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AN INTERMEDIATE NEWTON-KANTOROVICH METHOD
FOR SOLVING NONLINEAR EQUATIONS
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Abstract. We provide a semilocal convergence analysis for an easy to imple-
ment intermediate Newton-Kantorovich method in order to approximate a locally
unique solution of a nonlinear equation in a Banach space setting.
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1. INTRODUCTION

In this study we are concerned with the problem of approximating a locally
unique solution x? of the equation

(1) P (x) = F (x) +G(x) = 0,

where F is a Fréchet-differentiable operator defined on a convex subset D of
a Banach space X with values in a Banach Y , and G : D →Y is a continuous
operator.

A large number of problems in applied mathematics and also in engineering
are solved by finding the solutions of certain equations. For example, dynamic
systems are mathematically modeled by difference or differential equations,
and their solutions usually represent the states of the systems. For the sake of
simplicity, assume that a time-invariant system is driven by the equation ẋ =
T (x) for some suitable operator T , where x is the state. Then the equilibrium
states are determined by solving equation (1). Similar equations are used in
the case of discrete systems. The unknowns of engineering equations can be
functions (difference, differential, and integral equations), vectors (systems of
linear or nonlinear algebraic equations), or real or complex numbers (single
algebraic equations with single unknowns). Except in special cases, the most
commonly used solution methods are iterative – when starting from one or
several initial approximations, a sequence is constructed that converges to
a solution of the equation. Iteration methods are also applied for solving
optimization problems. In such cases, the iteration sequences converge to an
optimal solution of the problem at hand. Since all of these methods have the
same recursive structure, they can be introduced and discussed in a general
framework.

Special thanks to Prof. A.N. Carvalho for calling our attention to an important reference.
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The Newton-type method (NTM)

(2)
xn+1 = xn −A(xn)−1P (xn) (n ≥ 0), (x0 ∈ D),
P (x) = F (x) +G(x), (x ∈ D),

has been used by several authors to generate a sequence {xn} approximating
x?, see [1–19]. In this case A(x) belongs to L(X,Y ), the space of bounded
linear operators from X to Y , and it is an approximation to the Fréchet
derivative F ′(x) of the operator F (x), see [6, 7, 13, 15]. Note that at each step
one operator evaluation is required, P (xn), and one inverse, A(xn)−1.

In this paper, we consider the intermediate Newton-Kantorovich method
(INKM)

(3)
xn+1 = xn −A(xn)−1P (xn) (x0 ∈ D), (n ≥ 0),

where A(xn) = F ′(xn) +G′(x0), (n ≥ 0).

If G = 0, this scheme becomes the classical Newton-Kantorovich method for
the equation F (x) = 0, and if F = 0, it becomes the modified Newton-
Kantorovich method for the equation G(x) = 0.

Therefore, (INKM) provides an interesting unified setting for the study of
both methods. Although convergence results for (INKM) can be immediately
given from the studies mentioned above (see, in particular, [5, 6, 7, 19]), we
decided to provide a direct convergence analysis in this study. (INKM) can also
be interpreted as an intermediate scheme between the Newton-type method

(4) xn+1 = xn −
(
F ′(xn) +G′(xn)

)−1
P (xn) (x0 ∈ D), (n ≥ 0),

and the modified Newton-type method

(5) xn+1 = xn −
(
F ′(x0) +G′(x0)

)−1
P (xn) (x0 ∈ D), (n ≥ 0).

It is well-known that, although method (4) usually requires fewer iterations
than the modified method (5) to achieve a desired level of accuracy, the latter
is less expensive than the former to be implemented. This led several authors,
e.g., [5, 6, 7, 19], to propose intermediate Newton methods which converge
faster than (5) and are cheaper to implement than (4). (INKM) is such a
scheme that is particularly useful in situations where the Fréchet-derivative
F ′(x) is relatively easy to compute.

The above reasons are the justification for providing a convergence analysis
for (INKM). The paper is organized as follows: Section 2 contains the semilocal
convergence analysis for (INKM), and in Section 3 we present examples where
our results can be applied to solve nonlinear equations, but earlier ones cannot
be involved.

2. SEMILOCAL CONVERGENCE ANALYSIS OF (INKM)

We first need some lemmas on majorizing sequences for (INKM).
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Lemma 2.1. Assume that there exist constants M0 ≥ 0, L0 ≥ 0, M ≥ 0,
and η ≥ 0 such that

(6) L0 < M.

Consider the polynomial f1, given by

(7) f1(s) = 2M0s
2 − (2− (M + L0 + 2M0)η) s+ 2L0η,

and denote by δ/2 its root which belongs to the interval (0, 1). For

δ0 :=
(L0 +M) η

1−M0η
(8)

and

α :=


− (L0 +M) +

√
(L0 +M)2 − 8M0 (L0 −M)

4M0
, M0 6= 0

M − L0

M + L0
, M0 = 0.

(9)

the inequalities

(10) δ0 ≤ δ ≤ 2α

hold true. Then the scalar sequence {tn} (n ≥ 0), given by

t0 = 0, t1 = η,

tn+2 = tn+1 +
M (tn+1 − tn)2 + L0 (tn+1 + tn)

2 (1−M0tn+1)
(tn+1 − tn) ,

(11)

is increasing, bounded from above by

(12) t?? =
2η

2− δ
,

and converges to its unique least upper bound t? ∈ [0, t??] . Moreover, the
following estimates hold for all n ≥ 1

tn+1 − tn ≤
δ

2
(tn − tn−1) ≤

(
δ

2

)n

η(13)

and

t? − tn ≤
2η

2− δ

(
δ

2

)n

.(14)

Proof. We show, using induction on the integer m, that

0 < tm+2 − tm+1

=
M (tm+1 − tm)2 + L0 (tm+1 + tm)

2 (1−M0tm+1)
(tm+1 − tm) ≤ δ

2
(tm+1 − tm)

(15)

and

(16) M0tm+1 < 1.
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If (15) and (16) hold, then so does (13), and, by (12),

tm+2 ≤ tm+1 +
δ

2
(tm+1 − tm)

≤ tm +
δ

2
(tm − tm−1) +

δ

2
(tm+1 − tm)

≤ · · · ≤ η +

(
δ

2

)
η + · · ·+

(
δ

2

)m+1

η

=


1−

(
δ

2

)m+2

1− δ

2

 η < 2η

2− η
= t??.

(17)

The relations (15) and (16) are true for m = 0. Indeed, (15) and (16) become
in this case, respectively

0 < t2 − t1 =
M (t1 − t0)2 + L0 (t1 + t0)

2 (1−M0t1)
(t1 − t0) =

δ0
2

(t1 − t0) ≤
δ

2
(t1 − t0)

and

M0t1 < 1,

which are true by the choices of δ0, δ, by (10) and (11). Assume that (13),
(15) and (16) hold true for all m ≤ n+ 1.

The estimate (15) can be re-written as

M (tm+1 − tm) + L0 (tm+1 − tm) ≤ δ (1−M0tm+1) .

The inequalities (15) and (16) shall be true if

(18) M (tm+1 − tm) + (L0 + δM0) tm+1 + L0tm − δ ≤ 0 (by (13) and (17))

or

gm

(
δ

2

)
= M

(
δ

2

)m

η + (L0 + δM0)


1−

(
δ

2

)m+1

1− δ

2

 η

+ L0

1−
(
δ

2

)m

1− δ

2

 η − δ ≤ 0.

(19)

The estimate (19) motivates us to replace δ/2 by s, and to define the functions
fm (m ≥ 1) on [0,+∞) by

fm(s) = Msmη + (L0 + 2sM0) (1 + s+ · · ·+ sm) η

+ L0

(
1 + s+ · · ·+ sm−1

)
η − 2s.

(20)
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We need to find a relationship between two consecutive terms fm. For this we
compute

fm+1(s) = Msm+1η + (L0 + 2sM0)
(
1 + s+ · · ·+ sm+1

)
η

+ L0 (1 + s+ · · ·+ sm) η − 2s

= Msm+1η +Msmη −Msmη + (L0 + 2sM0) (1 + s+ · · ·+ sm) η

+ (L0 + 2sM0) s
m+1η + L0

(
1 + s+ · · ·+ sm−1

)
η + L0s

mη − 2s.

Hence

(21) fm+1(s) = fm(s) + g(s)smη,

where

(22) g(s) = 2M0s
2 + (L0 +M) s+ L0 −M.

Note that α given by (9) belongs to (0, 1) and solves g(s) = 0. Moreover,

(23) g(s) < 0, s ∈ (0, α).

The estimate (19) certainly holds if

(24) fm

(
δ

2

)
≤ 0 (m ≥ 1) .

Clearly (24) holds for m = 1 as equality (by (7)). We then get by (7), (21)
and (23)

f2

(
δ

2

)
= f1

(
δ

2

)
+ g

(
δ

2

)
δ

2
η

= g

(
δ

2

)
δ

2
η ≤ 0.

(25)

Assume that (24) holds true for all k ≤ m. We then show (24) for m replaced
by m+ 1. Indeed, we have

(26) fm+1

(
δ

2

)
= fm

(
δ

2

)
+ g

(
δ

2

)(
δ

2

)m

η ≤ 0,

which shows (24) for all m. Moreover, we obtain

(27) f∞

(
δ

2

)
:= lim

m→∞
fm

(
δ

2

)
≤ 0.

That completes the induction. Furthermore, the estimate (14) follows from
(13), using standard majorization techniques (see [6, 7, 13, 15]). Finally note
that the sequence {tn} is increasing, bounded from above by t??, and that it
converges to its unique least upper bound t?. �

Remark 2.2. The hypotheses of Lemma 2.1 have been left as uncluttered
as possible. Note that these hypotheses involve only computation at the initial
point x0 (see Theorem 2.7). In the next lemma we shall provide some simpler
but stronger hypotheses.
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Lemma 2.3. Let M0 ≥ 0, L0 ≥ 0, M > 0, and η > 0 be such that

(28)
L0 < M,

0 < hAH = σ η ≤ 1

2
,

where

(29) σ :=
1

4α
max {Mα+ (L0 + 2αM0) (1 + α) + L0,M + L0 + 2αM0}.

Then the following assertions hold:

• f1 has a positive root δ/2,
• max{δ0, δ} ≤ 2α,
• the conclusions of Lemma 2.1 hold with α replacing δ/2.

Proof. It follows from (21) and (28) that

(30) fm(α) = f1(α) ≤ 0 (m ≥ 1),

which, together with f1(0) = 2L0η > 0, imply that there exists a positive root
δ/2 of the polynomial f1, satisfying

(31) δ ≤ 2α.

It also follows from (8) and (28) that

δ0 ≤ 2α,

hence (24) holds with α replacing δ/2 (by (30)). �

In order to cover the case L0 ≥ M , we provide the following alternative to
the Lemmas 2.1 and 2.3.

Lemma 2.4. Let M0 > 0, L0 > 0, M > 0, and η > 0 be such that

L0 ≥M,(32)

0 < h1AH = φη ≤ 1

2
,(33)

where

(34) φ :=
1

2

[
M0 + 2L0 +

√
(M0 + 2L0)

2 −M2
0

]
.

Choose

(35)
γ

2
∈ [s−, s+]

and further assume that

(36) δ0 ≤ γ,
where s− and s+ (with s− ≤ s+) are the roots of the equation

(37) P (s) = s2 − (1−M0η)s+ L0η.

Then the conclusions of Lemma 2.1 hold true for γ replacing δ.
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Proof. It follows from (21) and (32) that

(38) f1(s) ≤ f2(s) ≤ · · · ≤ fm(s) ≤ · · · .
Thus (24) holds if

(39) f∞(s) := lim
m→∞

qm

(γ
2

)
=
L0 + γM0

1− γ

2

η +
L0η

1− γ

2

− γ ≤ 0

or

(40)
(γ

2

)2
− (1−M0η)

(γ
2

)
+ L0η ≤ 0,

which is true by (33), (35) and (37). �

It turns out that hypotheses (6) and (32) can be dropped as follows:

Lemma 2.5. Let M0 ≥ 0, L0 ≥ 0, M > 0, and η > 0 be such that (33) and
the relations

(41) α ∈ [s−, s+]

and

(42) δ0 ≤ 2α

hold. Then the conclusions of Lemma 2.1 hold with α replacing δ/2.

Proof. It follows from (21) that

(43) fm+1(α) = fm(α) (m ≥ 1).

Thus (24) holds if

(44) f∞(α) := lim
m→∞

qm(α) ≤ 0,

which is true by (37), (40) and (41). �

Remark 2.6. (Newton-Kantorovich method - the equation (3) with G = 0)
If L0 = 0, then we have, by Lemma 2.5, that

s− = 0, s+ = 1−M0η,(45)

α =
−M +

√
M2 + 8M0M

4M0
,(46)

δ0 =
Mη

1−M0η
.(47)

Moreover, the conditions of Lemma 2.5 reduce to the ones given in [5, 6, 7]:

h?AH = Mη ≤ 1

2
,(48)

where

M =
1

8

[
M + 4M0 +

√
M2 + 8M0M

]
.(49)
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The Newton-Kantorovich hypothesis for solving nonlinear equations is famous
for its simplicity and clarity, and it is given in [13, 15] by

(50) hk = Mη ≤ 1

2
.

Note that

(51) M0 ≤M
holds in general and that M/M0 can be arbitrarily large (see [6, 7]). It follows
from (48) and (50) that

(52) hk ≤
1

2
=⇒ h?AH ≤

1

2
,

but not necessarily vice versa, unless if M0 = M . We also have that

(53)
h?AH

hk
→ 1

4
as

M0

M
→ 0.

Hence (48) at most quadruples the applicability of the Newton-Kantorovich
method under the same computational cost, since in practice the computation
of M requires that of M0. The error bounds on the distances ‖xn+1 − xn‖ and
‖xn − x?‖ (n ≥ 0) are also finer (see [6, 7]).

Now everything is prepared in order to show the following semilocal con-
vergence theorem for (INKM).

Theorem 2.7. Let F,G : D ⊂X → Y be Fréchet-differentiable operators.
Assume that there exist x0 ∈ D, a bounded inverse of A(x0) = F ′(x0)+G′(x0),
and constants η > 0, M ≥ 0, M0 ≥ 0, L0 ≥ 0 such that for all x, y ∈ D∥∥∥A (x0)

−1 (F (x0) +G(x0))
∥∥∥ ≤ η,(54) ∥∥∥A (x0)

−1 (F ′(x)− F ′(y)
)∥∥∥ ≤M ‖x− y‖ ,(55) ∥∥∥A (x0)

−1 (F ′(x)− F ′(x0)
)∥∥∥ ≤M0 ‖x− x0‖ ,(56) ∥∥∥A (x0)

−1 (G′(x)−G′(x0)
)∥∥∥ ≤ L0 ‖x− x0‖ ,(57)

U(x0, t
?) = {x ∈ X, ‖x− x0‖ ≤ t?} ⊆ D,(58)

and such the hypotheses of one of the Lemmas 2.1, 2.3, 2.4 or 2.5 hold true.
Then the sequence {xn} (n ≥ 0) generated by (INKM) is well-defined, remains
in U(x0, t

?) for all n ≥ 0, and converges to a solution x? of the equation
F (x) + G(x) = 0 in U(x0, t

?). Moreover, the following estimates hold for all
n ≥ 0

‖xn+1 − xn‖ ≤ tn+1 − tn(59)

and

‖xn − x?‖ ≤ t? − tn,(60)
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where both the terms of the sequence {tn} (n ≥ 0) and t? are given in Lemma
2.1. Furthermore, the solution x? of the equation F (x) + G(x) = 0 is unique
in U(x0, T ) provided that

T ≥ t?,(61)

U(x0, T ) ⊆ D,(62)

and

(M + L0) + L0t
?

2 (1−M0t?)
< 1.(63)

Proof. We show, using induction, that

‖xm+1 − xm‖ ≤ tm+1 − tm(64)

and

U (xm+1, t
? − tm+1) ⊆ U (xm, t

? − tm) .(65)

For every z ∈ U (x1, t
? − t1) we have that

‖z − x0‖ ≤ ‖z − x1‖+ ‖x1 − x0‖
≤ t? − t1 + t1 − t0 = t? − t0,

so z ∈ U (x0, t
? − t0). We also have

‖x1 − x0‖ =
∥∥∥A (x0)

−1 (F (x0) +G(x0))
∥∥∥ ≤ η = t1 − t0.

That is (64) and (65) are valid for m = 0. Assuming that they hold for n ≤ m,
we get

‖xm+1 − x0‖ ≤
m+1∑
i=1

‖xi − xi−1‖

≤
m+1∑
i=1

(ti − ti−1) = tm+1 − t0 = tm+1 ≤ t?

and, for all t ∈ [0, 1],

‖xm + t (xm+1 − xm)− x0‖ ≤ tm + t (tm+1 − tm) ≤ t?.

Using (56), (16) and the induction hypotheses, we obtain∥∥∥A (x0)
−1 [A (xm+1)−A (x0)]

∥∥∥ ≤M0 ‖xm+1−x0‖

≤M0tm+1 < 1.
(66)
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It follows from (66) and the Banach Lemma on invertible operators that

A (xm+1)
−1 exists and that∥∥∥A (xm+1)

−1A (x0)
∥∥∥ ≤ (1−M0 ‖xm+1 − x0‖)−1

≤ (1−M0tn+1)
−1

≤ (1−M0t
?)−1 .

(67)

Using (INKM), we get the identity

F (xm+1) +G (xm+1) = F (xm+1) +G (xm+1)− F (xm)−G (xm)

−
(
F ′ (xm) +G′ (x0)

)
(xm+1 − xm)

=
[
F (xm+1)− F (xm)− F ′ (xm) (xm+1 − xm)

]
+
[
G (xm+1)−G (xm)−G′ (x0) (xm+1 − xm)

]
(68)

=

∫ 1

0

{[
F ′ (xm + t(xm+1 − xm))− F ′(xm)

]
+
[
G′ (xm + t(xm+1 − xm))−G′(x0)

]}
(xm+1 − xm) dt.

Moreover, by (55), (57), (68), the induction hypotheses, and the triangle in-
equality, we obtain in turn∥∥∥A (x0)

−1 (F (xm+1) +G(xm+1))
∥∥∥

≤
∥∥∥∥∫ 1

0
A (x0)

−1 [F ′ (xm + t(xm+1 − xm))− F ′(xm)
]∥∥∥∥ ‖xm+1 − xm‖dt

+

∥∥∥∥∫ 1

0
A (x0)

−1 [G′ (xm + t(xm+1 − xm))−G′(x0)
]∥∥∥∥ ‖xm+1 − xm‖ dt(69)

≤ M

2
‖xm+1 − xm‖2 +

L0

2
[‖xm+1 − x0‖+ ‖xm − x0‖] ‖xm+1 − xm‖

≤ 1

2
[M (tm+1 − tm) + L0 (tm+1 + tm)] (tm+1 − tm) .

Then, by (INKM), (11), (67) and (69), we have

‖xm+2 − xm+1‖ ≤
∥∥∥A (xm+1)

−1A (x0)
∥∥∥∥∥∥A (x0)

−1 (F (xm+1) +G(xm+1))
∥∥∥

≤ 1

2 (1−M0tm+1)
[M (tm+1 − tm) + L0 (tm+1 + tm)] (tm+1 − tm)(70)

= tm+2 − tm+1,

which shows (64) for all m.
Thus, for every w ∈ U(xm+2, t

? − tm+2), we have

‖w − xm+1‖ ≤ ‖w − xm+2‖+ ‖xm+2 − xm+1‖
≤ t? − tm+2 + tm+2 − tm+1 = t? − tm+1,(71)
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which shows (65) for all m. The previous lemmas imply that {tn} is a Cauchy
sequence. It follows from (64) and (65) that {xn} is a Cauchy sequence in the
Banach space X, hence it converges to some x? ∈ U(x0, t

?) (since U(x0, t
?)

is a closed set). By letting m → ∞ in (69), we get F (x?) + G(x?) = 0. The
estimate (60) is obtained from (59) (i.e., (64)), using standard majorization
techniques (see [6, 7, 13, 15]).

Finally, in order to show uniqueness, let y? ∈ U(x0, T ) be a solution of the
equation F (x) +G(x) = 0. As in (68), using (INKM), we get the identity

xm+1 − y? = −A(xm)−1
{∫ 1

0

[
F ′ (y? + t(xm − y?))− F ′(xm)

]
+

∫ 1

0

[
G′ (y? + t(xm − y?))−G′(x0)

]}
(xm − y?) dt.(72)

Hence

‖xm+1 − y?‖ ≤
1

2 (1−M0 ‖xm+1 − x0‖)
[M ‖xm − y?‖

+ L0(‖xm − x0‖+ ‖x0 − y?‖)] ‖xm − x?‖

≤ 1

2 (1−M0t?)
[MT + L0 (t? + T )] ‖xm − y?‖(73)

< ‖xm − y?‖ ,

which implies lim
m→∞

xm = y?. On the other hand, we have seen above that

lim
m→∞

xm = x?, so x? = y?. �

Note that the limit point t? can be replaced by t??, given in (12), in the
uniqueness hypotheses provided that U(x0, t

??) ⊆ D, or in all hypotheses of
Theorem 2.7.

3. A NUMERICAL EXAMPLE

We provide an example to show that Theorem 2.7 can be applied to solve a
nonlinear equation. We point out that, in case of this example, earlier results
cannot be applied.

Let X = Y = R, D = U(x0, 1 − θ), x0 = 1, θ = 0.49, and define the
functions F , G on D, respectively, by

F (x) = x3 − θ, G(x) =
1

400
x2.
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Then we have

η = 0.170549085, M0 =
∥∥∥(F ′(x0) +G′(x0)

)−1
3(3− θ)

∥∥∥ = 2.505823626,

M =
∥∥∥6
(
F ′(x0) +G′(x0)

)−1
(2− θ)

∥∥∥ = 3.01497504,

L0 =
1

200

∥∥∥(F ′(x0) +G′(x0)
)−1∥∥∥ = 0.001663894,

δ0 = 0.898453365, α = 0.53086525, 2α = 1.061613051,

s− = 0.000495992, s+ = 0.572138081,

φ = 1.319168225, hK = M1η = 0.51448501 > 0.5.

Moreover,∥∥∥(F ′(x0) +G′(x0)
)−1 (

F ′(x) +G′(x)− F ′(y)−G′(y)
)∥∥∥ ≤M1 ‖x− y‖

and

M1 =

∥∥∥∥(F ′(x0) +G′(x0)
)−1 [

6 (2− θ) +
1

200

]∥∥∥∥ = 3.016638934.

Hence there is no guarantee that the Newton-Kantorovich method converges
to x?, since (50) is violated. However, the assumptions of Theorem 2.7 are sat-
isfied, thus the Newton-Kantorovich method (5) starting at x0 = 1 converges
to x?. Other examples where M0 < M and L0 = 0 (or not) can be found in
[5, 6, 7].
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