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FRACTIONAL q-CALCULUS AND CERTAIN SUBCLASSES OF
UNIVALENT ANALYTIC FUNCTIONS
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Abstract. By applying the concept (and theory) of fractional q-calculus, we
first define and introduce new classes of univalent functions analytic in the open
unit disk involving a q-differeintegral operator. Among the results investigated
for these function classes are the coefficient inequalities and distortion theorems.
Special cases are briefly pointed out.
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1. INTRODUCTION, PRELIMINARIES AND DEFINITIONS

The fractional calculus operators has gained importance and popularity,
mainly due to its vast potential of demonstrated applications in various fields
of applied sciences, engineering and also in the geometric function theory of
complex variables (see, for example [8] and [13]). The fractional q-calculus is
the q-extension of the ordinary fractional calculus. The theory of q-calculus
operators in recent past have been applied in the areas of ordinary fractional
calculus, optimal control problems and in finding solutions of the q-difference
and q-integral equations, and in q-transform analysis. One may refer to the
books [5]-[6], and the recent papers [1], [2], [4], [7], [11] and [12] on the subject.

Recently, authors in [10] have used the fractional q-calculus operators and
investigated some new classes of functions which are analytic in the open disk.
Purohit [9] also studied similar work and considered new classes of multiva-
lently analytic functions in the open unit disk. In the present paper, our
purpose is to introduce further new subclasses of functions defined by apply-
ing the fractional q-calculus operators which are univalent and analytic in the
open unit disk. Among the results derived include, the coefficient inequali-
ties and distortion theorems for the subclasses defined and introduced below.
Special cases of the results are also pointed out briefly.

For the convenience of the reader, we deem it proper to give here the basic
definitions and related details of the q-calculus:

The q-shifted factorial (see [5]) is defined for α, q ∈ C as a product of n
factors by

(1) (α ; q)n =

{
1 , n = 0;

(1− α) (1− α q) · · · (1− α qn−1) , n ∈ N ,
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and in terms of the basic analogue of the gamma function by

(2) (qα ; q)n =
Γq(α+ n) (1− q)n

Γq(α)
(n > 0),

where the q-gamma function is defined by ([5, p. 16, eqn. (1.10.1)])

(3) Γq(x) =
(q; q)∞(1− q)1−x

(qx; q)∞
(0 < q < 1).

If |q| < 1, the definition (1) remains meaningful for n =∞, as a convergent
infinite product given by

(α ; q)∞ =

∞∏
j=0

(1− α qj) .

We recall here the following q-analogue definitions given by Gasper and
Rahman [5].
The recurrence relation for q-gamma function is given by

(4) Γq(x+ 1) =
(1− qx) Γq(x)

1− q
and the q-binomial expansion is given by

(5) (x− y)ν = xν(−y/x; q)ν = xν
∞∏
n=0

[
1− (y/x)qn

1− (y/x)qν+n

]
.

Also, the Jackson’s q-derivative and q-integral of a function f defined on a
subset of C are, respectively, given by (see Gasper and Rahman [5, pp. 19,
22])

(6) Dq, zf(z) =
f(z)− f(zq)

z(1− q)
(z 6= 0, q 6= 1)

and

(7)

∫ z

0
f(t) dqt = z (1− q)

∞∑
k=0

qkf(zqk) .

In view of the relation that

(8) Lim
q→1−

(qα; q)n
(1− q)n

= (α)n ,

we observe that the q-shifted factorial (1) reduces to the familiar Pochhammer
symbol (α)n, where (α)0 = 1 and (α)n = α(α+ 1) · · · (α+ n− 1) (n ∈ N).

We now mention below the fractional q-calculus operators of a complex-
valued function f(z) (which were recently studied by Purohit and Raina [10]).

Definition 1. (Fractional q-Integral Operator) The fractional q-integral
operator Iαq, zf(z) of a function f(z) of order α is defined by

(9) Iαq, zf(z) ≡ D−αq, zf(z) =
1

Γq(α)

∫ z

0
(z − tq)α−1 f(t) dqt (α > 0) ,
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where f(z) is analytic in a simply-connected region of the z-plane containing
the origin. In view of relation (5), the q-binomial function (z − tq)α−1 can be
expressed as

(10) (z − tq)α−1 = zα−1 1Φ0[q
−α+1; −; q, tqα/z].

The series 1Φ0[α;−; q, z] (which is a special case of the series 2Φ1[α, β; γ; q, z]
for γ = β) is obviously single-valued when |arg (z)| < π and |z| < 1, (see
for details [5, pp. 104-106]), therefore, in view of the representation of the
integral defined by (7), it may be noted that the function (z− tq)α−1 in (9) is
single-valued when |arg (−tqα/z)| < π, | tqα/z)| < 1 and |arg z| < π. Thus,
for suitably selected function f(z) (which ensures its convergence), the oper-
ator (9) is well defined.

Definition 2. (Fractional q-Derivative Operator) The fractional q-deriva-
tive operator Dα

q, zf(z) of a function f(z) of order α is defined by

(11) Dα
q, zf(z) = Dq, z I

1−α
q, z f(z) =

1

Γq(1− α)
Dq, z

∫ z

0
(z − tq)−α f(t) dqt,

(0 ≤ α < 1),

where f(z) is suitably constrained and the multiplicity of (z−tq)−α is removed
as in Definition 1 above.

Definition 3. (Extended Fractional q-Derivative Operator) Under the
hypotheses of Definition 2, the fractional q-derivative for a function f(z) of
order α is defined by

(12) Dα
q, zf(z) = Dm

q, z I
m−α
q, z f(z) (m− 1 ≤ α < m; m ∈ N0 = N ∪ {0}),

where N denotes the set of natural numbers.
Also for α = 1, we have

(13) D1
q, zf(z) = Dq, zf(z).

In the sequel, we shall be using the following image formulas which are easy
consequences of the operators (9) and (12) ([10, pp. 58-59]):

(14) Iαq, zz
λ =

Γq(1 + λ)

Γq(1 + λ+ α)
zλ+α (α > 0, λ > −1)

and

(15) Dα
q, zz

λ =
Γq(1 + λ)

Γq(1 + λ− α)
zλ−α (α ≥ 0, λ > −1).

2. NEW CLASSES OF FUNCTIONS

By An, we denote the class of functions of the form:

(16) f(z) = z +

∞∑
k=n+1

ak z
k (n ∈ N),
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which are analytic and univalent in the open unit disc

U = {z : z ∈ C , |z| < 1} .
Also, let A−n denote the subclass of An consisting of analytic and univalent

functions expressed in the form

(17) f(z) = z −
∞∑

k=n+1

ak z
k (ak ≥ 0, n ∈ N).

For the purpose of this paper, we define a fractional q-differintegral operator
Ωα
q, z for a function f(z) by

(18) Ωα
q, zf(z) =

Γq(2− α)

Γq(2)
zαDα

q, zf(z)

(α < 2; 0 < q < 1; z ∈ U),

where Dα
q,zf(z) in (18) represents, respectively, a fractional q-integral of f(z)

of order α when −∞ < α < 0, and a fractional q-derivative of f(z) of order α
when 0 ≤ α < 2. Thus, in view of (17), the operator (18) has the form:

(19) Ωα
q, zf(z) = z −

∞∑
k=n+1

A(α, k, q) ak z
k (−∞ < α < 2),

where

(20) A(α, k, q) =
Γq(2− α)Γq(1 + k)

Γq(2)Γq(1 + k − α)
.

Remark 1. In view of (15), the above operator (19) has the following form:

(21) Ωα
q, zf(z) = z −

∞∑
k=n+1

A(α, k, q) ak z
k (0 ≤ α < 2),

where A(α, k, q) is given by (20).

Remark 2. Again, on making use of (14), we get

(22) Ωα
q, zf(z) = z −

∞∑
k=n+1

A(−α, k, q) ak zk (α > 0),

where A(α, k, q) is given by (20) (with α replaced by −α, therein).

Suppose Sαn (λ, δ, q) denotes the subclass of A−n consisting of functions f(z)
which satisfy the inequality that

(23)

∣∣∣∣∣1δ
{
zDq,zF

(α,λ)
q (z)

F
(α,λ)
q (z)

− 1

}∣∣∣∣∣ < 1,

where

(24) F (α,λ)
q (z) = λ z Dq,z

(
Ωα
q, zf(z)

)
+ (1− λ) Ωα

q, zf(z)
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(α < 2; 0 ≤ λ ≤ 1; δ ∈ C \ {0} ; 0 < q < 1; z ∈ U).

Also, let Rαn(λ, δ, q) denote the subclass of A−n consisting of functions f(z)
which satisfy the inequality that

(25)

∣∣∣∣1δ {Dq,z

(
Ωα
q, zf(z)

)
+ λ z D2

q,z

(
Ωα
q, zf(z)

)
− 1
}∣∣∣∣ < 1

(α < 2; 0 ≤ λ ≤ 1; δ ∈ C \ {0} ; 0 < q < 1; z ∈ U).

The following give the characterization properties for functions of the form
(17) to belong to the classes defined above.

Theorem 1. Let the function f defined by (17) be in the class Sαn (λ, δ, q),
then

(26)

∞∑
k=n+1

A(α, k, q)

B(λ, δ, k, q)
ak ≤ |δ| ,

where A(α, k, q) is given by (20) and B(λ, δ, k, q) is given by

(27) B(λ, δ, k, q) =
(1− q)2

[λ q(1− qk−1) + 1− q] [q(1− qk−1) + |δ| (1− q)]
.

The result is sharp.

Proof. Let f(z) ∈ Sαn (λ, δ, q), then on using (23), we get

<

{
zDq,zF

(α,λ)
q (z)− F (α,λ)

q (z)

F
(α,λ)
q (z)

}
> − |δ| .

In view of (19), (24) and the q-derivative formula, namely:

Dq,z z
k =

(
1− qk

1− q

)
zk−1,

we obtain

(28) F (α,λ)
q (z) = z −

∞∑
k=n+1

A(α, k, q) ak

[
λ q (1− qk−1) + 1− q

1− q

]
zk

and

(29) z Dq,z F
(α,λ)
q (z) = z−

∞∑
k=n+1

A(α, k, q) ak

[
λ q (1− qk−1) + 1− q

(1− q)2

]
(1− qk) zk.

Now, on making use of the above relations, we get

<

−
∑∞

k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

(1−q)2

]
q (1− qk−1) zk−1

1−
∑∞

k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

1−q

]
zk−1

 > − |δ| .
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By putting z = r, and noting that the denominator is positive for r = 0,
and also remains positive for 0 < r < 1, so that on letting r → 1−, we get

(30)
∞∑

k=n+1

A(α, k, q) ak

[
λ q (1− qk−1) + 1− q

(1− q)2

]
q (1− qk−1) <

|δ|

(
1−

∞∑
k=n+1

A(α, k, q) ak

[
λ q (1− qk−1) + 1− q

1− q

])
,

which yields the desired coefficient bound inequality (26).
Conversely, by applying hypothesis (26) and letting |z| = 1, we find that∣∣∣∣∣zDq,zF

(α,λ)
q (z)− F (α,λ)

q (z)

F
(α,λ)
q (z)

∣∣∣∣∣ =

∣∣∣∣∣∣
−
∑∞

k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

(1−q)2

]
q (1− qk−1)zk−1

1−
∑∞

k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

1−q

]
zk−1

∣∣∣∣∣∣
≤
|δ|
(

1−
∑∞

k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

1−q

])
1−

∑∞
k=n+1A(α, k, q) ak

[
λ q (1−qk−1)+1−q

1−q

] = |δ| .

Hence, by the maximum modulus principle and the condition (23), we infer
that

f(z) ∈ Sαn (λ, δ, q).

It is easy to verify that the equality in (26) is attained for the function f(z)
given by

(31) f(z) = z − |δ|B(λ, δ, n+ 1, q)

A(α, n+ 1, q)
zn+1 (n ∈ N),

where A(α, k, q) and B(λ, δ, k, q) are given by (20) and (27), respectively. �

Similarly, we can prove the following.

Theorem 2. Let the function f defined by (17) be in the class Rαn(λ, δ, q),
then

(32)
∞∑

k=n+1

A(α, k, q)

C(λ, k, q)
ak ≤ |δ| ,

where A(α, k, q) is given by (20) and C(λ, k, q) is given by

(33) C(λ, k, q) =
(1− q)2

(1− qk) [(1− q) + λ(1− qk−1)]
.
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The result is sharp with the extremal function given by

(34) f(z) = z − |δ|C(λ, n+ 1, q)

A(α, n+ 1, q)
zn+1 (n ∈ N).

We next prove a simple inclusion property which is given as follows:

Theorem 3. Let α < 2, 0 ≤ λ ≤ 1, 0 < q < 1, δ1, δ2 ∈ C \ {0} ∈ N and
|δ1| < |δ2|, then

(35) Sαn (λ, δ1, q) ⊂ Sαn (λ, δ2, q).

Proof. Suppose that f(z) ∈ Sαn (λ, δ1, q), then in view of Theorem 1, we have
∞∑

k=n+1

A(α, k, q)

B(λ, δ1, k, q)
ak ≤ |δ1| ,

where A(α, k, q) and B(λ, δ1, k, q) are given by (20) and (27), respectively.
Now |δ1| < |δ2| implies that

∞∑
k=n+1

A(α, k, q)

B(λ, δ1, k, q)
ak ≤ |δ1| ≤ |δ2| ,

which in view of Theorem 1 immediately leads to f(z) ∈ Sαn (λ, δ2, q), and the
result (33) follows. �

Similarly, we can prove the following inclusion property:

Theorem 4. Let α < 2, 0 ≤ λ ≤ 1, 0 < q < 1, δ1, δ2 ∈ C \ {0} ∈ N and
|δ1| < |δ2|, then

(36) Rαn(λ, δ1, q) ⊂ Rαn(λ, δ2, q).

3. DISTORTION THEOREMS

In this section, we establish distortion theorems for classes of functions de-
fined above involving the fractional q-calculus operators.

Theorem 5. Let α, λ ∈ R and δ ∈ C \ {0} ∈ N satisfy the inequalities

α < 2, n ∈ N; 0 ≤ λ ≤ 1, 0 < q < 1.

Also, let the function f(z) defined by (17) be in the class Sαn (λ, δ, q), then

(37) |z| − |δ| D(α, λ, δ, n, q) |z|n+1 ≤ |f(z)| ≤ |z|+

|δ| D(α, λ, δ, n, q) |z|n+1 (z ∈ U),

where

(38) D(α, λ, δ, n, q) =
B(λ, δ, n+ 1, q)

A(α, n+ 1, q)
,
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A(α, n+ 1, q) and B(λ, δ, n+ 1, q) are given by (20) and (27), respectively.

Proof. Since f(z) ∈ Sαn (λ, δ, q), then under the hypotheses of Theorem 1,
we have

(39)

∞∑
k=n+1

ak ≤
|δ|B(λ, δ, n+ 1, q)

A(α, n+ 1, q)
,

which in view of (38), implies that
∞∑

k=n+1

ak ≤ |δ| D(α, λ, δ, n, q).

This last inequality in conjunction with the following inequality (easily ob-
tainable from (16)):

(40) |z| − |z|n+1
∞∑

k=n+1

ak ≤ |f(z)| ≤ |z|+ |z|n+1
∞∑

k=n+1

ak

yields the assertion (37) of Theorem 5. �

A further distortion theorem involving the generalized fractional q-differ-
integral operator Ωα

q, zf(z) is given by the following result.

Theorem 6. Let α < 2, 0 ≤ λ ≤ 1, δ ∈ C \ {0} ∈ N, n ∈ N, 0 < q < 1 and
let the function f(z) defined by (17) be in the class Sαn (λ, δ, q). Then

(41) |z| − |δ| B(λ, δ, n+ 1, q) |z|n+1 ≤
∣∣Ωα

q, zf(z)
∣∣ ≤

|z|+ |δ| B(λ, δ, n+ 1, q) |z|n+1 (z ∈ U),

where B(λ, δ, n+ 1, q) is given by (27).

Proof. In view of (19), we first show that the function A(α, k, q) (−∞ <
α < 2, k ≥ n+ 1; n ∈ N) is a decreasing function of k for α < 2, 0 < q < 1.
It follows that

A(α, k + 1, q)

A(α, k, q)
=

Γq(2 + k)Γq(1 + k − α)

Γq(1 + k)Γq(2 + k − α)
(k ≥ n+ 1;n ∈ N),

and it is sufficient to consider here the value k = n+1, so that on using (4), we

get A(α,k+1,q)
A(α,k,q) = 1−q2+n

1−q2+n−α (0 < q < 1). The function A(α, k, q) is a decreasing

function of k if A(α,n+2,q)
A(α,n+1,q) ≤ 1 (n ∈ N), and this gives 1−q2+n

1−q2+n−α ≤ 1 (0 < q < 1).

Multiplying the above inequality both sides by 1 − q2+n−α (provided that
α < 2), we are at once lead to the inequality α ≤ 0. Thus, A(α, k, q) (k ≥
n+ 1;n ∈ N) is a decreasing function of k for −∞ < α < 2, 0 < q < 1.
Now, on using (19), we observe that∣∣Ωα

q, zf(z)
∣∣ ≥ |z| − ∞∑

k=n+1

A(α, k, q) ak |z|k
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≥ |z| −A(α, n+ 1, q) |z|n+1
∞∑

k=n+1

ak.

Since f(z) ∈ Sαn (λ, δ, q), then under the hypotheses of Theorem 1 on using
inequality (39), we obtain

(42)
∣∣Ωα

q, zf(z)
∣∣ ≥ |z| − |δ|B(λ, δ, n+ 1, q) |z|n+1 .

Similarly, it follows that

(43)
∣∣Ωα

q, zf(z)
∣∣ ≤ |z|+ |δ|B(λ, δ, n+ 1, q) |z|n+1 ,

which establishes the assertion (41) of Theorem 6. �

In view of (18) and (21), Theorem 6 gives the following distortion inequality
for the function f(z) ∈ Sαn (λ, δ, q) involving the fractional q-derivative opera-
tor Dα

q, z:

Corollary 1. Let the function f(z) defined by (17) be in the class Sαn (λ, δ, q),
then

(44)
Γq(2)

Γq(2− α)
|z| {1− |δ|B(λ, δ, n+ 1, q) |z|n} ≤

∣∣Dα
q, zf(z)

∣∣ ≤
Γq(2)

Γq(2− α)
|z| {1 + |δ|B(λ, δ, n+ 1, q) |z|n} (z ∈ U),

where 0 ≤ α < 2, n ∈ N; 0 ≤ λ ≤ 1; 0 < q < 1 and B(λ, δ, n + 1, q) is given
by (27).

Also, in view of (18) and (22), Theorem 6 gives the following inequality
involving fractional q-integral operator Iαq, z:

Corollary 2. Let the function f(z) be in the class Sαn (λ, δ, q), then

(45)
Γq(2)

Γq(2 + α)
|z| {1− |δ|B(λ, δ, n+ 1, q) |z|n} ≤

∣∣Iαq, zf(z)
∣∣ ≤

Γq(2)

Γq(2 + α)
|z| {1 + |δ|B(λ, δ, n+ 1, q) |z|n} (z ∈ U),

where α > 0, n ∈ N; 0 ≤ λ ≤ 1; 0 < q < 1 and B(λ, δ, n + 1, q) is given by
(27).

Similarly, one can easily prove the following distortion inequalities for the
function f(z) ∈ Rαn(λ, δ, q):

Theorem 7. Let α, λ ∈ R and δ ∈ C \ {0} ∈ N satisfy the inequalities

α < 2, n ∈ N; 0 ≤ λ ≤ 1, 0 < q < 1.

Also, let the function f(z) defined by (17) be in the class Rαn(λ, δ, q), then

(46) |z| − |δ| E(α, λ, n, q) |z|n+1 ≤ |f(z)| ≤ |z|+ |δ| E(α, λ, n, q) |z|n+1
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(z ∈ U),

where

(47) E(α, λ, n, q) =
C(λ, n+ 1, q)

A(α, n+ 1, q)
,

A(α, n+ 1, q) and C(λ, n+ 1, q) are given by (20) and (33), respectively.

Theorem 8. Let α < 2, 0 ≤ λ ≤ 1, δ ∈ C \ {0} ∈ N, n ∈ N, 0 < q < 1 and
let the function f(z) defined by (17) be in the class Rαn(λ, δ, q). Then

(48) |z| − |δ| C(λ, n+ 1, q) |z|n+1 ≤
∣∣Ωα

q, zf(z)
∣∣ ≤ |z|+

|δ| C(λ, n+ 1, q) |z|n+1 (z ∈ U),

where C(λ, n+ 1, q) is given by (33).

Now, again in view of (18), (21) and (22), Theorem 8 gives the following
distortion inequalities for the function f(z) ∈ Rαn(λ, δ, q) involving fractional
q-derivative operator Dα

q, z and fractional q-integral operator Iαq, z.

Corollary 3. Let the maof(z) defined by (17) be in the class Rαn(λ, δ, q),
then

(49)
Γq(2)

Γq(2− α)
|z| {1− |δ|C(λ, n+ 1, q) |z|n} ≤

∣∣Dα
q, zf(z)

∣∣ ≤
Γq(2)

Γq(2− α)
|z| {1 + |δ|C(λ, n+ 1, q) |z|n} (z ∈ U),

where 0 ≤ α < 2, n ∈ N; 0 ≤ λ ≤ 1; 0 < q < 1 and C(λ, n+ 1, q) is given by
(33).

Corollary 4. Let the function f(z) be in the class Rαn(λ, δ, q), then

(50)
Γq(2)

Γq(2 + α)
|z| {1− |δ|C(λ, n+ 1, q) |z|n} ≤

∣∣Iαq, zf(z)
∣∣ ≤

Γq(2)

Γq(2 + α)
|z| {1 + |δ|C(λ, n+ 1, q) |z|n} (z ∈ U),

where α > 0, n ∈ N; 0 ≤ λ ≤ 1; 0 < q < 1 and C(λ, n+ 1, q) is given by (33).

4. SPECIAL CASES

In this section we briefly consider some special cases of the results derived
in the preceding sections.
In view of the relationship (18), we find that

(51) Ω0
q, zf(z) = f(z).

When α = 0 and δ = γβ (γ ∈ C \ {0} , 0 < β ≤ 1), the condition (23) reduces
to the inequality

(52)

∣∣∣∣∣1γ
{
z Dq,zf(z) + λqz2 D2

q,zf(z)

λ z Dq,zf(z) + (1− λ)f(z)
− 1

}∣∣∣∣∣ < β,
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( 0 ≤ λ ≤ 1; 0 < β ≤ 1; γ ∈ C \ {0} ; 0 < q < 1; z ∈ U),

and we have

(53) S0n(λ, γβ, q) = Hn(λ, γ, β, q),

where Hn(λ, γ, β, q) represents a subclass of analytic functions, which satisfy
the condition (52).

Similarly, the condition (25) when α = 0 and δ = γβ reduces to the in-
equality

(54)

∣∣∣∣1γ {Dq,zf(z) + λ z D2
q,zf(z)− 1

}∣∣∣∣ < β

(0 ≤ λ ≤ 1; 0 < β ≤ 1; γ ∈ C \ {0} ; 0 < q < 1; z ∈ U),

and we write

(55) R0
n(λ, γβ, q) = Gn(λ, γ, β, q),

where Gn(λ, γ, β, q) is another subclass of analytic functions which satisfy the
condition (54).

By setting α = 0, δ = γβ, and making use of the relations (53) and (55),
Theorems 1 and 2 give the following coefficient inequalities for the classes
Hn(λ, γ, β, q) and Gn(λ, γ, β, q), respectively.

Corollary 5. Let f defined by (17) be in the class Hn(λ, γ, β, q), then

(56)

∞∑
k=n+1

[
λ q(1− qk−1) + 1− q

] [
q(1− qk−1) + β |γ| (1− q)

]
ak ≤

β |γ| (1− q)2.
The result is sharp with the extremal function given by
(57)

f(z) = z − β |γ| (1− q)2

[λ q(1− qn) + 1− q] [q(1− qn) + β |γ| (1− q)]
zn+1 (n ∈ N).

Corollary 6. Let f defined by (17) be in the class Gn(λ, γ, β, q), then

(58)
∞∑

k=n+1

(1− qk)
[
(1− q) + λ(1− qk−1)

]
ak ≤ β |γ| (1− q)2.

The result is sharp and the equality is attained for the function f(z) is given
by

(59) f(z) = z − β |γ| (1− q)2

(1− qn+1) [(1− q) + λ(1− qn)]
zn+1 (n ∈ N).

If we put α = 0, δ = γβ, then Theorem 5 and Theorem 7, respectively, yield
the following distortion theorems for the classesHn(λ, γ, β, q) and Gn(λ, γ, β, q).
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Corollary 7. Let λ, β ∈ R and γ ∈ C \ {0} ∈ N satisfy the inequalities

n ∈ N; 0 ≤ λ ≤ 1, 0 < β ≤ 1, 0 < q < 1.

Also, let the function f(z) defined by (17) be in the class Hn(λ, γ, β, q), then

(60) |z| − β |γ| B(λ, βγ, n+ 1, q) |z|n+1 ≤ |f(z)| ≤ |z|+

β |γ| B(λ, βγ, n+ 1, q) |z|n+1 (z ∈ U),

where B(λ, βγ, n+ 1, q) (with δ and k) is given by (27).

Corollary 8. Let 0 ≤ λ ≤ 1, 0 < β ≤ 1, γ ∈ C \ {0} ∈ N, n ∈ N, 0 <
q < 1 and let the function f(z) defined by (17) be in the class Gn(λ, γ, β, q).
Then

(61) |z| − β |γ| C(λ, n+ 1, q) |z|n+1 ≤ |f(z)| ≤ |z|+

β |γ| C(λ, n+ 1, q) |z|n+1 (z ∈ U),

where C(λ, n+ 1, q) is given by (33).

By letting q → 1−, and making use of the limit formula (8), we observe that
the function class Hn(λ, γ, β, q) and the inequality (56) of Corollary 5 provide,
respectively, the q-extensions of the known class and the related inequality due
to Altintaş, Özkan and Srivastava [3, p. 64, eqn. (16)]. Also, the function class
Gn(λ, γ, β, q) defined by condition (54) and Corollary 6 are the q-extensions of
the corresponding known function class and the related result due to Altintaş,
Özkan and Srivastava [3, p. 65, Lemma 2, eqn. (20)].

Lastly, we conclude this paper by remarking that the fractional q-calculus
operators defined in Section 2 can fruitfully be used in the investigation of
several other multivalent (or meromorphic) analytic function classes and their
various geometric properties like, the coefficient estimates, distortion bounds,
radii of starlikeness, convexity and close to convexity etc. can be studied in
the unit disk. These considerations can be pursued by using the theory of
fractional q-calculus.
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