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ON FINITE GENERATION OF HOCHSCHILD COHOMOLOGY
ALGEBRAS OF SOME FULLY GROUP GRADED ALGEBRAS

CONSTANTIN COSMIN TODEA

Abstract. In this paper we study the finite generation problem for the Hochschild
cohomology algebras of some fully group graded algebras using Grothendieck
spectral sequences. Some minimal examples for which we can apply our results
are given.
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1. PRELIMINARIES

Let k be a commutative ring, G be a finite group and let R be a fully G-
graded k-algebra. By definition, R has a decomposition R =

⊕
g∈GRg such

that RgRh = Rgh for all g, h ∈ G. These algebras are also called in literature
“strongly”, but we will use “fully”. We denote by HH∗(R,M) the Hochschild
cohomology of R with coefficients in the R−R-bimodule M and by H∗(G,A)
the group cohomology of G with coefficients in a kG-module A. The finite
generation problem of a cohomology ring is intensively studied for different
types of cohomologies. Finite generation questions are of interest in their own
right, but there are also important applications. If the cohomology ring is
finitely generated, one may define algebraic varieties associated to modules,
called support varieties, that contain useful information.

This paper is organized as follows. In Section 3 we recall a Grothendieck
spectral sequence for Hochschild cohomology of a fully group graded algebra
from [4] (Remark 4) and we also give a slightly modified variant of this spectral
sequence (Remark 3). The main result of Section 4 is Proposition 2. We prove
that for a fully group graded algebra R belonging to a class of rings, which
we call HIF-rings (see Definition 1), there is a spectral sequence which is a
module over a spectral sequence of rings. We warn the reader that it is not our
intention to analyze this class of HIF-rings in this paper, but some examples
are provided. In Section 5 we define a class of fully G-graded algebras and
give some examples. In the main result of this paper (Theorem 1) we give
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conditions for the finite generation of the Hochschild cohomology algebra of a
fully group graded algebra.

2. GROTHENDIECK SPECTRAL SEQUENCE FOR FULLY GRADED ALGEBRAS

In this section we give the Grothendieck spectral sequence for fully G-graded
algebras, from [4], in a slightly more general setup. We recall from there some
basic notations and results. If H is a subgroup of G then RH =

⊕
h∈H Rh is a

fully H-graded subalgebra of R. If M,N are R-modules then HomR1(M,N)
is a kG-module with

gf(m) =
λ∑
i=1

rif(r′im),

where f ∈ HomR1(M,N), g ∈ G,m ∈ M and ri ∈ Rg, r
′
i ∈ Rg−1 such that∑λ

i=1 rir
′
i = 1. Also HomR1(M,N)H = HomRH

(M,N) for every subgroup H
of G.

With Rop we denote the opposite algebra, which is also a G-graded algebra
with components Rop

g = Rg−1 . Then Re = R⊗kRop is a G×G-graded algebra
which has ∆(R) =

⊕
g∈GRg ⊗k Rg−1 as a k-subalgebra. Moreover ∆(R) is

fully G-graded with ∆(R)g = Rg ⊗Rop
g . The first component is ∆(R)1 = Re

1.
For simplicity we assume that R1 is projective as k-module, hence R is

projective as k-module. Let M be an ∆(R)-module. Then it is also an Re
1-

module, i.e an R1 − R1-bimodule. Since M is a ∆(R)-module we have that
HomRe

1
(R1,M) = Hom∆(R)1(R1,M) is a kG-module and moreover

HomkG(k,HomRe
1
(R1,M) ∼= Hom∆(R)1(R1,M)G

= Hom∆(R)G(R1,M) = Hom∆(R)(R1,M).

In the case that M is an Re-module considered by restriction as ∆(R)-
module, we use that IndR

e

∆(R)R1
∼= R as Re-modules (see [4, Section 2]) to

obtain as above, that

HomkG(k,HomRe
1
(R1,M) ∼= HomRe(R,M).

We consider the functors

F1 = HomkG(k,−) : kG-Mod→ k-Mod,

F2 = HomRe
1
(R1,−) : ∆(R)-Mod→ kG-Mod,

F = Hom∆(R)(R1,−) : ∆(R)-Mod→ k-Mod.

Lemma 1. Under the above assumptions we have that F = F1 ◦F2 and that
F2 sends ∆(R)-injective modules to F1-acyclic modules.

Proof. The first statement follows from the above results. The second state-
ment follows from a more general proposition applied to Hopf-Galois extension,
see [7, Proposition 3.2]. �
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Remark 1. Since F1,F2 are left exact, by Lemma 2 it follows that there is
a Grothendieck spectral sequence

Hp(G,HHq(R1,M)⇒ Extp+q∆(R)(R1,M)),

for any ∆(R)-module M and p, q nonnegative integers.

We notice that if R is a crossed product then ∆(R) is actually ∆(G) con-
sidered by S. J. Witherspoon in [9, Section 3]. When we take M = R then
HH∗(R) ∼= Ext∗∆(R)(R1, R) as graded k-modules and there is a cup product on

Ext∗∆(R)(R1, R) such that we obtain an algebra isomorphism. See the results

before [9, Lemma 3.8].

Remark 2. If M is a Re-module we make the similar constructions with
similar functors as above, and since

Extp+q∆(R)(R1,M) ∼= HHp+q(R,M)

we obtain the Grothendieck spectral sequence for Hochschild cohomology

Hp(G,HHq(R1,M))⇒ HHp+q(R,M).

This is the spectral sequence from [4, 3.1] and it will be used in the following
sections.

3. GROTHENDIECK SPECTRAL SEQUENCE FOR FULLY GRADED ALGEBRAS

In this section we give the Grothendieck spectral sequence for fully G-graded
algebras, from [4], in a slightly more general setup. We recall from there some
basic notations and results. If H is a subgroup of G then RH =

⊕
h∈H Rh is a

fully H-graded subalgebra of R. If M,N are R-modules then HomR1(M,N)
is a kG-module with

gf(m) =

λ∑
i=1

rif(r′im),

where f ∈ HomR1(M,N), g ∈ G,m ∈ M and ri ∈ Rg, r
′
i ∈ Rg−1 such that∑λ

i=1 rir
′
i = 1. Also HomR1(M,N)H = HomRH

(M,N) for every subgroup H
of G.

With Rop we denote the opposite algebra, which is also a G-graded algebra
with components Rop

g = Rg−1 . Then Re = R⊗kRop is a G×G-graded algebra
which has ∆(R) =

⊕
g∈GRg ⊗k Rg−1 as a k-subalgebra. Moreover ∆(R) is

fully G-graded with ∆(R)g = Rg ⊗Rop
g . The first component is ∆(R)1 = Re

1.
For simplicity we assume that R1 is projective as k-module, hence R is

projective as k-module. Let M be an ∆(R)-module. Then it is also an Re
1-

module, i.e an R1 − R1-bimodule. Since M is a ∆(R)-module we have that
HomRe

1
(R1,M) = Hom∆(R)1(R1,M) is a kG-module and moreover

HomkG(k,HomRe
1
(R1,M) ∼= Hom∆(R)1(R1,M)G

= Hom∆(R)G(R1,M) = Hom∆(R)(R1,M).



92 Constantin Cosmin Todea 4

In the case that M is an Re-module considered by restriction as ∆(R)-
module, we use that IndR

e

∆(R)R1
∼= R as Re-modules (see [4, Section 2]) to

obtain as above, that

HomkG(k,HomRe
1
(R1,M) ∼= HomRe(R,M).

We consider the functors

F1 = HomkG(k,−) : kG-Mod→ k-Mod,

F2 = HomRe
1
(R1,−) : ∆(R)-Mod→ kG-Mod,

F = Hom∆(R)(R1,−) : ∆(R)-Mod→ k-Mod.

Lemma 2. Under the above assumptions we have that F = F1 ◦F2 and that
F2 sends ∆(R)-injective modules to F1-acyclic modules.

Proof. The first statement follows from the above results. The second state-
ment follows from a more general proposition applied to Hopf-Galois extension,
see [7, Proposition 3.2]. �

Remark 3. Since F1,F2 are left exact, by Lemma 2 it follows that there is
a Grothendieck spectral sequence

Hp(G,HHq(R1,M))⇒ Extp+q∆(R)(R1,M),

for any ∆(R)-module M and p, q nonnegative integers.

We notice that if R is a crossed product then ∆(R) is actually ∆(G) con-
sidered by S. J. Witherspoon in [9, Section 3]. When we take M = R then
HH∗(R) ∼= Ext∗∆(R)(R1, R) as graded k-modules and there is a cup product on

Ext∗∆(R)(R1, R) such that we obtain an algebra isomorphism. See the results

before [9, Lemma 3.8].

Remark 4. If M is a Re-module we make the similar constructions with
similar functors as above, and since

Extp+q∆(R)(R1,M) ∼= HHp+q(R,M)

we obtain the Grothendieck spectral sequence for Hochschild cohomology

Hp(G,HHq(R1,M))⇒ HHp+q(R,M).

This is the spectral sequence from [4, 3.1] and it will be used in the following
sections.

4. MULTIPLICATIVE STRUCTURE OF THE ABOVE SPECTRAL SEQUENCES

In the following sections we assume that k is a field. Any Grothendieck
spectral sequence is actually obtained as the spectral sequence associated to
a specific cochain double complex (see [3, VIII. Theorem 9.3]). Let M be an
Re-module. In this section we give the construction of the double complex,
denoted E∗,∗0 (M) (used to obtain the spectral sequence from Remark 4), and
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we assure the reader that under some assumptions there is a natural pairing.
First we take an injective Re-resolution of M

0→M → I0 → I1 → I2 → . . .

Then we apply HomRe
1
(R1,−) to get a complex of kG-modules

0→ HomRe
1
(R1,M)→ HomRe

1
(R1, I0)→ HomRe

1
(R1, I1)→ . . . ,

and consequently a commutative diagram

HomRe
1
(R1, I0) //

��

HomRe
1
(R1, I1) //

��

HomRe
1
(R1, I2) //

��

. . .

J0,0 //

��

J1,0 //

��

J2,0 //

��

. . .

J0,1 //

��

J1,1 //

��

J2,1 //

��

. . .

...
...

...
,

in which every column is an injective resolution of the top kG-module. We ap-
ply the functor HomkG(k,−) and obtain the double cochain complex denoted
by E∗,∗0 (M)

HomkG(k, J0,0) //

��

HomkG(k, J1,0) //

��

HomkG(k, J2,0) //

��

. . .

HomkG(k, J0,1) //

��

HomkG(k, J1,1) //

��

HomkG(k, J2,1) //

��

. . .

HomkG(k, J0,2) //

��

HomkG(k, J1,2) //

��

HomkG(k, J2,2) //

��

. . .

...
...

...
,

The above diagram give us the spectral sequence from Remark 4, now de-
noted

E∗,∗0 (M)⇒ E∗,∗∞ (M).

To prove the next results we introduce the following class of rings.

Definition 1. A ring R is called right HIF-ring if any injective right R-
module is flat and any homomorphic image of an injective right R-module is
also flat.
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This class of rings is nonempty since includes the Von Neumann regular
rings, and also it is included in the class of right IF-rings, a class of rings first
considered by S. Jain in [6].

Proposition 1. Let R be a fully G-graded algebra such that R is a right
HIF-ring. Then there is a natural pairing of double complexes

E∗,∗0 (M)⊗ E∗,∗0 (N)→ E∗,∗0 (M ⊗R N),

for any M,N ∈ Re-Mod.

Proof. Let M,N ∈ Re-Mod and Ei,j
0 (M) = HomkG(k, Ji,j) defined as in

the beginning of this section, for i, j two nonnegative integers. Similarly we
can obtain the double complex E∗,∗0 (N) = HomkG(k, J ′s,t), for any s, t two
nonnegative integers, using an injective Re-resolution of N

0→ N → I ′0 → I ′1 → I ′2 → . . . ,

and the commutative diagram

HomRe
1
(R1, I

′
0) //

��

HomRe
1
(R1, I

′
1) //

��

HomRe
1
(R1, I

′
2) //

��

. . .

J ′0,0 //

��

J ′1,0 //

��

J ′2,0 //

��

. . .

J ′0,1 //

��

J ′1,1 //

��

J ′2,1 //

��

. . .

...
...

...
.

Next we have that M ⊗R N is an Re-module, since it is well known that
Re-Mod is a monoidal category with tensor product − ⊗R − such that R is
the tensor identity. As above we obtain the double complex E∗,∗0 (M ⊗RN) =
HomkG(k, J ′′∗,∗) by considering the injective Re-resolution of M ⊗R N

0→M ⊗R N → I ′′0 → I ′′1 → I ′′2 → . . . ,
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and the commutative diagram

HomRe
1
(R1, I

′′
0 ) //

��

HomRe
1
(R1, I

′′
1 ) //

��

HomRe
1
(R1, I

′′
2 ) //

��

. . .

J ′′0,0 //

��

J ′′1,0 //

��

J ′′2,0 //

��

. . .

J ′′0,1 //

��

J ′′1,1 //

��

J ′′2,1 //

��

. . .

...
...

...
.

We want to establish a natural map

Ei,j
0 (M)⊗ Es,t

0 (N)→ Ei+s,j+t
0 (M ⊗R N),

compatible with the differentials (pairing of double complexes), see [2, Defini-
tion 3.9.1].

Since R is a right HIF-ring, by the Künneth theorem for cochain complexes
(the similar variant of [8, Theorem 3.6.1]), we obtain that 0 → M ⊗R N →
I∗ ⊗R I ′∗ is an acyclic complex. From [8, Theorem 2.3.7], we can build the
following commutative diagram

0 // M ⊗R N // I∗ ⊗R I ′∗

��
0 // M ⊗R N // I ′′∗ .

Then there is a cochain map I∗ ⊗R I ′∗ → I ′′∗ . By applying HomRe
1
(R1,−) we

obtain a map of kG-modules

HomRe
1
(R1, Ii ⊗R I ′s)→ HomRe

1
(R1, I

′′
i+s),

for i, s nonnegative integers. From the cup product in Hochschild cohomology
we know that there are maps

HomRe
1
(R1, Ii)⊗HomRe

1
(R1, I

′
s)→ HomRe

1
(R1, Ii⊗R1I

′
s)→ HomRe

1
(R1, Ii⊗RI ′s),

where the right map is induced by a ⊗R1 b 7→ a ⊗R b, for any a ∈ Ii, b ∈ I ′s.
We compose the above two maps and obtain a natural map

(1) HomRe
1
(R1, Ii)⊗HomRe

1
(R1, I

′
s)→ HomRe

1
(R1, I

′′
i+s).

Since 0 → HomRe
1
(R1, Ii) → Ji,∗ and 0 → HomRe

1
(R1, I

′
s) → J ′s,∗ are injective

resolutions of kG-modules, we repeat the above construction (made with Re-
resolutions) to obtain the commutative diagram (k is a field and we can apply
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Künneth theorem again)

0 // HomRe
1
(R1, Ii)⊗HomRe

1
(R1, I

′
s) //

(1)

��

Ji,∗ ⊗ J ′s,∗

��
0 // HomRe

1
(R1, I

′′
i+s) // J ′′i+s,∗+∗.

In particular we obtain a map Ji,j ⊗ J ′s,t → J ′′i+s,j+t and consequently

HomkG(k, Ji,j ⊗ J ′s,t)→ HomkG(k, J ′′i+s,j+t). Since kG is a Hopf algebra there
is a map compatible with the differentials

HomkG(k, Ji,j)⊗HomkG(k, J ′s,t)→ HomkG(k, Ji,j ⊗ J ′s,t).

Consequently we get the desired map

HomkG(k, Ji,j)⊗HomkG(k, J ′s,t)→ HomkG(k, J ′′i+s,j+t).

The above maps respect the differentials in E∗,∗0 since HomkG(k,−) and
tensor product are applied on cochain complexes, and we don’t check it. �

By [2, Proposition 3.9.3], Proposition 1 induces a product on each page of
the Grothendieck spectral sequence:

Ei,j
n (M)⊗ Es,t

n (N)→ Ei+s,j+t
n (M ⊗R N),

and hence on limit objects

Ei,j
∞ (M)⊗ Es,t

∞ (N)→ Ei+s,j+t
∞ (M ⊗R N).

If we take M = N = R from Remark 4 we have the following proposition.

Proposition 2. Let R be a fully G-graded algebra such that R is a right
HIF-ring. Then there is a ring structure on the second page

H∗(G,HH∗(R1, R))⇒ HH∗(R,R),

over which the following is a module

H∗(G,HH∗(R1,M))⇒ HH∗(R,M),

for any M ∈ Re-Mod.

5. FINITE GENERATION

In this section we identify conditions for a particular class of fully G-graded
algebras, which will give the finite generation of the Hochschild cohomology
algebra.

Definition 2. We say that a fully G-graded algebra R is a fg-G-graded
algebra if R1 is of finite projective dimension as Re

1-module and the spectral
sequence

ExtikG(k,ExtjRe
1
(R1, R)) =⇒ Exti+jRe (R,R)

is a module over the ring H∗(G, k).
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The above definition seems cumbersome at a first view but it is obvious
that R = kG, the group algebra, is a fg-G-graded algebra. Moreover we have
the next remark.

Remark 5. Let R1 be a separable k-algebra. Then the above spectral
sequence collapses to give HH∗(R) = H∗(G,HomRe

1
(R1, R)), hence the spectral

sequence is a module over H∗(G, k).

Theorem 1. Let R be a fg-G-graded algebra such that R is a right HIF-
ring. Then HH∗(R,M) is a finitely generated H∗(G, k)-module for any M ∈
Re-Mod. In particular the Hochschild cohomology HH∗(R) is a finitely gener-
ated algebra.

Proof. By Proposition 2, since R is a fg-G-graded algebra we have that the
spectral sequence

ExtikG(k,ExtjRe
1
(R1,M)) =⇒ Exti+jRe (R,M)

is a module over H∗(G, k). Since R1 is of finite projective dimension as Re
1-

module Hj(R1,M) = ExtjRe
1
(R1,M) vanishes for large j. The finite generation

theorem of Evens and Venkov says that for each j, Ext∗kG(k,ExtjRe
1
(R1,M)) is

a finitely generated Ext∗kG(k, k)-module. We know that E∞ is a subquotient
of page E2 of the cohomology spectral sequence, then HH∗(R,M) is a finitely
generated H∗(G, k)-module.

In particular if M = R it follows that HH∗(R) is a finitely generated
H∗(G, k)-module. Since H∗(G, k) is a finitely generated algebra we obtain
that HH∗(R) is finitely generated algebra. �

We give an example of fully group graded algebras which satisfies the hy-
pothesis of the above theorem.

Example 1. Let R be a fully group graded algebra with | G | invertible in
R. Let R1 be a matrix algebra over the field k. Then R is fg-G-graded by
Remark 5. Moreover from [5, 3.8.3], since R1 is von Neumann regular ring,
we have that R is von Neumann regular, hence a right HIF-ring.

But in the above case the finite generation of the Hochschild cohomology
algebra with R1 a matrix algebra, can be obtained alternatively from the finite
generation theorem of Evens and Venkov by using the spectral sequence from
Remark 4, which collapses. We end with the following remark.

Remark 6. Let R be a fully group graded algebra. Let R1 be a k-algebra
of finite projective dimension as Re

1-module different from 0 and with the
ExtiRe

1
(R1, R) = 0 for i > 0. If R is a right HIF-ring then the hypothesis of

Theorem 1 are satisfied.
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