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LAYER POTENTIAL ANALYSIS OF A NEUMANN PROBLEM

FOR THE BRINKMAN SYSTEM

DENISA FERICEAN

Abstract. In this paper we obtain the existence and uniqueness result (up to a
constant pressure) in some Sobolev spaces for a Neumann problem associated to
the Brinkman system on Lipschitz domains in compact boundaryless Riemannian
manifolds. In order to obtain the desired result, we use an indirect boundary
integral formulation based on the potential theory for the Brinkman system.
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1. INTRODUCTION

Recently, various boundary value problems for elliptic operators on smooth
or even Lipschitz domains have been studied by using potential theory. The
importance of this subject is already well known (see, e.g., [1], [5] [12], [13],
[14]). Note that a valuable contribution in the study of the Dirichlet problem
for the Stokes system on Lipschitz domains in Rn, n ≥ 3 has been provided by
Fabes, Kenig and Verchota in [4]. Well-posedness results for the main bound-
ary value problems associated to the Stokes system on Lipschitz domains in
Euclidean setting, with the boundary data in various function spaces, have
been obtained by Mitrea and Wright [18]. Mitrea and Taylor [17] used the
layer potential theory to study the Poisson problem for the Navier-Stokes
equations on arbitrary Lipschitz domains in compact Riemannian manifolds
and with boundary data in Sobolev or Besov spaces. They have also devel-
oped the layer potential theory for elliptic operators on Lipschitz domains in
compact Riemannian manifolds and studied related boundary value problems
on such domains (see e.g., [15]). The Poisson problem for the Stokes system on
C1 or, more generally, on Lipschitz domains in a smooth compact Riemann-
ian manifold and with data in Sobolev or Besov spaces has been studied by
Dindos̆ and Mitrea in [2], by using a layer potential approach. In addition,
they treated the Poisson problem for the stationary, nonlinear Navier-Stokes
equations on Riemannian manifolds. Recently, Kohr, Pintea and Wendland
[6]-[11] used layer potential methods to study boundary value problems (in-
cluding transmission problems) for pseudodifferential Brinkman operators on
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Lipschitz domains in compact Riemannian manifolds, with the given bound-
ary data in Lp, Sobolev or Besov spaces. Note that the pseudodifferential
Brinkman operator is an extension of the Brinkman operator from the Eu-
clidean setting to the case of the compact Riemanian manifolds and has been
introduced in [7].

The purpose of this paper is to show the existence and uniqueness (up to a
constant pressure) for a Neumann problem associated to the Brinkman system
on Lipschitz domains in compact Riemannian manifolds.

2. PRELIMINARIES

We consider a compact boundaryless manifold (M, g) of dimension m ≥
2 equipped with a smooth Riemannian metric tensor g =

∑m
j,k=1 gjkdxj ⊗

dxk =: gjkdxj ⊗ dxk, and let (gjk) be the inverse of (gjk). Let us mention
that the volume element on M is given by dVol =

√
gdx1 . . . dxm, where g :=

det(gjk). The tangent and cotangent bundles are TM =
⋃
p∈M TpM and

T ∗M =
⋃
p∈M T ∗pM , respectively. By X (M) we denote the space of smooth

vector fields on M , i.e., the space C∞(M,TM) of smooth sections of TM . In
a natural way we can identify T ∗M with TM and Λ1TM with X (M). Next,
we define following inner product on Λ1TM :

(2.1) 〈dxj , dxk〉 = gjk, 〈X,Y 〉 = Xjg
jkYk,

where the vector field X = Xk∂k ∈ TM is identified with the one form
Xrdxr = Xkgkrdxr, Xr = gkrX

k, and the notation 〈·, ·〉 is used for the in-
ner product. Consequently, the gradient operator grad : C∞(M) → X (M)
identifies the exterior derivative operator d : C∞(M) → C∞(M,Λ1TM),
d = ∂jdxj . On the other hand, −div : X (M) → C∞(M) is identified with
the exterior co-derivative operator δ : C∞(M,Λ1TM) → C∞(M), δ = d∗.
Next, assume that X ∈ X (M). Then, the symmetric part of the tensor field
∇X : X (M)×X (M)→ C∞(M,TM ⊗TM), (∇X)(Y, Z) = 〈∇YX,Z〉, where
by ∇ we denote the Levi-Civita connection on M , is the deformation of X,
denoted by Def X. Thus,

(2.2) (Def X)(Y, Z) =
1

2
{〈∇YX,Z〉+ 〈∇ZX,Y 〉}, ∀ Y,Z ∈ X (M).

A Killing field is a vector field X ∈ X (M), which satisfies the equation
Def X = 0 on M . All along this paper, we assume that the manifold M has
no nontrivial Killing fields (for more details such manifolds see [17]). Note
that the Killing fields in Rn are the usual rigid body motion fields.

Let us consider the second-order partial differential operator

(2.3) L : X (M)→ X (M), L := 2Def∗Def = −4+ dδ − 2Ric,

where Def∗ is the adjoint of Def, 4 := −(dδ + δd) is the Hodge Lapla-
cian and Ric is the Ricci tensor. Note that L is the natural operator for
the Stokes system on an arbitrary Riemannian manifold (cf. [3]). Next,
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by OPS`cl one denotes the class of classical pseudodifferential operators of
order ` (for details the interested reader can consult e.g. [19], [20]). Let
P ∈ OPS0

cl(Λ
1TM,Λ1TM) be a self-adjoint and non-negative operator with

respect to the L2(M,Λ1TM) - inner product 〈·, ·〉, i.e.,

(2.4) 〈Pu,w〉 = 〈u, Pw〉, 〈Pu, u〉 ≥ 0 for all u,w ∈ L2(M,Λ1TM).

Then the pseudodifferential Brinkman operator on M is given by (see [7])
(2.5)

BP :=

(
L+ P d
δ 0

)
: C∞(M,Λ1TM)×C∞(M)→ C∞(M,Λ1TM)×C∞(M),

and the Stokes operator is defined as

B0 :=

(
L d
δ 0

)
: C∞(M,Λ1TM)× C∞(M)→ C∞(M,Λ1TM)× C∞(M).

All along this paper we consider the pseudodifferential operator P in the form
P = λ2I, where λ 6= 0 is a constant. Thus, the operator (2.5) takes the form
(2.6)

Bλ :=

(
L+ λ2I d
δ 0

)
: C∞(M,Λ1TM)×C∞(M)→ C∞(M,Λ1TM)×C∞(M).

3. SOBOLEV SPACES ON LIPSCHITZ DOMAINS IN M

Let Ω+ := Ω ⊂ M be a Lipschitz domain and assume that Ω− := M \
Ω is connected. Next, we denote by γ±(x) := {y ∈ Ω± : |x − y| < (1 +
κ)dist(y, ∂Ω)}, x ∈ ∂Ω, the non-tangential approach regions lying in Ω+ and
Ω−, respectively, for fixed κ = κ(∂Ω) > 0. Let Tr± be the non-tangential
boundary trace operators on ∂Ω, (Tr±u)(x) := lim

γ±(x)�y→x
u(y), x ∈ ∂Ω (see

e.g. [15]). For s ≥ 0, consider the Sobolev spaces of functions

Hs(Ω±) := {f |Ω± : f ∈ Hs(M)}, H̃s(Ω±) := {f ∈ Hs(M) : suppf ⊆ Ω±},

and denote by H−s(Ω±) the dual of the space H̃s(Ω±) with respect to the

L2(Ω±)-duality, i.e., H−s(Ω±) =
(
H̃s(Ω±)

)∗
.

In addition, consider the Sobolev spaces of one forms

Hs(Ω±,Λ
1TM |Ω±) := Hs(Ω±)⊗ Λ1TM |Ω± ,

H̃s(Ω±,Λ
1TM |Ω±) := H̃s(Ω±)⊗ Λ1TM |Ω± .

Also, H−s(Ω±,Λ
1TM) := (H̃s(Ω±,Λ

1TM))∗. Next, assume that β ∈
(
−1

2 ,
1
2

)
,

and consider the spaces

(3.1)
H̃−1+β(Ω±,Λ

1TM) = {f ∈ H−1+β(M,Λ1TM) : supp f ⊆ Ω±},
H1+β(Ω±,Lλ) =

{
(u, π, f) : u ∈ H1+β(Ω±,Λ

1TM), π ∈ Hβ(Ω±),

f ∈ H̃−1+β(Ω±,Λ
1TM) such that Lλ(u, π) = f |Ω± , δu = 0 in Ω±

}
,

where Lλ(u, π) := Lu + λ2u + dπ.
Let us mention the following useful result (see e.g. [1, 2, 17]):
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Lemma 3.1. For every s ∈
(

1
2 ,

3
2

)
, the restriction operator to the bound-

ary, C∞(Ω±,Λ
1TM)→ C0(Ω±,Λ

1TM), u 7→ u|∂Ω±, extends to a linear and

bounded operator Tr± : Hs(Ω±,Λ
1TM)→ Hs− 1

2 (∂Ω±,Λ
1TM), which is onto,

having a bounded right inverse Z± : Hs− 1
2 (∂Ω±,Λ

1TM) → Hs(Ω±,Λ
1TM).

For s > 3
2 , Tr± : Hs(Ω±,Λ

1TM)→ H1(∂Ω±,Λ
1TM) is also bounded.

The conormal derivative operator for the Brinkman system on Lipschitz
domains in Riemannian manifolds has been introduced in [9, Lemma 2.2], as
an extension to the notion of conormal derivative operator for the Stokes
system on Euclidean setting, for s ∈ [0, 1] and some X ⊆ M , 〈·, ·〉X :=

Hs(X,Λ1TM)〈·, ·〉(Hs(X,Λ1TM))∗ denotes the pairing between two dual Sobolev

spaces Hs(X,Λ1TM) and
(
Hs(X,Λ1TM)

)∗
, due to Mitrea and Wright [18,

Theorem 10.10] (see also [2, 6, 7, 17]):

Lemma 3.2. For any β ∈
(
−1

2 ,
1
2

)
, the conormal derivative operator

(3.2) ∂±ν : H1+β(Ω±,LP )→ H−
1
2

+β(∂Ω,Λ1TM)

±〈∂±ν (u,π, f),Φ〉∂Ω := 2

∫
Ω±

〈Def u,Def (Z±Φ)〉dVol +

∫
Ω±

〈Pu,Z±Φ〉dVol

+

∫
Ω±

〈π, δ(Z±Ψ)〉dVol− 〈f ,Z±Φ〉Ω± , ∀ Φ ∈ H
1
2
−β(∂Ω,Λ1TM),(3.3)

is well defined and bounded. Also, the Green formula

±〈∂±ν (u, π, f),Tr± v〉∂Ω − 2

∫
Ω±

〈Def u,Def v〉dVol−
∫

Ω±

〈Pu,v〉dVol

=

∫
Ω±

〈π, δv〉dVol− 〈f ,v〉Ω±(3.4)

holds for all (u, π, f) ∈ H1+β(Ω±,LP ) and v ∈ H1−β(Ω±,Λ
1TM).

4. THE INVERTIBILITY OF THE BRINKMAN OPERATOR

The Brinkman operator (2.6) is elliptic in the sense of Agmon-Douglis-
Nirenberg (see [6]) and extends to a Fredholm operator with index zero

Bλ : H1(M,Λ1TM)× L2(M)→ H−1(M,Λ1TM)× L2(M).

The kernel of this operator is the set {0}×R, and its range is H−1(M,Λ1TM)×
L2
∗(M), where L2

∗(M) := {q ∈ L2(M) : 〈q, 1〉 = 0}. In addition, the restric-
tion of the Brinkman operator to H1(M,Λ1TM)× L2

∗(M), denoted by B0
λ, is

invertible (for more details see [6]).
Next, let us refer to the second order differential operator

(4.1) Lλ = 2Def∗Def + λ2I : H1(M,Λ1TM)→ H−1(M,Λ1TM),
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which is invertible as a Fredholm operator with index zero and injective (due to
the assumption of non-existence of non-trivial Killing fields on M) (for details,
see [6, Lemma 5.8]). Then one obtains the following result (see also [6, 7]):

Lemma 4.1. The following operators are invertible

gλ : L2
∗(M)→ L2

∗(M), gλ := δL−1
λ d,(4.2)

B0
λ : H1(M,Λ1TM)× L2

∗(M)→ H−1(M,Λ1TM)× L2
∗(M),(4.3)

and the inverse of B0
λ : H−1(M,Λ1TM)×L2

∗(M)→ H1(M,Λ1TM)×L2
∗(M)

is the operator given by

(4.4) (B0
λ)−1 :=

(
Aλ Bλ

Cλ Dλ

)
,

where the pseudodifferential operators Aλ, Bλ, Cλ, Dλ are defined as

Aλ := L−1
λ − L

−1
λ dg−1

λ δL−1
λ , Bλ := L−1

λ dg−1
λ ,(4.5)

Cλ := g−1
λ δL−1

λ , Dλ := −g−1
λ .(4.6)

Note that the matrix operator

(4.7) (B0
0)−1 :=

(
A0 B0

C0 D0

)
is the inverse of the operator B0

0 , which corresponds to the Stokes system.

5. THE FUNDAMENTAL SOLUTION FOR THE BRINKMAN OPERATOR

In view of Lemma 4.1, one obtains the following relations M :

(5.1) LλAλ + dCλ = I, δAλ = 0,

where I is the identity operator on H−1(M,Λ1TM). Let us denote by Gλ(x, y)
and Πλ(x, y) the Schwartz kernels of the operators Aλ and Cλ, respectively.
In addition, let G(x, y) and Π(x, y) be the Schwartz kernels of Φ0 and Ψ0. By
using (5.1) one then obtains the following equations on M :

(5.2) (Lx + λx)Gλ(x, y) + dxΠλ(x, y) = Diracy(x), δxGλ(x, y) = 0,

where Diracy denotes the Dirac distribution with mass at y. Hence the pair
(Gλ(x, y),Πλ(x, y)) is the fundamental solution of the Brinkman system on M .

5.1. Layer potential operator for the Brinkman system. In this section
we present the main properties of layer potential operators for the Brinkman
system on Lipschitz domains in compact Riemannian manifolds.

For s ∈ [0, 1], f ∈ Hs−1(∂Ω,Λ1TM) and h ∈ Hs(∂Ω,Λ1TM), the single-
layer potential Vλ;∂Ωf is the one form given on M \ ∂Ω by

(5.3) (Vλ;∂Ωf)(x) := 〈Gλ(x, ·), f〉∂Ω, x ∈M \ ∂Ω.

In addition, the corresponding pressure potential has the expression

(5.4) Psλ;∂Ωf := 〈Πλ(x, ·), f〉∂Ω, x ∈M \ ∂Ω.
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Similarly, the double-layer potential is defined at any point x ∈M \ ∂Ω by

(Wλ;∂Ωh)(x) :=

∫
∂Ω

〈
− 2
[
(Defy Gλ(x, ·))ν

∂Ω

]
(y)

+ (Πλ)>(y, x)ν
∂Ω

(y),h(y)
〉
dσ(y),(5.5)

and the corresponding pressure potential

(Pλ;∂Ωh)(x) :=

∫
∂Ω
〈−2[(Defy Πλ(x, ·))ν

∂Ω
](y)− Eλ(x, y)ν

∂Ω
(y),h(y)〉dσ(y),

(5.6)

where Eλ(x, y) is the Schwartz kernel of (−Dλ)> ∈ OPS0
cl(R,R), and

(Lλ)x(Πλ)>(y, x) = dxEλ(x, y)

(see [6]). These layer potentials satisfy in M ⊂ ∂Ω the Brinkman system:

δ(Vλ;∂Ωf) = 0, (L+ λ2I)Vλ;∂Ωf + dQλ;∂Ωf = 0,(5.7)

δWλ;∂Ωh = 0, (L+ λ2I)Wλ;∂Ωh + dPλ;∂Ωh = 0.(5.8)

Now, consider the (principal value) boundary version of WP ;∂Ωh a.e. x ∈ ∂Ω
by (see e.g. [2])

(Kλ;∂Ωh)(x) := p.v.

∫
∂Ω

〈
− 2
[
(Defy Gλ(x, ·))ν

∂Ω

]
(y)

+ (Πλ)>(y, x)⊗ ν
∂Ω

(y),h(y)
〉
dσy,(5.9)

where p.v. means the principal value of a singular integral. Thus, one has

(Kλ;∂Ωh)(x) = lim
ε→0

∫
{y∈∂Ω:r(x,y)>ε}

〈
− 2
[
(Defy Gλ(x, ·))ν

∂Ω

]
(y)

+ (Πλ)>(y, x)⊗ ν
∂Ω

(y),h(y)
〉
dσy,(5.10)

where r(x, y) means the geodesic distance between the points x and y in M .
In addition, one has the following jump relations a.e. on ∂Ω (see e.g. [2, 6])
(5.11)

Tr±(Wλ;∂Ωh) =
(
± 1

2I + Kλ;∂Ω

)
h,

∂±ν (Wλ;∂Ωh,Pλ;∂Ωh) := D±λ;∂Ωh, D+
λ;∂Ωh−D−λ;∂Ωh ∈ Rν

∂Ω

Tr+(Vλ;∂Ωf) = Tr−(Vλ;∂Ωf) := Vλ;∂Ωf ,
∂ν
±(Vλ;∂Ωf , Qλ;∂Ωf) = ∓1

2 f + K∗λ;∂Ωf ,

where

(K∗λ;∂Ωf)(x) := p.v.

∫
∂Ω

〈
−2[DefxGλ(·, y)ν](x)+Πλ(x, y)⊗ ν(x), f(y)

〉
y
dσ(y)

a.e. x ∈ ∂Ω,

is the formal transpose of Kλ;∂Ω.
The next results extend to the Brinkman system the results of M. Mitrea

and M. Taylor [17] and M. Dindos̆ and M. Mitrea [2] obtained in the case
λ = 0, i.e., for the Stokes system (see [6]).
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Theorem 5.1. Let Ω ⊂ M be a Lipschitz domain. Then the following
results hold:

(i) For any s ∈ [0, 1] and f ∈ H−s(∂Ω,Λ1TM), one has

(5.12) Tr+(Vλ;∂Ωf) = Tr−(Vλ;∂Ωf) = Vλ;∂Ωf .

If f ∈ H−s(∂Ω,Λ1TM), s ∈ (0, 1) then the property (5.12) holds as well.
(ii) If s ∈ [0, 1] and λ ∈ [0, 1

2 ], the following operators are linear and bounded:

(5.13)

Vλ,∂Ω : H−s(∂Ω,Λ1TM)→ H1−s(∂Ω,Λ1TM),
Kλ;∂Ω : Hs(∂Ω,Λ1TM)→ Hs(∂Ω,Λ1TM)
K∗λ;∂Ω : Hs−1(∂Ω,Λ1TM)→ Hs−1(∂Ω,Λ1TM)

D±λ;∂Ω : Hs(∂Ω,Λ1TM)→ Hs−1(∂Ω,Λ1TM).

Theorem 5.2. If Ω ⊂M is a Lipschitz domain, then for any s ∈ [0, 1] the
kernel of the operator Vλ,∂Ω : H−s(∂Ω,Λ1TM) → H1−s(∂Ω,Λ1TM) is given
by

(5.14) Ker(Vλ,∂Ω;H−s(∂Ω,Λ1TM)) = Rν, Rν := {cν : c ∈ R} .

In addition, one has the property

(5.15) Vλ,∂Ων = 0 on M.

In the case λ = 0 one gets the result by Mitrea and Taylor [17, Lemma 6.1].

6. INVERTIBILITY RESULTS FOR RELATED LAYER POTENTIAL OPERATORS

The Fredholm and invertibility results below have been recently obtained
in [8, Lemma 5.3, Lemma 5.4].

Theorem 6.1. Let Ω ⊂ M be a Lipschitz domain and let λ 6= 0, µ ∈ [0, 1)
be given constants. Then for any s ∈ (0, 1) the following statements hold:

(i) The operators

(6.1) K̃±λ;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + Kλ;∂Ω : Hs(∂Ω,Λ1TM)→ Hs(∂Ω,Λ1TM)

are Fredholm with index zero.
(ii) The operators

(6.2) K̃±λ;∂Ω;µ := ∓1

2

1 + µ

1− µ
I + Kλ;∂Ω : Hs

ν(∂Ω,Λ1TM)→ Hs
ν(∂Ω,Λ1TM)

are isomorphisms, where

(6.3) Hs
ν(∂Ω,Λ1TM) := {Φ ∈ Hs(∂Ω,Λ1TM) : 〈Φ, ν〉

∂Ω
= 0}.
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7. NEUMANN PROBLEM FOR THE BRINKMAN SYSTEM ON LIPSCHITZ DOMAINS

IN COMPACT RIEMANNIAN MANIFOLDS

Let Ω ⊂ M be a Lipschitz domain on a compact boundaryless Riemann-

ian manifold M , dim(M) ≥ 2, G ∈ H−
1
2

+β(∂Ω,Λ1TM). For β ∈
(
−1

2 ,
1
2

)
,

consider the Neumann problem for the Brinkman system:

(7.1)

{
(L+ λ2I)u + dπ = 0, δu = 0 in Ω

[∂+
ν (u, π)] = [G] ∈ H−

1
2

+β(∂Ω,Λ1TM)/Rν,

where G ∈ H−
1
2

+β(∂Ω,Λ1TM). Note that the condition [∂+
ν (u, π)] = [G] is

equivalent with ∂+
ν (u, π)−G ∈ Rν on ∂Ω.

Uniqueness result for the Neumann problem (7.1) The following
result yields the uniqueness of solutions of the Neuman problem (7.1).

Theorem 7.1. Let Ω ⊂M be a Lipschitz domain on a compact boundaryless

Riemannian manifold M , dim(M) ≥ 2, and let G ∈ H−
1
2

+β(∂Ω,Λ1TM) and
β ∈

(
−1

2 ,
1
2

)
be given. Then the boundary value problem of Neumann type

(7.1) has at most one solution (u, π) ∈ H1+β(Ω,Λ1TM) × Hβ(Ω) (up to a
constant pressure).

Proof. Let us consider the homogenous problem:

(7.2)

{
(L+ λ2I)u0 + dπ0 = 0, δu0 = 0 in Ω
[∂+
ν (u0, π0)] = [0] on ∂Ω.

Therefore, there exists a constant c0 ∈ R such that ∂+
νΓ

(u0, π0) = c0ν.

Since (u0, π0) ∈ H1+β(Ω,Λ1TM) ×Hβ(Ω) satisfies the Brinkman system,
one has the layer potential representation (see e.g., [2]):

(7.3) u0 = Wλ,∂Ω(Tr+u0)−Vλ,∂Ω(∂+
ν (u0, π0)) in Ω,

where, in view of (5.15), the single-layer potential vanishes, as Vλ,∂Ω(ν) = 0
on M . Therefore, (7.3) becomes

(7.4) u0 = Wλ,∂Ω(Tr+u0) in Ω,

Next, going non-tangentially to the boundary in (7.4) we get the equation
Tr+u0 =

(
1
2I + Kλ,∂Ω

)
Tr+u0 a.e. on ∂Ω, i.e.,

(7.5)

(
−1

2
I + Kλ,∂Ω

)
Tr+u0 = 0 a.e. on ∂Ω.

Since the operator −1
2I + Kλ,∂Ω : H

1
2

+β
ν (∂Ω,Λ1TM) → H

1
2

+β
ν (∂Ω,Λ1TM)

is invertible (see e.g. [6, 2]) and Tr+u0 ∈ H
1
2

+β
ν (∂Ω,Λ1TM), it follows that

Tr+u0 = 0 on ∂Ω. Consequently, the pair (u0, π0) ∈ H1+β(Ω,Λ1TM)×Hβ(Ω)
is a solution of the following Dirichlet problem for the Stokes system:

(7.6)

{
(L+ λ2I)u0 + dπ0 = 0, δu0 = 0 in Ω
Tr+u0 = 0 a.e. on ∂Ω.
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In view of the uniqueness result (up to a constant pressure) for this problem
(see e.g. [6, 10]), we get:

(7.7) u0 = 0, π0 = c0 ∈ R in Ω

as desired. �

8. LAYER POTENTIAL FORMULATION OF THE PROBLEM

Next, we show the existence of a solution (u, π) ∈ H1+β(Ω,Λ1TM)×Hβ(Ω)
of the Neumann problem (7.1), by means of the layer potential theory. To this
aim, we use the invertibility property of the operators

±1

2
I + Kλ,∂Ω : H

1
2

+β
ν (∂Ω,Λ1TM)→ H

1
2

+β
ν (∂Ω,Λ1TM),

for any β ∈ (−1
2 ,

1
2), as follows from Theorem 6.1. In addition, in view of the

property (5.7) and the divergence theorem, we find that 〈Vλ,∂ΩF, ν〉∂Ω
= 0,

i.e., Vλ,∂ΩF ∈ H
1
2

+β
ν (∂Ω,Λ1TM) for any F ∈ H−

1
2

+β(∂Ω,Λ1TM). Taking
into account these properties, we consider the following layer potentials:

(8.1) u = Wλ,∂Ωh, π = Qdλ,∂Ωh in Ω,

with the density h ∈ H
1
2

+β
ν (∂Ω,Λ1TM) in the form

(8.2) h :=

(
1

2
I + Kλ,∂Ω

)−1(
−1

2
I + Kλ,∂Ω

)−1

Vλ,∂ΩG.

Let us now show that the pair (u, π) given by (8.1) is a solution of the Neumann
problem (7.1). Indeed, by (5.8) this pair satisfies the Brinkman system

(8.3)
(
L+ λ2I

)
u + dπ = 0, δu = 0 in Ω.

It remains to show that the Neumann condition in (7.1) is also satisfied by
the layer potentials (8.1). To this aim, note that u admits the layer potential
representation (see [2], [8]):

(8.4) u = Wλ,∂Ω

(
Tr+u

)
−Vλ,∂Ω

(
∂+
ν (u, π)

)
on ∂Ω.

Going non-tangentially to the boundary in (8.4) and using the relations (5.11),
one then finds that

Tr+u =

(
1

2
I + Kλ,∂Ω

)
Tr+u− Vλ,∂Ω

(
∂+
ν (u, π)

)
on ∂Ω,

i.e.,

(8.5)

(
−1

2
I + Kλ,∂Ω

)
Tr+u = Vλ,∂Ω

(
∂+
ν (u, π)

)
a.e. on ∂Ω.

In addition, in view of the fact that u = Wλ,∂Ωh in Ω, one has Tr+u =(
1
2I + Kλ,∂Ω

)
h on ∂Ω, and hence the equation (8.5) becomes

(8.6)

(
−1

2
I + Kλ,∂Ω

)(
1

2
I + Kλ,∂Ω

)
h = Vλ,∂Ω

(
∂+
ν (u, π)

)
a.e. on ∂Ω.
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Now, by using the expression (8.2) of the one form h, (8.6) takes the form

Vλ,∂Ω

(
∂+
ν (u, π)

)
= Vλ,∂ΩG a.e. on ∂Ω

i.e.,

(8.7) Vλ,∂Ω

(
∂+
ν (u, π)−G

)
= 0 a.e. on ∂Ω.

Finally, by using the property (5.15), we conclude that

∂+
ν (u, π) ∈ Rν a.e. on ∂Ω,

i.e., [∂+
ν (u, π)] = [G] . Consequently, the pair (u, π) given by (8.1) is a solution

of the Neumann problem (7.1), in the space H1+β(Ω,Λ1TM)×Hβ(Ω). In view
of Theorem 7.1, this is the unique solution (up to a constant pressure) of the
Neumann problem (7.1). The boundedness properties of the layer potentials
(8.1) and those of the operators in (8.2) imply that there exists a constant
C > 0 such that this solution satisfies the estimate

(8.8) ‖u‖H1+β(Ω,Λ1TM) + ‖π‖Hβ(Ω) ≤ C‖[G]‖
H− 1

2 +β(∂Ω,Λ1TM)/Rν
.

By the above arguments, we obtain:

Theorem 8.1. Let Ω ⊂ M be a Lipschitz domain on a compact boundary-

less Riemannian manifold M , dim(M) ≥ 2, and let G ∈ H−
1
2

+β(∂Ω,Λ1TM)
and β ∈

(
−1

2 ,
1
2

)
be given. Then the layer potentials (8.1) with the density

h ∈ H
1
2

+β
ν (∂Ω,Λ1TM) given by (8.2) determine the unique solution (u, π) ∈

H1+β(Ω,Λ1TM) × Hβ(Ω) (up to a constant pressure) of the boundary value
problem of Neumann type (7.1), which satisfies the estimate (8.8).

Remark 8.2. If Ω ⊂ M is a C1 domains then for any µ ∈ [0, 1) and
p ∈ (1,∞) the following operators are isomorphisms:

(8.9) ∓1
2I + Kλ;∂Ω : Lps;ν(∂Ω,Λ1TM)→ Lps;ν(∂Ω,Λ1TM), s = 0, 1,

where Lps;ν(∂Ω,Λ1TM) := {Φ ∈ Lps(∂Ω,Λ1TM) : 〈Φ, ν〉
∂Ω

= 0}. The Fred-
holm and zero index property of these operators follows from [2, Proposi-
tion 3.5] and the compactness of the complementary layer potential operators
for the Stokes and Brinkman systems (see [10]). In addition, the injectivity
property of these operators is provided by similar arguments to those for the
injectivity of the operators in Lemma 6.1.

By using similar arguments to those in the proof of Theorem 8.1, one obtains
the well-posedness of the boundary value problem of Neumann type (7.1)
whenever G ∈ Lps−1(∂Ω,Λ1TM), s ∈ (0, 1) and p ∈ (1,∞). Hence, we get:

Theorem 8.3. Let Ω ⊂ M be a C1 domain on a compact boundaryless
Riemannian manifold M , dim(M) ≥ 2 . Then for any G ∈ Lps−1(∂Ω,Λ1TM),
with s ∈ (0, 1) and p ∈ (1,∞), the layer potentials (8.1) having the density
h ∈ Lps,ν(∂Ω,Λ1TM) given by (8.2) determine the unique solution (u, π) ∈
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Lp
s+ 1

p

(∂Ω,Λ1TM) × Lp
s+ 1

p
−1

(Ω) (up to a constant pressure) of the boundary

value problem of Neumann type (7.1), which satisfies the estimate

(8.10) ||u||Lp
s+ 1

p
(∂Ω,Λ1TM) + ||π||Lp

s+ 1
p−1

(Ω) ≤ C||[G]||Lps−1(∂Ω,Λ1TM)/R/ν ,

with some constant C > 0.
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1 M. Kogălniceanu Str.

400084 Cluj-Napoca, Romania

E-mail: denisa.fericean@ubbcluj.ro


