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ULAM STABILITY OF A CUBIC FUNCTIONAL EQUATION
IN VARIOUS SPACES

ABASALT BODAGHI

Abstract. We prove the Hyers-Ulam-Rassias stability of the cubic functional
equation
f(x+my) + f(x−my) = 2(2 cos(mπ

2
) +m2 − 1)f(x)

− 1
2
(cos(mπ

2
)+m2−1)f(2x)+m2(f(x+y)+f(x−y))

in various spaces.
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1. INTRODUCTION

In 1940, Ulam [32] proposed the following question concerning the stability
of group homomorphisms: Under what condition does there exist an additive
mapping near an approximately additive mapping between a group and a met-
ric group? In the next year, Hyers [16] answered the problem of Ulam under
the assumption that the groups are Banach spaces. A generalized version of
the theorem of Hyers for approximately linear mappings was given by Th. M.
Rassias [26]. Since then, the stability problems of various functional equation
have been extensively investigated by a number of authors (for instance, [1],
[6], [9], [10], [17], and [24]).

According to the considerable influence of Ulam, Hyers and Rassias on
the investigation of stability problems of functional equations, the stability
phenomenon that was introduced and proved by Th. M. Rassias [26] in the
year 1978 is called the Hyers-Ulam-Rassias stability.

In [25], Rassias introduced the cubic functional equation f(x+2y)+3f(x) =
3f(x+y)+f(x−y)+6f(y) for the first time. He also solved the Ulam stability
problem for this functional equation. Other results regarding the stability of
various forms of the cubic functional equation in miscellaneous spaces can be
found in [2], [5], [7], [11], [12], [13], [18], [23], [27], and [33].

The cubic function f(x) = cx3 satisfies the functional equation

f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 12f(x).(1)

This is the reason for calling equation (1) a cubic functional equation and every
solution of it a cubic function. In [18], Jun and Kim obtained a stability result
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of equation (1). In [22], Najati obtained the general solution and investigated
the Ulam stability problem for the following cubic functional equation

3f(x+ 3y) + f(3x− y) = 15f(x+ y) + 15f(x− y) + 80f(y).(2)

He established the generalized Hyers-Ulam-Rassias stability problem for the
functional equation (2) in quasi-Banach spaces. The stability of the functional
equation (1) in random normed spaces is investigated in [3] (see also [20]).
Recently, in [8], Bodaghi et al. introduced the following new form of cubic
functional equations

f(x+my) + f(x−my) = 2
(

2 cos
(mπ

2

)
+m2 − 1

)
f(x)

− 1

2

(
cos
(mπ

2

)
+m2 − 1

)
f(2x) +m2(f(x+ y) + f(x− y)),(3)

where m is an integer with m ≥ 2. They studied the Hyers-Ulam-Rassias
stability of (3). Note that equation (3) holds for all integers.

In this paper, we prove the Hyers-Ulam-Rassias stability of the cubic func-
tional equation (3) in non-Archimedean normed spaces, quasi-Banach spaces
and random normed spaces. Since the equation (3) is equivalent to the equa-
tions (1) and (2), our proofs provide better estimations in the mentioned
spaces.

2. STABILITY OF (3) IN NON-ARCHIMEDEAN NORMED SPACES

By a non-Archimedean field we mean a field K equipped with a function
(valuation) | · | from K into [0,∞) such that |r| = 0 if and only if r = 0,
|rs| = |r||s|, and |r+s| ≤ max{|r|, |s|}, for all r, s ∈ K. Clearly |1| = |−1| = 1
and |n| ≤ 1 for all n ∈ N.

Let X be a vector space over a scalar field K with a non-Archimedean non-
trivial valuation | · |. A function ‖ · ‖ : X −→ R is a non-Archimedean norm
(valuation) if it satisfies the following conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) ‖rx‖ = |r|‖x‖ (x ∈ X , r ∈ K);
(iii) the strong triangle inequality (ultrametric), i.e.,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X ).

Then (X , ‖·‖) is called a non-Archimedean space. By a complete non-Archimedean
space we mean one in which every Cauchy sequence is convergent.

Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖; m ≤ j ≤ n− 1} (n ≥ m),

a sequence {xn} in a non-Archimedean normed space X is a Cauchy sequence
if and only if {xn+1 − xn} converges to zero.

In [15], Hensel discovered the p-adic numbers as a number theoretical ana-
logue of power series in complex analysis. The most interesting examples of
non-Archimedean spaces are provided by the spaces of p-adic numbers. A
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key property of p-adic numbers is that they do not satisfy the Archimedean
axiom: for all x, y > 0, there exists an integer n such that x < ny. In [21],
the stability of the Cauchy functional equation f(x + y) = f(x) + f(y) and
of the quadratic functional equation f(x+ y) + f(x− y) = 2f(x) + 2f(y) are
investigated in non-Archimedean normed spaces.

Let m be an integer number. Given the mapping f : X −→ Y, we use,
throughout the paper, the following notation:

Dmf(x, y) := f(x+my) + f(x−my)− 2(2 cos(
mπ

2
) +m2 − 1)f(x)

+
1

2
(cos(

mπ

2
) +m2 − 1))f(2x)−m2{f(x+ y) + f(x− y)},

for all x, y ∈ X .
Throughout this section, we assume that G is an additive semigroup and X

is a complete non-Archimedean space, unless otherwise stated explicitly. In
the next theorem, we prove the stability of the functional equation (3) in non-
Archimedean spaces. In what follows, we denote the value 4(cos(mπ2 )+m2−1)
by λ.

Theorem 1. Let φ : G × G −→ [0,∞) be a function such that

lim
k→∞

1

|8|k
φ(2kx, 2ky) = 0(4)

for all x, y ∈ G. Suppose that, for each x ∈ G, the limit

Φ(x) = sup

{
φ(2jx, 0)

|8|j
: 0 ≤ j < n

}
(5)

exists. Assume that f : G −→ X is a mapping satisfying the inequality

‖Dmf(x, y)‖ ≤ φ(x, y)(6)

for all x, y ∈ G, where m is an integer with m 6= 0,±1. If

lim
l→∞

sup

{
φ(2jx, 0)

|8|j
: l ≤ j < n+ l

}
= 0 (x ∈ G),(7)

then there exists a unique cubic mapping C : G −→ X such that

‖f(x)− C(x)‖ ≤ 1

|λ|
Φ(x)(8)

for all x ∈ G.

Proof. Putting y = 0 in (6), we have∥∥∥∥λ8 f(2x)− λf(x)

∥∥∥∥ ≤ φ(x, 0)

for all x ∈ G. Thus ∥∥∥∥1

8
f(2x)− f(x)

∥∥∥∥ ≤ φ(x, 0)

|λ|
(9)
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for all x ∈ G. Replacing x by 2nx in (7) and dividing both sides by |8|n, we
get ∥∥∥∥ 1

8n+1
f(2nx)− 1

8n
f(2nx)

∥∥∥∥ ≤ φ(x, 0)

|8|n|λ|
(10)

for all x ∈ G and all non-negative integers n. Thus, by (4) and (10), the

sequence
{
f(2nx)

8n

}
is Cauchy. The completeness of the non-Archimedean space

X yields the existence of a map C so that

lim
n→∞

f(2nx)

8n
= C(x) (x ∈ G).(11)

For each x ∈ X and all non-negative integers n, we have∥∥∥∥f(2nx)

8n
− f(x)

∥∥∥∥ =

∥∥∥∥∥∥
n−1∑
j=0

f(2j+1x)

8j+1
− f(2jx)

8j

∥∥∥∥∥∥
≤ max

{∥∥∥∥f(2j+1x)

8j+1
− f(2jx)

8j

∥∥∥∥ : 0 ≤ j < n

}
≤ 1

|λ|
max

{
φ(2jx, 0)

|8|j
: 0 ≤ j < n

}
.(12)

Taking n to approach infinity in (12) and applying (11), we conclude that the
inequality (6) holds. It follows from (4), (5) and (10) that, for all x, y ∈ G,

‖DmC(x, y)‖ = lim
n→∞

1

|8|n
‖Dmf(x, y)‖ ≤ lim

n→∞

φ(2nx, 2ny)

|8|n
= 0.

Hence the mapping C is cubic. Assume now that C′ : G −→ X is another cubic
map that satisfies (8). Then we have, for all x ∈ G, that

‖C(x)− C′(x)‖ = lim
k→∞

1

|8|k
‖C(2kx)− C′(2kx)‖

≤ lim
k→∞

1

|8|k
max

{
‖C(2kx)− f(2kx)‖, ‖f(2kx)− C′(2kx)‖

}
≤ 1

|λ|
lim
k→∞

lim
n→∞

max

{
φ(2jx, 0)

|2|j
: k ≤ j < n+ k

}
=

1

|λ|
lim
k→∞

sup

{
φ(2jx, 0)

|2|j
: k ≤ j <∞

}
= 0.

This shows the uniqueness of C. �

Corollary 1. Let Γ : [0,∞) −→ [0,∞) be a function satisfying Γ(|r|s) ≤
Γ(|r|)Γ(s), for all r, s ∈ [0,∞), and Γ(|2|) < |8|. Suppose that G is a normed
space and that f : G −→ X is a mapping such that

‖Dmf(x, y)‖ ≤ α (Γ(‖x‖) + Γ(‖y‖))(13)
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for all x, y ∈ G, where m is an integer with m 6= 0,±1 and α > 0. Then there
exists a unique cubic mapping C : G −→ X such that

‖f(x)− C(x)‖ ≤ αΓ(‖x‖)
|λ|

(14)

for all x ∈ G.

Proof. We show that all conditions required in Theorem 1 are satisfied.
Defining φ : G × G −→ [0,∞) via φ(x, y) = α (Γ(‖x‖) + Γ(‖y‖)), we obtain

lim
n→∞

1

|8|n
φ(2nx, 2ny) ≤ lim

n→∞

(
Γ(|2|)
|8|

)n
φ(x, y) = 0

for all x, y ∈ G. Also

Φ(x) = sup

{
φ(2jx, 0)

|8|j
: 0 ≤ j < n

}
= φ(x, 0) = α (Γ(‖x‖))

for all x ∈ G. On the other hand,

lim
l→∞

sup

{
φ(2jx, 0)

|8|j
: l ≤ j < n+ l

}
= 0 (x ∈ G).

Theorem 1 implies now the asserted result. �

Remark 1. An example of a function Γ, satisfying the assumptions of
Corollary 1, is the mapping Γ(t) = tp (t ∈ [0,∞)), where p ∈ R is such that
|2| = 1.

We have the following analogous result to Theorem 1 for the cubic equation
(3). The proof is similar, but, for sake of completeness, we include it here.

Theorem 2. Let φ : G × G −→ [0,∞) be a function such that

lim
k→∞

|8|kφ
( x

2k
,
y

2k

)
= 0(15)

for all x, y ∈ G. Suppose that, for each x ∈ G, the limit

Φ(x) = sup
{
|8|jφ

( x
2j
, 0
)

: 0 ≤ j < n
}

(16)

exists. Assume that f : G −→ X is a mapping satisfying the inequality

‖Dmf(x, y)‖ ≤ φ(x, y)(17)

for all x, y ∈ G, where m is an integer with m 6= 0,±1. If

lim
l→∞

sup
{
|8|jφ

( x
2j
, 0
)

: l ≤ j < n+ l
}

= 0 (x ∈ G),(18)

then there exists a unique cubic mapping C : G −→ X such that

‖f(x)− C(x)‖ ≤
∣∣∣∣64

λ

∣∣∣∣Φ(x)(19)

for all x ∈ G.
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Proof. Similar to the proof of Theorem 1, we have∥∥∥∥λ4 f(2x)− 2λf(x)

∥∥∥∥ ≤ |2|φ(x, 0)(20)

for all x ∈ G. If we replace x by x
2n+1 in the above inequality and multiply

both sides of (20) by |8|n, then we get∥∥∥8nf
( x

2n

)
− 8n+1f

( x

2n+1

)∥∥∥ ≤ 1

|λ|
|8|n+1φ

( x

2n+1
, 0
)

(21)

for all x ∈ X and all non-negative integers n. Thus we conclude from (15) and
(21) that

{
8nf( x

2n )
}

is a Cauchy sequence. Since the non-Archimedean space
Y is complete, this sequence leads to the mapping C, i.e.,

C(x) = lim
n→∞

8nf
( x

2n

)
(x ∈ G).(22)

It follows from (21) that∥∥∥8nf
( x

2n

)
− 8lf

( x
2l

)∥∥∥ =

∥∥∥∥∥∥
n∑
j=l

8j+1f
( x

2j+1

)
− 8jf

( x
2j

)∥∥∥∥∥∥
≤ max

{∥∥∥8j+1f
( x

2j+1

)
− 8jf

( x
2j

)∥∥∥ : l ≤ j < n
}

≤
∣∣∣∣64

λ

∣∣∣∣max
{
|8|jφ

( x
2j
, 0
)

: l ≤ j < n
}

(23)

for all x ∈ G and all non-negative integers n, l with n > l ≥ 0. Letting l = 0
and taking n to approach infinity in (23), and applying (18), we obtain that
inequality (19) holds. The final part of the proof can be performed as in case
of Theorem 1. �

Corollary 2. Let Γ : [0,∞) −→ [0,∞) be a function satisfying Γ(|r|s) ≤
Γ(|r|)Γ(s), for all r, s ∈ [0,∞), and Γ(|2|−1) < |8|−1. Suppose that G is a
normed space and that f : G −→ X is a mapping such that

‖Dmf(x, y)‖ ≤ α (Γ(‖x‖) + Γ(‖y‖))(24)

for all x, y ∈ G, where m is an integer with m 6= 0,±1 and α > 0. Then there
exists a unique cubic mapping C : G −→ X such that

‖f(x)− C(x)‖ ≤
∣∣∣∣64

λ

∣∣∣∣αΓ(‖x‖)(25)

for all x ∈ G.

Proof. Defining φ : G × G −→ [0,∞) via φ(x, y) = α (Γ(‖x‖) + Γ(‖y‖)), we
get

lim
n→∞

|8|nφ
( x

2n
,
y

2n

)
≤ lim

n→∞

(
Γ(|2|−1)
|8|−1

)n
φ(x, y) = 0
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for all x, y ∈ G. Moreover, we have that

Φ(x) = sup
{
|8|jφ

( x
2j
, 0
)

: 0 ≤ j ≤ n− 1
}

= φ(x, 0) = α (Γ(‖x‖))

for all x ∈ G. Also,

lim
l→∞

sup
{
|8|jφ

( x
2j
, 0
)

: l ≤ j < n+ l
}

= 0 (x ∈ G).

The result follows now from Theorem 2. �

3. STABILITY OF (3) IN QUASI-BANACH SPACES

We recall first some basic facts concerning quasi-Banach space and some
preliminary results which are taken from [4] and [28].

Definition 1. Let X be a real linear space. A quasi-norm is a real-valued
function on X satisfying the following conditions:

(i) ‖x‖ ≥ 0, for all x ∈ X , and ‖x‖ = 0 if and only if x = 0;
(ii) ‖tx‖ = |t||‖x‖ for all x ∈ X and all t ∈ R;
(iii) there is a constant M ≥ 1 such that ‖x + y‖ ≤ M(‖x‖ + ‖y‖) for all

x, y ∈ X .

Note that condition (iii) implies that∥∥∥∥∥∥
2n∑
j=1

xj

∥∥∥∥∥∥ ≤Mn
2n∑
j=1

‖xj‖ and

∥∥∥∥∥∥
2n+1∑
j=1

xj

∥∥∥∥∥∥ ≤Mn+1
2n+1∑
j=1

‖xj‖ ,

for all n ≥ 1 and all x1, x2, ..., x2n+1 ∈ X .
The pair (X , ‖ · ‖) is called a quasi-normed space if ‖ · ‖ is a quasi-norm

on X . The smallest real M is called the modulus of concavity of ‖ · ‖. A
quasi-Banach space is a complete quasi-normed space. A quasi-norm ‖ · ‖ is
called a p-norm (0 < p ≤ 1) if ‖x+ y‖p ≤ ‖x‖p+ ‖y‖p, for all x, y ∈ X . In this
case, the quasi-Banach space is called a p-Banach space.

Given a p-norm, the function d(x, y) := ‖x− y‖p gives rise to a translation
invariant metric on X . By the Aoki-Rolewicz Theorem [28] (see also [4]), each
quasi-norm is equivalent to some p-norm. Since it is much easier to work
with p-norms, subsequently we will restrict our attention mainly to p-norms.
Moreover, in [31], Tabor has investigated a version of the Hyers-Rassias-Gajda
Theorem in quasi-Banach spaces.

Till the end of this section, let X be a real normed space with norm ‖ · ‖X
and let Y be a real p-Banach space with norm ‖ · ‖Y . In this section, by using
an idea of Găvruţă [14], we prove the stability of (3) in the spirit of Hyers,
Ulam, and Rassias.
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Theorem 3. Let f : X −→ Y be a mapping for which there exists a function
ϕ : X × X −→ [0,∞) such that

ϕ̃(x) :=
∞∑
k=0

1

8kp
ϕp(2kx, 0) <∞, lim

k→∞

1

8k
ϕ(2kx, 2ky) = 0(26)

and

‖Dmf(x, y)‖ ≤ ϕ(x, y)(27)

for all x, y ∈ X , where m is an integer with m 6= 0,±1. Then there exists a
unique cubic mapping C : X −→ Y such that

‖f(x)− C(x)‖ ≤ 1

8

[
ϕ̃(x)

λ

] 1
p

(28)

for all x ∈ X .

Proof. Setting y = 0 in (27), we get∥∥∥∥λ8 f(2x)− λf(x)

∥∥∥∥ ≤ ϕ(x, 0)

for all x ∈ X . Hence ∥∥∥∥1

8
f(2x)− f(x)

∥∥∥∥ ≤ ϕ(x, 0)

λ
(29)

for all x ∈ X . Replacing x by 2nx in (29) and dividing both sides of (29) by
8n, we obtain ∥∥∥∥f(2n+1x)

8n+1
− f(2nx)

8n

∥∥∥∥ ≤ ϕ(2nx, 0)

λ8n
(30)

for all x ∈ X and all non-negative integers n. Since X is a p-Banach space,
we have ∥∥∥∥∥∥

n∑
j=k

f(2j+1x)

8j+1
− f(2jx)

8j

∥∥∥∥∥∥
p

≤
n∑
j=k

∥∥∥∥f(2j+1x)

8j+1
− f(2jx)

8j

∥∥∥∥p

≤ 1

λ

n∑
j=k

ϕp(2jx, 0)

8(j+1)p

for all x ∈ X and all integers n ≥ k ≥ 0. Thus,∥∥∥∥f(2n+1x)

8n+1
− f(2kx)

8k

∥∥∥∥p ≤ 1

λ

n∑
j=k

ϕp(2jx, 0)

8(j+1)p
(31)

for all x ∈ X and all integers n ≥ k ≥ 0. Due to the convergence of the series∑
j≥k

1
8j

, the sequence
{
f(2nx)

8n

}
is, by (26) and (31), a Cauchy sequence.
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According to the completeness of Y, there exists a map C so that

lim
n→∞

f(2nx)

8n
= C(x).(32)

It follows from (26) and (32) that

‖DmC(x, y)‖ ≤ lim
n→∞

1

8n
‖Dmf(2nx, 2ny)‖ ≤ lim

n→∞

ϕ(2nx, 2ny)

8n
= 0

for all x, y ∈ X . Hence, by [8, Theorem 2.1], C : X −→ Y is a cubic mapping.
Putting k = 0 and letting n to infinity in (31), we see that (28) holds. In
order to prove the uniqueness of C, assume that C ′ : X −→ Y is another cubic
mapping satisfying (28). Then

‖C(x)− C ′(x)‖p =
1

8np
‖f(2nx)− C ′(2nx)‖p

≤ lim
n→∞

ϕ̃(x)

λ8(n+1)p

=
1

λ8p
lim
n→∞

∞∑
k=n

1

8kp
ϕp(2kx, 0)

for all x ∈ X . This completes the proof. �

Corollary 3. Let α be a non-negative real number and let r, s ∈ (0, 3). If
f : X −→ Y is a mapping such that

‖Dmf(x, y)‖ ≤ α(‖x‖r + ‖y‖s)(33)

for all x, y ∈ X , where m is an integer with m 6= 0,±1, then there exists a
unique cubic mapping C : X −→ Y satisfying

‖f(x)− C(x)‖ ≤ α‖x‖r

[λ(8p − 2rp)]
1
p

(34)

for all x ∈ X . Furthermore, if, for each fixed x ∈ X , the mapping t 7→ f(tx)
from R to Y is continuous, then C(tx) = t3C(x) for all x ∈ X and all t ∈ R.

Proof. Note that the inequality (33) implies that f(0) = 0. Putting ϕ(x, y) =
α(‖x‖r +β‖y‖s) in Theorem 3, we obtain the inequality (34). Now, similar to
the proof of [8, Theorem 4.3], we can show that C(tx) = t3C(x) for all x ∈ X
and all t ∈ R. �

Theorem 4. Let f : X −→ Y be a mapping for which there exists a function
ϕ : X × X −→ [0,∞) such that

ϕ̃(x) :=

∞∑
k=1

8kpϕp
( x

2k
, 0
)
<∞, lim

k→∞
8kϕ

( x
2k
,
y

2k

)
= 0(35)

and

‖Dmf(x, y)‖ ≤ ψ(x, y)(36)
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for all x, y ∈ X , where m is an integer with m 6= 0,±1. Then there exists a
unique cubic mapping C : X −→ Y such that

‖f(x)− C(x)‖ ≤
[

8ϕ̃(x)

λ

] 1
p

(37)

for all x ∈ X .

Proof. It follows from (35) that ϕ(0, 0) = 0, so (36) implies that f(0) = 0.
Putting y = 0 in (27), we get

‖f(2x)− 8f(x)‖ ≤ 8ϕ(x, 0)

λ
(38)

for all x ∈ X . Replacing x by x
2n+1 in (38) and multiplying both sides of (38)

by 8n, we deduce that∥∥∥8nf
( x

2n

)
− 8n+1f

( x

2n+1

)∥∥∥ ≤ 8n+1ϕ
(

x
2n+1 , 0

)
λ

(39)

for all x ∈ X and all non-negative integers n. Since Y is a p-normed space, we
have∥∥∥∥∥∥

n∑
j=k

(
8jf

( x
2j

)
− 8j+1f

( x

2j+1

))∥∥∥∥∥∥
p

≤
n∑
j=k

∥∥∥8jf
( x

2j

)
− 8j+1f

( x

2j+1

)∥∥∥p
≤ 8

λ

n∑
j=k

8(j+1)pϕp
( x

2j+1
, 0
)

for all x ∈ X and all integers n ≥ k ≥ 0. Thus∥∥∥8kf
( x

2k

)
− 8n+1f

( x

2n+1

)∥∥∥p ≤ 8

λ

n∑
j=k

8(j+1)pϕp
( x

2j+1
, 0
)

(40)

for all x ∈ X and all integers n ≥ k ≥ 0. It follows from (35) and (40) that{
8nf( x

2n )
}

is a Cauchy sequence. Since Y is a p-Banach space, there exists a
map C so that

lim
n→∞

8nf
( x

2n

)
= C(x).(41)

Setting k = 0 and letting n to infinity in (40), we get that (37) holds. The
rest of the proof is similar to the proof of Theorem 3. �

Corollary 4. Let α be a non-negative real number and let r, s ∈ (3,∞).
If f : X −→ Y is a mapping such that

‖Dmf(x, y)‖ ≤ α(‖x‖r + ‖y‖s)
for all x, y ∈ X , where m is an integer with m 6= 0,±1, then there exists a
unique cubic mapping C : X −→ Y satisfying

‖f(x)− C(x)‖ ≤ 8α

(
8

[λ(2rp − 8p)]

) 1
p

‖x‖r(42)
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for all x ∈ X . Furthermore, if, for each fixed x ∈ X , the mapping t 7→ f(tx)
from R to Y is continuous, then C(tx) = t3C(x) for all x ∈ X and all t ∈ R.

Proof. The inequality (42) follows from Theorem 4, by taking ϕ(x, y) :=
α(‖x‖r + β‖y‖s). For the other statement we refer to the proof of Corollary
3. �

The cubic functional equation (3) can be superstable under some conditions,
as it is shown by the next result.

Corollary 5. Let r, s and α be a non-negative real numbers such that
r + s 6= 3. If f : X −→ Y is a mapping such that

‖Dmf(x, y)‖ ≤ α‖y‖s (or α‖x‖r‖y‖s)(43)

for all x, y ∈ X , where m is an integer with m 6= 0,±1, then the mapping f is
cubic. Furthermore, if, for each fixed x ∈ X , the mapping t 7→ f(tx) from R
to Y is continuous, then C(tx) = t3C(x) for all x ∈ X and all t ∈ R.

Proof. The inequality (43) shows that f(0) = 0. Putting y = 0 in (43),

we get f(2x) = 8f(x) (x ∈ X ), and thus f(x) = f(2nx)
8n for all x ∈ X and all

n ∈ N. Letting ϕ(x, y) = α‖y‖s (or ϕ(x, y) = α‖x‖r‖y‖s) in Theorems 3 and
4, we get that C = f is a cubic mapping. The rest of the proof follows from
the proof of [8, Theorem 4.3]. �

Since the following corollaries are direct consequences of Theorems 3 and 4,
respectively, we omit their proofs.

Corollary 6. Let α be a non-negative real number and assume that r+s ∈
(0, 3). If f : X −→ Y is a mapping such that

‖Dmf(x, y)‖ ≤ α(‖x‖r + ‖y‖s + ‖x‖r‖y‖s)
for all x, y ∈ X , where m is an integer with m 6= 0,±1, then there exists a
unique cubic mapping C : X −→ Y satisfying

‖f(x)− C(x)‖ ≤ α‖x‖r

[λ(8p − 2rp)]
1
p

for all x ∈ X .

Corollary 7. Let α be a non-negative real number and assume that r+s ∈
(3,∞). If f : X −→ Y is a mapping such that

‖Dmf(x, y)‖ ≤ α(‖x‖r + ‖y‖s + ‖x‖r‖y‖s)
for all x, y ∈ X , where m is an integer with m 6= 0,±1, then there exists a
unique cubic mapping C : X −→ Y satisfying

‖f(x)− C(x)‖ ≤ 8α

(
8

[λ(2rp − 8p)]

) 1
p

‖x‖r

for all x ∈ X .
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4. STABILITY OF (3) IN RANDOM NORMED SPACES

We first state the usual terminology, notations and conventions of the theory
of random normed spaces, following [29] and [30]. The set of all probability
distribution functions is denoted by

∆+ := {F : R ∪ {−∞,∞} −→ [0, 1]|F is left-continuous and nondecreasing

on R; where F (0) = 0 and F (+∞) = 1}.

Let us define D+ := {F ∈ ∆+| l−F (+∞) = 1}, where l−F (x) denotes the
left limit of the function f at the point x. The set ∆+ is partially ordered
by the usual pointwise ordering of functions, that is, F ≤ G if F (t) ≤ G(t)
for all t ∈ R. The maximal element of ∆+ with respect to this order is the
distribution function ε0 given by

ε0(t) =

{
0, if t ≤ 0

1, if t > 0.

Definition 2. ([29]) A mapping τ : [0, 1] × [0, 1] −→ [0, 1] is said to be
a continuous triangular norm (briefly, a continuous t-norm) if τ satisfies the
following conditions:

(i) τ is commutative and associative;
(ii) τ is continuous;
(iii) τ(a, 1) = a for all a ∈ [0, 1];
(iv) τ(a, b) ≤ τ(c, d), whenever a ≤ c and c ≤ d for a, b, c, d ∈ [0, 1].

Typical examples of continuous t-norms are τP (a, b) = ab, τM (a, b)=min{a,b}
and τL(a, b)=max{a+ b− 1, 0}.

Definition 3. ([30]) A random normed space (briefly, RN -space) is a triple
(X , µ, τ), where X is a vector space, τ is a continuous t-norm, and µ is a
mapping from X into D+ such that the following conditions hold:

(RN1) µx(t) = ε0(t), for all t > 0, if and only if x = 0;
(RN2) µαx(t) = µx(t/|α|) for all x ∈ X , all α 6= 0 and all t ≥ 0;
(RN3) µx+y(t+ s) ≥ τ(µx(t), µx(s)) for all x, y ∈ X and all t, s ≥ 0.

Let (X , ‖ · ‖) be a normed space. Define the mapping µ : X −→ D+ via
µx(t) = t

t+‖x‖ for all x ∈ X and all t ≥ 0. Then (X , µ, τM ) is a random normed
space.

Definition 4. Let (X , µ, τ) be an RN -space.

(1) A sequence {xn} in X is said to be convergent to a point x ∈ X if,
for every t > 0 and every ε > 0, there exists a positive integer N such
that µxn−x(t) > 1− ε whenever n ≥ N .

(2) A sequence {xn} in X is called a Cauchy sequence if, for every t > 0 and
every ε > 0, there exists a positive integer N such that µxn−xm(t) >
1− ε whenever n ≥ m ≥ N .
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(3) An RN -space (X , µ, τ) is said to be complete if every Cauchy sequence
in X is convergent to a point in X .

Theorem 5. ([29]) If (X , µ, τ) is an RN -space and {xn} is a sequence such
that xn → x, then lim

n→∞
µxn(t) = µx(t).

Given a t-norm τ and a sequence {an} in [0, 1], we define τnj=1aj recursively

by τ1j=1aj = a1 and τnj=1aj = τ(τn−1j=1 aj , an), for all n ≥ 2. We now establish

the stability of the functional equation (3) in the setting of random normed
spaces.

Theorem 6. Let X be a linear space, (Z,Λ, τM ) be an RN -space and
(Y, µ, τM ) be a complete RN -space. Suppose that ψ : X × X −→ Z is a
mapping such that for some 0 < α < 8

Λψ(2x,0)(t) ≥ Λαψ(x,0)(t) (x ∈ X , t > 0)(44)

and

lim
n→∞

Λψ(2nx,2ny)(8
nt) = 1 (x, y ∈ X , t > 0).(45)

If f : X −→ Y is a mapping with f(0) = 0 and

µDmf(x,y)(t) ≥ Λψ(x,y)(t)(46)

for all x, y ∈ X and all t > 0, where m is an integer with m 6= 0,±1, then
there exists a unique cubic mapping C : X −→ Y such that

µf(x)−C(x)(t) ≥ Λψ(x,y)

(
λ(8− α)

8
t

)
(47)

for all x ∈ X and all t > 0.

Proof. Setting y = 0 in (46), we have

µ( 1
8
f(2x)−f(x)) ≥ Λψ(x,0) (λt)(48)

for all x ∈ X . Replacing x by 2nx in (48) and using (44), we obtain

µ( f(2n+1x)

8n+1 − f(2
nx)

8n

) ≥ Λψ(2nx,0) (8nλt)

≥ Λαnψ(x,0) (8nλt)

≥ Λψ(x,0)

((
8

α

)n
λt

)
(49)
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for all x ∈ X and all non-negative integers n. Applying the inequality (49),
we get

µ( f(2nx)
8n

−f(x)
)
 t

λ

n−1∑
j=0

(α
8

)j = µ(∑n−1
j=0

(
f(2j+1x)

8j+1 − f(2
jx)

8j

))
 t

λ

n−1∑
j=0

(α
8

)j
≥ (τM )n−1j=0 (Λψ(x,0)(t))

= Λψ(x,0)(t)

for all x ∈ X and all non-negative integers n. Thus

µ( f(2nx)
8n

−f(x)
)(t) ≥ Λψ(x,0)

(
t

1
λ

∑n−1
j=0

(
8
α

)j
)
.(50)

Substituting x into 2lx in (50), we obtain

µ( f(2n+lx)
8n+l

− f(2
lx)

8l

) ≥ Λψ(x,0)

 t(
1
λ

∑l+n
j=l

(
α
8

)j)
(51)

for all x ∈ X and all integers n ≥ l ≥ 0. Since the series
∑

j≥l
(
α
8

)j
is

convergent, Λψ(x,0)

(
t(

1
λ

∑l+n
j=l (

α
8 )
j
)
)

goes to 1 as l and n tend to infinity, and

so
{
f(2nx)

8n

}
is a Cauchy sequence in (Y, µ, τM ). The completeness of (Y, µ, τM )

as a RN -space implies that this sequence converges to some point C(x) ∈ Y.
It follows from (50) that, for each ε > 0,

µ(C(x)−f(x))(t+ ε) ≥ τM
(
µ(

C(x)− f(2
nx)

8n

)(ε), µ( f(2nx)
8n

−f(x)
)(t)

)

≥ τM

µ(
C(x)− f(2

nx)
8n

)(ε),Λψ(x,0)

 t(
1
λ

∑n−1
j=0

(
α
8

)j)


for all x ∈ X . Letting n tend to infinity in the above inequality, we deduce
that

µ(C(x)−f(x))(t+ ε) ≥ Λψ(x,0)

(
λ(8− α)

8
t

)
.(52)

Taking ε→ 0 in (52), we get (47). Moreover, the inequality (46) implies that

µ 1
8n
Dmf(2nx,2ny)(t) ≥ Λψ(2nx,2ny)(8

nt)(53)

for all x, y ∈ X and all t > 0. Taking n to infinity in (53) and applying (45),
we conclude that the mapping C is cubic. In order to prove the uniqueness of
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C, assume that C ′ : X −→ Y is another cubic mapping satisfying (47). Then

µ(C(2nx)
8n

−C
′(2nx)
8n

)(t) ≥ min

{
µ(C(2nx)

8n
− f(2

nx)
8n

)( t
2

)
, µ(C′(2nx)

8n
− f(2

nx)
8n

)( t
2

)}
≥ Λ(ψ(2nx,0))

(
8n
λ(8− α)

16
t

)
≥ Λ(ψ(x,0))

((
8

α

)n λ(8− α)

16
t

)

for all x ∈ X . Therefore

µC(x)−C′(x)(t) = lim
n→∞

µ(C(2nx)
8n

−C
′(2nx)
8n

)(t)

≥ lim
n→∞

Λ(ψ(x,0))

((
8

α

)n λ(8− α)

16
t

)
= 1.

The above relations show that C(x) = C ′(x) for all x ∈ X . This finishes the
proof. �

Corollary 8. Let X be a linear space, (Z,Λ, τM ) be an RN -space and
(Y, µ, τM ) be a complete RN -space. Let r, s be real numbers such that r, s ∈
[0, 3) and consider z0 ∈ Z. If f : X −→ Y is a mapping such that

µDmf(x,y)(t) ≥ Λ‖x‖rz0(t)(54)

for all x, y ∈ X and all t > 0, where m is an integer with m 6= 0,±1, then
there exists a unique cubic mapping C : X −→ Y satisfying

µf(x)−C(x)(t) ≥ Λ‖x‖rz0

(
λ(8− 2r)

8

)
(55)

for all x ∈ X and all t > 0.

Proof. Setting x = y = 0 in (56), we see that f(0) = 0. Now, by defining
ψ(x, y) := (‖x‖r + ‖y‖s)z0 and applying Theorem 6 for α = 2r, we get the
desired result. �

Corollary 9. Let X be a linear space, (Z,Λ, τM ) be an RN -space and
(Y, µ, τM ) be a complete RN -space. Let r, s be non-negative real numbers such
that r + s 6= 3 and consider z0 ∈ Z. If f : X −→ Y is a mapping such that

µDmf(x,y)(t) ≥ Λ‖x‖r‖y‖sz0(t)

for all x, y ∈ X and all t > 0, where m is an integer with m 6= 0,±1, then f
is a cubic mapping.

Proof. Take ψ(x, y) := ‖x‖r‖y‖sz0. The assertion follows now from Theo-
rem 6. �
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