)
E0(u).

Consider now m ∈ N∗ and u : Vm → R. Note that each m-cell leads to
(N−1)N

2 points belonging to Vm+1 \ Vm. More exactly, if w ∈ Wm, then
Sw(Si(pj)), i, j ∈ {1, . . . , N}, i 6= j, are exactly the points in Vm+1 \ Vm
which lie in the m-cell Sw(V ) (see also Proposition 2.10). Moreover, Sw(V ) is
the only m-cell containing the points Sw(Si(pj)), i, j ∈ {1, . . . , N}, i 6= j.
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If u′ : Vm+1 → R is an extension of u, then Em+1(u
′) is the sum of contri-

butions from each m-cell Sw(V ), w ∈ Wm. Since the contribution from the
m-cell Sw(V ) is just the energy E1 of u′ ◦ Sw : V1 → R, we get

(3.13) Em+1(u
′) =

∑
w∈Wm

E1(u
′ ◦ Sw).

Thus the problem of minimizing Em+1(u
′) can be reduced to minimize each

term E1(u
′ ◦ Sw), w ∈ Wm, on the right side of the equality (3.13). But

minimizing each of these terms is exactly a problem of the sort we have solved
at the beginning of the proof. Hence we get that ũ : Vm+1 → R, defined by
ũ|Vm = u and, for all w ∈Wm and all i, j ∈ {1, . . . ,N} with i 6= j, by

ũ(Sw(Si(pj))) =

u(Sw(pi)) + u(Sw(pj)) +
N∑
k=1

u(Sw(pk))

N + 2
,

is the unique harmonic extension of u. Moreover, we deduce from (3.12) that

E1(ũ ◦ Sw) =
N

(N + 2)
E0(u ◦ Sw), ∀ w ∈Wm.

This implies, according to (3.13), that

Em+1(ũ) =
N

N + 2

∑
w∈Wm

E0(u ◦ Sw) =
N

N + 2
Em(u),

which finishes the proof. �

Given m ∈ N, we introduce now the renormalization Wm of the energy
function Em, defined in (3.1), by

(3.14) Wm(u) =

(
N + 2

N

)m
Em(u), for every u : Vm → R.

From Theorem 3.1 we now immediately derive the following result.

Corollary 3.2. Let m ∈ N and let u : Vm → R. If ũ : Vm+1 → R is the
harmonic extension of u and if u′ : Vm+1 → R is an arbitrary extension of u
then the following relations hold

Wm(u) = Wm+1(ũ) ≤Wm+1(u
′).

Recall from (2.1) that V∗ is the union of the sets Vm, m ∈ N. For a function
u : V∗ → R consider now its restrictions u|Vm to the sets Vm, m ∈ N. For
simplicity we denote by

Wm(u) := Wm (u|Vm) , ∀ m ∈ N.
Corollary 3.2 yields then the following result.

Corollary 3.3. For every u : V∗ → R the sequence (Wm(u))m∈N is in-
creasing.
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According to Corollary 3.3, it makes sense to define for a function u : V∗ → R
its energy W (u) by

(3.15) W (u) := lim
m→∞

Wm(u).

Denote by

dom W := {u : V∗ → R |W (u) <∞}.
A map u ∈ dom W is said to be a function of finite energy.

Remark 3.4. Let u : V∗ → R. Using the definition of Wm and Corollary
3.3, we get that

0 ≤Wm(u) ≤W (u), ∀ m ∈ N.
Thus W (u) = 0 if and only if u is constant.

Definition 3.5. Let m ∈ N. A function h : V∗ → R is called a harmonic
function of level m if h is obtained by specifying the values of h on Vm arbi-
trarily and then extending harmonically to Vk for each k > m. Denote by Hm
the set of all harmonic functions of level m.

Remark 3.6. Let m ∈ N. By Corollary 3.2 we have that

W (u) = Wm(u),∀ u ∈ Hm,

thus Hm ⊆ dom W.

The next result follows directly from the harmonic extension procedure as
described in Theorem 3.1.

Lemma 3.7. Let m ∈ N, u : Vm → R be a function and ũ : Vm+1 → R its
harmonic extension. Then

max
Vm+1

ũ = max
Vm

u and min
Vm+1

ũ = min
Vm

u.

Proof. Since Vm ⊆ Vm+1 and ũ|Vm = u, the following inequalities hold

(3.16) max
Vm

u ≤ max
Vm+1

ũ and min
Vm+1

ũ ≤ min
Vm

u.

We first prove the statement in the case m = 0. Pick i, j ∈ {1, . . . , N} with
i 6= j. Then (3.10) implies that ũ(Si(pj)) is a convex combination of the reals
u(p1), . . . , u(pN ), hence

min
V0

u ≤ ũ(Si(pj)) ≤ max
V0

u,

so

(3.17) max
V1

ũ ≤ max
V0

u and min
V0

u ≤ min
V1

ũ.

From (3.16) and (3.17) we derive

(3.18) max
V1

ũ = max
V0

u and min
V1

ũ = min
V0

u.
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Assume now that m ∈ N∗ and choose an arbitrary w ∈Wm. We know from
the proof of Theorem 3.1 that ũ ◦ Sw : V1 → R is the harmonic extension of
u ◦ Sw : V0 → R. So, applying (3.18), we obtain that

max
V1

(ũ ◦ Sw) = max
V0

(u ◦ Sw) and min
V1

(ũ ◦ Sw) = min
V0

(u ◦ Sw).

Since

Vm =
⋃

w∈Wm

Sw(V0) and Vm+1 =
⋃

w∈Wm

Sw(V1),

we get that

(3.19) max
Vm+1

ũ ≤ max
Vm

u and min
Vm

u ≤ min
Vm+1

ũ.

Relations (3.16) and (3.19) finally yield the asserted equalities. �

We derive from Lemma 3.7 the following results on harmonic functions
which will be used in the subsequent section.

Corollary 3.8. Let u : V0 → R and denote by u ∈ H0 the harmonic
function of level 0 obtained from u. If x ∈ V∗, then

min
V0

u ≤ u(x) ≤ max
V0

u.

Proof. Let m ∈ N be so that x ∈ Vm. Then clearly

(3.20) min
Vm

u ≤ u(x) ≤ max
Vm

u.

Applying Lemma 3.7, we get inductively that

max
Vm

u = · · · = max
V1

u = max
V0

u and min
Vm

u = · · · = min
V1

u = min
V0

u.

Using (3.20), we get the asserted inequalities. �

Corollary 3.9. Let m ∈ N∗, u : Vm → R, and denote by u ∈ Hm the
harmonic function of level m obtained from u. If w ∈ Wm and x ∈ Sw(V∗),
then

min
Sw(V0)

u ≤ u(x) ≤ max
Sw(V0)

u.

Proof. Since u ◦ Sw : V∗ → R is the harmonic function of level 0 obtained
from u ◦ Sw : V0 → R, the conclusion follows from Corollary 3.8. �

4. PROPERTIES OF FUNCTIONS OF FINITE ENERGY

We first turn to prove that functions of finite energy are Hölder continuous.
The first step for this is contained in the statement of the following result.
Since its proof involves the same computation and the same arguments as
those performed on page 19 in [10] in the cases N ∈ {2, 3}, we omit it.
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Proposition 4.1. Let u ∈ dom W and m ∈ N. If x, y ∈ V∗ belong to the
same m-cell or to adjacent m-cells, then

|u(x)− u(y)| ≤ 2r
m
2

1−
√
r

√
W (u),

where r = N
N+2 .

In order to derive from Proposition 4.1 the Hölder continuity of functions of
finite energy, we need the geometric result contained in Proposition 4.3 below,
giving estimates for the distance between disjoint cells. Proposition 4.3 itself
is based on the following simple fact expressed in the next lemma.

Lemma 4.2. Let a, b, w ∈ RN−1 be so that 〈b− a,w〉 > 0 and define

H1 :=
{
v ∈ RN−1 | 〈v − a,w〉 ≤ 0

}
, H2 :=

{
v ∈ RN−1 | 〈v − b, w〉 ≥ 0

}
.

If (v1, v2) ∈ H1 ×H2, then

|v1 − v2| ≥
〈b− a,w〉
|w|

.

Proof. The inequality 〈b− a,w〉 > 0 implies in particular that w 6= 0. From
〈v1 − a,w〉 ≤ 0 and 〈v2 − b, w〉 ≥ 0 it follows that 〈v1 − a+ b− v2, w〉 ≤ 0.
Involving the Cauchy-Schwarz inequality, we then obtain

〈b− a,w〉 ≤ 〈v2 − v1, w〉 ≤ |v1 − v2| · |w|,
which yields the asserted inequality. �

Proposition 4.3. Let m ∈ N∗, w, w′ ∈ Wm, and i, j ∈ {1, . . . , N} with
i 6= j such that Sw(C)∩Sw′(C) = {Sw(pi)} = {Sw′(pj)}. If ` ∈ {1, . . . , N}\{i}
and (v1, v2) ∈ Sw ◦ S`(C)× Sw′(C), then

|v1 − v2| >
1

2m+2
.

Proof. Put

a := Sw◦Sj(pi), b := Sw(pi) = Sw′(pj), w := 2pi−pj−p` = pi−pj+pi−p`.
Let H1 and H2 be defined as in Lemma 4.2. We show first that

(4.1) Sw ◦ S`(C) ⊆ H1.

For this consider an arbitrary x ∈ C. Then there exist t1, . . . , tN ∈ [0, 1] such
that t1 + · · ·+ tN = 1 and

(4.2) x =

N∑
k=1

tkpk.

Using (2.5), we have that

(4.3) Sw ◦ S`(x)− a = Sw ◦ S`(x)− Sw ◦ Sj(pi) =
1

2m+1
(p` − pj + x− pi).
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From

〈p` − pj + x− pi, w〉 = 〈p` − pj , pi − pj〉+ 〈p` − pj , pi − p`〉+ 〈x− pi, w〉 ,

we get, applying (2.3),

(4.4) 〈p` − pj + x− pi, w〉 = 〈x− pi, w〉 .

Since

〈x− pi, w〉 =

N∑
k=1

tk 〈pk − pi, pi − pj〉+

N∑
k=1

tk 〈pk − pi, pi − p`〉 ,

(2.3) implies

〈x− pi, w〉 = −
N∑
k=1
k 6=i
k 6=j

tk
2
− tj −

N∑
k=1
k 6=i
k 6=`

tk
2
− t`.

From (4.3) and (4.4) we thus obtain 〈Sw ◦ S`(x)− a,w〉 ≤ 0, implying the
inclusion (4.1).

We next show that

(4.5) Sw′(C) ⊆ H2.

Let x ∈ C be as in (4.2) with t1, . . . , tN ∈ [0, 1] and t1 + · · ·+ tN = 1. We have
by (2.5) that

(4.6) Sw′(x)− b = Sw′(x)− Sw′(pj) =
1

2m
(x− pj).

From

〈x− pj , w〉 =
N∑
k=1

tk 〈pk − pj , pi − pj〉+
N∑
k=1

tk 〈pk − pj , pi − p`〉

we get, applying (2.3),

〈x− pj , w〉 =

N∑
k=1
k 6=i
k 6=j

tk
2

+ ti +

N∑
k=1
k 6=i
k 6=`

tk 〈pk − pj , pi − p`〉

+ t` 〈p` − pj , pi − p`〉+ ti 〈pi − pj , pi − p`〉 .

Involving again (2.3), we obtain

〈p` − pj , pi − p`〉 =

{
0, if ` = j

−1
2 , if ` 6= j,

〈pi − pj , pi − p`〉 =

{
1, if ` = j
1
2 , if ` 6= j
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and, for k ∈ {1, . . . , N} \ {i, `},

〈pk − pj , pi − p`〉 = 〈pk − pi, pi − p`〉+ 〈pi − pj , pi − p`〉 =

{
1
2 , if ` = j

0, if ` 6= j.

Thus

〈x− pj , w〉 =



N∑
k=1
k 6=i
k 6=j

tk
2

+ ti +
N∑
k=1
k 6=i
k 6=`

tk
2

+ ti, if ` = j

N∑
k=1
k 6=i
k 6=j

tk
2

+ ti −
t`
2

+
t1
2
, if ` 6= j.

If ` 6= j, the element ` belongs to the set {1, . . . , N} \ {i, j}. Thus the term

t`
2 appears in the sum

N∑
k=1
k 6=i
k 6=j

tk
2

. We conclude that for sure

(4.7) 〈x− pj , w〉 ≥ 0.

From (4.6) and (4.7) we get 〈Sw′(x)− b, w〉 ≥ 0, implying the inclusion (4.5).
Since, by (2.5),

b− a = Sw(pi)− Sw ◦ Sj(pi) =
1

2m+1
(pi − pj),

we compute, applying (2.3),

〈b− a,w〉 =
1

2m+1
〈pi − pj , pi − pj + pi − p`〉 =

{
1
2m , if ` = j

3
2m+2 , if ` 6= j.

Involving again (2.3), we get

〈w,w〉 = 2 + 2 〈pi − pj , pi − p`〉 =

{
4, if ` = j

3, if ` 6= j,

thus

〈b− a,w〉
|w|

=

{
1

2m+1 , if ` = j√
3

2m+2 , if ` 6= j.

Using (4.1), (4.5) and Lemma 4.2, we finally conclude that for sure |v1− v2| >
1

2m+2 . �

Now everything is prepared in order to prove the Hölder continuity of the
functions of finite energy.
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Theorem 4.4. Let u ∈ dom W . Then the following inequality holds

|u(x)− u(y)| ≤ 2

r(1−
√
r)
|x− y|α

√
W (u),∀ x, y ∈ V∗,

where r = N
N+2 and α =

ln 1
r

2 ln 2 .

Proof. Let x, y ∈ V∗. Without any loss of generality we may assume that
x 6= y. Set

M := {k ∈ N∗ | x and y belong to disjoint k-cells}.
Assuming that M = ∅, we get, for every k ∈ N∗, that x and y belong either to
the same k-cell or to adjoint k-cells. It follows, by Remark 2.8, that |x− y| ≤

1
2k−1 , for all k ∈ N∗, thus x = y, a contradiction. Hence M 6= ∅. Denote
by m := minM . Since, by Remark 2.7, two distinct 1-cells are adjacent,
we conclude that m ≥ 2. Also, due to the minimality of m, we have that
m− 1 /∈M . Thus x and y belong to cells of level m− 1 with common points.
We argue by contradiction to show that x and y cannot belong to the same
cell of level m − 1. Assume that x, y ∈ Sw(V ) with w ∈ Wm−1. Then there
exist i, j ∈ {1, . . . , N} such that x ∈ Sw ◦ Si(V ) and y ∈ Sw ◦ Sj(V ). Since
Si(V ) ∩ Sj(V ) 6= ∅, we get that x and y lie in m-cells with common points,
contradicting the fact that m ∈ M . Thus x and y belong to adjacent m − 1-
cells and to disjoint m-cells. Let Sw(V ) and Sw′(V ) (where w, w′ ∈ Wm−1)
be adjacent m − 1-cells containing x, respectively, y. Proposition 2.9 implies
the existence of i, j ∈ {1, . . . , N} with i 6= j such that

Sw(V ) ∩ Sw′(V ) = {Sw(pi)} = {Sw′(pj)}.
Obviously, Sw(C) ∩ Sw′(C) = {Sw(pi)} = {Sw′(pj)}. Let `, `′ ∈ {1, . . . , N} be
so that x ∈ Sw ◦S`(V ) and y ∈ Sw′ ◦S`′(V ). From Sw ◦S`(V )∩Sw′ ◦S`′(V ) = ∅
we conclude that (`, `′) 6= (i, j).

Case 1: ` ∈ {1, . . . , N} \ {i}. Since x ∈ Sw ◦ S`(C) and y ∈ Sw′(C),
Proposition 4.3 yields

(4.8) |x− y| > 1

2m+1
.

Case 2: ` = i. In this case `′ ∈ {1, . . . , N} \ {j}. Then x ∈ Sw(C) and
y ∈ Sw′ ◦ S`′(C), so, applying once again Proposition 4.3, we get that (4.8)
holds in this case, too.

On the other hand, since x and y belong to adjacent cells of level m − 1,
Proposition 4.1 implies that

(4.9) |u(x)− u(y)| ≤ 2r
m−1

2

1−
√
r

√
W (u) =

2r
m+1

2

r(1−
√
r)

√
W (u).

We determine now the unique positive real α satisfying the condition

r
m+1

2 =

(
1

2m+1

)α
⇐⇒ m+ 1

2
ln r = α(m+ 1) ln

1

2
⇐⇒ α =

ln 1
r

2 ln 2
.
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Since α > 0 we thus get from (4.8) that

r
m+1

2 =

(
1

2m+1

)α
< |x− y|α.

From (4.9) we finally derive the inequality to be proved. �

Theorem 4.4 yields the following immediate consequence of it.

Corollary 4.5. Let u ∈ dom W . Then u is uniformly continuous, thus u
admits a unique continuous extension to V .

According to Corollary 4.5, the set dom W may be viewed as a subset of
C(V ) := {u : V → R | f continuous}. The space C(V ) is endowed with the
usual supremum norm || · ||sup.

Theorem 4.6. The set dom W is dense in the space (C(V ), || · ||sup).

Proof. Pick arbitrary f ∈ C(V ) and ε > 0. Since f is uniformly continuous,
there exists δ > 0 such that

(4.10) |f(x)− f(y)| ≤ ε

2
, for all x, y ∈ V with |x− y| < δ.

Let m ∈ N∗ be so that 1
2m < δ and denote by um the continuous extension to V

of the harmonic function of level m obtained from f |Vm . (Recall from Remark
3.6 that the harmonic functions of level m belong to dom W .) Consider now
an arbitrary x ∈ V . Then there exists w ∈Wm such that x ∈ Sw(V ). Since,
by Remark 2.8, diamSw(V ) = 1

2m < δ, relation (4.10) implies that

(4.11) max
Sw(V0)

f − min
Sw(V0)

f ≤ ε

2

and

(4.12) |f(Sw(p1))− f(x)| ≤ ε

2
.

Corollary 3.9 and inequality (4.11) imply by continuity that

(4.13) |um(x)− um(Sw(p1))| ≤
ε

2
.

Keeping in mind that um(Sw(p1)) = f(Sw(p1)) we get, using (4.12) and (4.13),

|um(x)− f(x)| ≤ |um(x)− um(Sw(p1))|+ |f(Sw(p1))− f(x)| ≤ ε.
Since x ∈ V was arbitrarily chosen, we conclude that ||um − f ||sup ≤ ε. �

5. CONCLUSIONS

The paper presents the background of the theory of PDEs on the SG. It
shows how the energy form on the SG and certain properties of real-valued
functions of finite energy emerge from the harmonic extension procedure.
These are the major ingredients for defining the weak Laplacian on the SG
and thus for the study of PDEs on the SG (see, for instance, [3]). In this
sense we mention only that the Hölder continuity of functions of finite energy
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(proved in Theorem 4.4) leads to a compact embedding of a certain Hilbert
space (where on looks for solutions of PDEs on the SG) in a space of con-
tinuous real-valued functions, endowed with the usual supremum norm. This
compact embedding is the central element which allows to investigate PDEs
on this fractal using variational methods. All papers treating PDEs on the SG
and mentioned in the introduction of the paper [1] are actually based on this
compact embedding, whose origins lie in the harmonic extension procedure
presented in Section 3 of the paper.
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