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THE METHOD OF LOEWNER CHAINS IN THE STUDY

OF THE UNIVALENCE OF C2 MAPPINGS

MIHAI CRISTEA

Abstract. We continue the work of W.C. Royster [26], P.T. Mocanu [20, 21], M.
Cristea [4-7], G. Kohr [19], H. Hamada and G. Kohr [14] of extending univalence
criteria for holomorphic mappings to C1 mappings and we continue our work
from [7] of improving the method of Loewner chains which is used in complex
univalence theory. We show that the method remains valid even for C2 mappings
which are not necessarily holomorphic and we give further applications of our
results.
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1. INTRODUCTION

We set B the unit ball in Rn and if f : B → Rn is Fréchet differentiable in z,
we set Df(z) the real Fréchet derivative of f in z. We shall have in mind the
usual identification of Cn with R2n and also two scalar products on R2n ' Cn,
namely a real scalar product

〈z, w〉1 =

2n∑
k=1

zkwk for z = (z1, . . . , z2n) ∈ R2n, w = (w1, . . . , w2n) ∈ R2n

and

〈z, w〉2 =
n∑
k=1

zkwk for z = (z1, . . . , zn) ∈ Cn, w = (w1, . . . , wn) ∈ Cn,

and we see that 〈a, b〉1 = Re〈a, b〉2 for a, b ∈ R2n ' Cn. If D ⊂ Cn ' R2n is a
domain, f : D → Cn is holomorphic,

f = (f1, . . . , fn), fk = uk + ivk, z = (z1, . . . , zn) ∈ D, zk = xk + iyk,

k = 1, . . . , n, we have the usual identification of f given by

F (x1, y1, . . . , xn, yn) = (u1, v1, . . . , un, vn)

and if f ′(z) is the complex derivative of f in z, we have

f ′(z)(u) = DF (x1, y1, . . . , xn, yn)(a1, b1, . . . , an, bn)

and

||f ′(z)||2 = ||DF (x1, y1, . . . , xn, yn)||1
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if

z = (z1, . . . , zn), u = (u1, . . . , un), zk = xk + iyk, uk = ak + ibk, k = 1, . . . , n.

In this way, even if we work with complex functions (see for instance Theorem
6 from this paper), we reduce the problem to real functions.

The other theorems from this paper are given for real functions and using
their identification we have analogue enounces for holomorphic functions. We
deduce in this way that our results generalize the corresponding theorems from
complex univalence theory to C2 mappings and also that our results hold even
on Rn, with n = 2k + 1, k ∈ N.

We denote by e1, . . . , en the canonical base in Rn, by

Hi = {x ∈ Rn|〈x, ei〉 = 0}, i = 1, . . . , n

and by Pi : Rn → Hi the canonical projection on Hi for i = 1, . . . , n. If
D ⊂ Rn is a domain, we say that f is ACL if for every cube Q ⊂⊂ D with the
sides parallel to coordinate axis it results that f |P−1i (y)∩Q : P−1i (y)∩Q→ Rn
is absolutely continuous for a.e. y ∈ Qi, i = 1, . . . , n, where Qi is the face of
Q which is perpendicular on ei for i = 1, . . . , n. An ACL map has a.e. partial
derivatives and if ∂f

∂xi
∈ Lploc(D) for i = 1, . . . , n, p ≥ 1, we say that f is

ACLp on D. We denote by W 1,p
loc (D,Rn) the Sobolev space of all functions

f : D ⊂ Rn → Rn which are locally in Lp together with their first order
partial derivatives. Using Proposition 1.2, page 6 from [25] we see that if
f ∈ C(D,Rn) and p > 1, then the weak and classical partial derivatives

coincide a.e. and f is ACLp on D if and only if f ∈ W 1,p
loc (D,Rn). We say

that f : D → Rn is quasiregular if f is ACLn on D and there exists K ≥ 1 so
that ||f ′(x)||n ≤ K · Jf (x) a.e. in D. Here f ′(x) denotes the weak derivative
of f in x and Jf (x) denotes the weak jacobian of f in x. A nonconstant
quasiregular map f is a.e. differentiable and Jf (x) 6= 0 a.e. We recommend the
monographs [25], [28], [29] for the basic properties of quasiregular mappings. If
A ∈ L(Rn,Rn), detA 6= 0, we set l(A) = inf

||x||=1
||A(x)||, ||A|| = sup

||x||=1
||A(x)||,

H(A) =
||A||
l(A)

, K0(A) =
||A||n

| detA|
, KI(A) =

|detA|
l(A)n

,

and we see that H(A) ≤ K0(A). If D ⊂ Rn is a domain and f : D → Rn is a.e.
differentiable and Jf (x) 6= 0 a.e. we set K0(f) = ess supK0(f

′(x)), KI(f) =
ess supKI(f

′(x)). If f : D → Rn is quasiregular and K0(f) ≤ K, KI(f) ≤
K, we say that f is K-quasiregular and if in addition f : D → f(D) is a
homeomorphism, we say that f is K quasiconformal. If f ∈ C1(D,D′) is K

quasiconformal with Jf (x) 6= 0 on D and we set H(x, f) = ||f ′(x)||
l(f ′(x)) for x ∈ D

we see that H(x, f) ≤ K for every x ∈ D. We set Sn = {x ∈ Rn|||x|| = 1}.
The following generalization of Loewner’s equation was proved in [7]:

Theorem A. Let K = R,C, E a Hilbert space over the field K, b ∈ (0,∞],
h : B × (0,∞)→ E continuous so that:
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(1) For every 0 < s < a < b and every 0 < r < 1 there exists K(s, a, r) so
that ||h(z, t)|| ≤ K(s, a, r) for every s ≤ t ≤ a and every z ∈ B(0, r).

(2) For every 0 < s < a < b and every 0 < r < 1 there exists M(s, a, r) so
that ||h(z, t) − h(w, t)|| ≤ M(s, a, r) · ||z − w|| for every s ≤ t ≤ a and every
z, w ∈ B(0, r).

(3) For every 0 < s < b there exists 0 ≤ rs < 1 so that Re〈h(z, t), z〉 ≥ 0 for
every s ≤ t < b and every z ∈ B\B(0, rs).

Then the Loewner equation

(∗) dv

dt
= −h(v, t), v(s) = z, 0 < s < b, z ∈ B

has an unique solution vz on [0, b). If rs = 0, then ||vz(t)|| ≤ ||z|| for z ∈ B
and every s ≤ t < b and if Re〈h(z, t), z〉 ≥ c · ||z||2 for s ≤ t ≤ a, then

||vz(t)|| ≤ ||z|| · e−c(t−s) for s ≤ t ≤ a.

The result extends known facts from the method of Loewner chains used
in complex univalence theory (see Theorem 8.1.3, page 298 from [12]). We
recommend the monograph of I. Graham and G. Kohr [12] for the applications
of the method of Loewner chains to complex univalence theory. See also the
strong contributions of Ch. Pommerenke [22] and J.A. Pfalzgraff [23]. The
main instrument used in [7] for proving univalence theorems for C1 mappings
was the following theorem:

Theorem B. Let n ≥ 2, g : B → Rn a continuous, light map, f ∈ C1(B ×
(0,∞),Rn), ft : B → Rn given by ft(z) = f(z, t) for (z, t) ∈ B × (0,∞) so
that

(4)
∂f

∂t
(z, t) = Dft(z)(ht(z)) for (z, t) ∈ B×(0,∞), where h : B×(0,∞)→

Rn satisfies conditions (1), (2), (3) and ht(z) = h(z, t) for (z, t) ∈ B× (0,∞).
(5) There exists continuous mappings λt : B → Rn for 0 < t < ∞ so that

for every 0 < r < 1 there exists tr > 0 so that the mappings λt are injective
on B(0, r) for tr < t < ∞ and for every ε > 0 there exists tr < δε,r so that

||ft(z)− λt(z)|| ≤ ε on B(0, r) for δε,r < t <∞.
(6) ft → g uniformly on the compact subsets of B.

Then g is injective on B. If the following conditions hold:
(7) There exists c > 0 so that Re〈h(z, t), z〉 ≥ c||z||2 for every (z, t) ∈

B × (0,∞).
(8) There exists M > 0 so that ||h(z, t)|| ≤ M · ||z|| for every (z, t) ∈

B × (0,∞).
(9) f extends by continuity on B × (0,∞).
(10) There exists K ≥ 1 so that all the mappings ft are K quasiconformal

on B.
Then there exists F : Rn → Rn Q quasiconformal so that F |B = g.

Since there is a gap in the proof in Theorem 4 from [7] which says that
if g : B → Rn is a C1 quasiconformal map, then there exists F : Rn → Rn
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Q quasiconformal so that F |B = g, it results that also Theorem 5 from [7]
remains partially true. Indeed, using word by word the proof from Theorem
5 from [7], we have:

Theorem C. Let n ≥ 2, k ≥ 1, g ∈ C2(B,Rn) a light map so that g(0) =
0, G : B → L(Rn,Rn) a Ck+1 map so that detG(z) 6= 0 on B, G(0) =
I, ||G−1(0) ◦Dg(0)− I|| < 1 and

||||z||k+1 ·(G(z)−1 ◦Dg(z)−I)+(1−||z||k+1) ·G(z)−1 ◦DG(z)(z, ·)|| < 1 on B.

Then g is injective on B.

2. APPLICATIONS OF LOEWNER’S METHOD TO UNIVALENCE CRITERIA

Theorem C extends some results from [24] and [16]. If G(z) = Dh(z) on B,
we extend a result from [9].

Theorem 1. Let n ≥ 2, k ≥ 1, g ∈ C2(B,Rn) a light map so that g(0) = 0,
let h ∈ Ck+2(B,Rn) be so that Jh(z) 6= 0 on B,

Dh(0) = I, ||Dh(0)−1 ◦Dg(0)− I|| < 1

and

||||z||k+1 · (Dh(z)−1 ◦Dg(z)− I) + (1− ||z||k+1)Dh(z)−1 ◦D2h(z)(z, ·)|| < 1

on B. Then g is injective on B.

If G(z) = Dg(z), Theorem C extends the known univalence result of Becker.

Theorem 2. Let n ≥ 2, k ≥ 1, g ∈ Ck+2(B,Rn) be so that g(0) = 0,
Dg(0) = I, Jg(z) 6= 0 on B and

||(1− ||z||k+1) · (Dg(z)−1 ◦D2g(z)(z, ·))|| < 1 on B.

Then g is injective on B.

We can also prove in this case a quasiconformal extension result.

Theorem 3. Let n ≥ 2, k ≥ 1, 0 < c < 1, g ∈ Ck+2(B,Rn) a light map so
that g(0) = 0, Dg(0) = I, g is K quasiconformal on B and

||(1− ||z||k+1) ·Dg(z)−1 ◦D2g(z)(z, ·)|| ≤ c on B.

Then there exists F : Rn → Rn Q quasiconformal so that F |B = g.

Proof. We use the method from Theorem 5 from [7].
Let f : B × (0,∞)→ Rn be given by

f(z, t) = g(ze−t) + (ekt − e−t)Dg(ze−t)(z) for (z, t) ∈ B × (0,∞).

We see that ft → g uniformly on the compact subsets of B, hence f satisfies
condition (6) and as in Theorem 5 from [7] we show that it also satisfies
condition (5). Let

H(z, t) = (1− e−(k+1)t)Dg(ze−t)−1 ◦D2g(ze−t)(ze−t, ·) for (z, t) ∈ B× (0,∞).
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We see that D(ft)(z) = ektDg(ze−t)(I −H(z, t)),

∂f

∂t
(z, t) = ektDg(ze−t)(kI +H(z, t))(z) for (z, t) ∈ B × (0,∞).

Let E(z) = (1 − |z|k+1)(kI + Dg(z)−1 ◦D2g(z)(z, ·)) for z ∈ B. We see that
||H(z, t)|| ≤ E(ze−t) ≤ c < 1 for (z, t) ∈ B × (0,∞), hence there exists
(I −H(z, t))−1 for (z, t) ∈ B × (0,∞). Let h : B × (0,∞)→ Rn,

h(z, t) = (I −H(z, t))−1 ◦ (kI +H(z, t))(z) for (z, t) ∈ B × (0,∞)

and let ht(z) = h(z, t) for (z, t) ∈ B × (0,∞). We see that

∂f

∂t
(z, t) = D(ft)(z)(ht(z)) for (z, t) ∈ B × (0,∞),

hence f satisfies condition (4). Using relations (12) and (13) from [7] we

see that Re〈ht(z), z〉 ≥ k2−c2
2(k+c2)

· ||z||2 and ||h(z, t)|| ≤ k+c
1−c · ||z|| for (z, t) ∈

B× (0,∞), hence f also satisfies conditions (1), (2), (3), (7), (8). We also see
that f satisfies condition (9).

We see that if A,B ∈ L(Rn,Rn), detA 6= 0, detB 6= 0, then l(A) · l(B) ≤
l(A ◦ B) and ||A ◦ B|| ≤ ||A|| ◦ ||B||. We see that ||I −H(z, t)|| ≤ 1 + c and
||(I−H(z, t))(u)|| ≥ ||u||−||H(z, t)(u)|| ≥ 1−||H(z, t)||·||u|| ≥ 1−c for u ∈ Sn,
hence l(I −H(z, t) ≥ 1− c for (z, t) ∈ B × (0,∞). Then

H(z, ft) =
||Dft(z)||
l(Dft(z))

=
||ekt ·Dg(ze−t) ◦ (I −H(z, t))||
l(ektDg(ze−t)) ◦ (I −H(z, t))

≤ ekt · ||Dg(ze−t)|| · ||I −H(z, t)||
ekt · l(Dg(ze−t)) · l(I −H(z, t))

≤ H(Dg(ze−t)) · 1 + c

1− c

≤ K0(Dg(ze−t)) · 1 + c

1− c
≤ K · 1 + c

1− c
,

for every z ∈ B and every t > 0. It results that f satisfies condition (10) and
using Theorem B, we find F : Rn → Rn Q quasiconformal so that F |B = g. �

We can also extend a result of Brodskii [2] and some results of P. Curt [8]
and G. Kohr and H. Hamada [16].

Theorem 4. Let g ∈ C2(B,Rn) be so that g(0) = 0, Jg(z) 6= 0 on B and
there exists 0 < c ≤ 1 so that ||Dg(z) − I|| < c on B. Then g is injective
on B, and if c < 1 and g is K quasiconformal, there exist F : Rn → Rn Q
quasiconformal so that F |B = g.

Proof. Suppose that c < 1. Let f : B × (0,∞) → Rn be given by f(z, t) =
g(ze−t) + (et − e−t)z for (z, t) ∈ B × (0,∞) and let

H(z, t) = e−2t(I −Dg(ze−t)) for (z, t) ∈ B × (0,∞).

We see that ||H(z, t)|| ≤ c < 1, hence these exists (I −H(z, t))−1 for (z, t) ∈
B × (0,∞). Let h : B × (0,∞) → Rn, h(z, t) = (I − H(z, t))−1 ◦ (I +
H(z, t))(z) for (z, t) ∈ B×(0,∞) and let ht(z) = h(z, t) for (z, t) ∈ B×(0,∞).
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Then Dft(z) = et(I − H(z, t)), ∂f
∂t (z, t) = et(I + H(z, t))(z) and ∂f

∂t (z, t) =
Dft(z)(ht(z)) for (z, t) ∈ B × (0,∞).

Since ||H(z, t)|| ≤ c, we use relations (13) and (14) from [7] to see that

Re〈h(z, t), z〉 ≥ 1−c2
2(1+c2)

· ||z||2 and ||h(z, t)|| ≤ 1+c
1−c ||z|| for (z, t) ∈ B × (0,∞).

Also H(z, ft) = ||et(I−H(z,t))||
l(et(I−H(z,t))) ≤

1+c
1−c for (z, t) ∈ B × (0,∞). We apply now

Theorem B. �

If c = 1, the result is given by the following more generally and quite
elementary theorem:

Theorem 5. Let D ⊂ Rn be a convex domain and g ∈ C1(D,Rn) so that
Jg(z) 6= 0 on D and ||Dg(z)− I|| < 1 on D. Then g is injective on D.

Proof. We see that ||Dg(z)(u)||2−2Re〈Dg(z)(u), u〉+1 = ||Dg(z)(u)−u||2 <
1 if z ∈ D and u ∈ Sn, hence Re〈Dg(z)(u), u〉 > 0 for every z ∈ D and every
u ∈ Sn. Let z, w ∈ D be so that g(z) = g(w) and let h : [0, 1] → Rn be
given by h(t) = g((1 − t)w + tz) for t ∈ [0, 1]. Then 0 = Re〈g(z) − g(w), z −

w〉 = Re〈h(1) − h(0), z − w〉 = Re

〈
1∫
0

h′(t)dt, z − w
〉

=
1∫
0

Re〈h′(t), z − w〉dt

=
1∫
0

Re〈Dg((1− t)z+ tw)(z−w), z−w〉dt > 0 if z 6= w. It results that z = w

and hence g is injective on D. �

If g ∈ H(B), we have a quasiconformal extension result in the case of
Theorem C.

Theorem 6. Let n ≥ 2, k ≥ 1, g ∈ H(B) be quasiregular, nonconstant with
g(0) = 0, let G : B → L(Cn,Cn) holomorphic so that G(0) = I, detG(z) 6= 0
for z ∈ B, there exists K ≥ 1 so that ||G(z)||n ≤ K ·|detG(z)| for every z ∈ B
and there exists 0 < c < 1 so that

||||z||k+1 ·(G(z)−1◦Dg(z)−I)+(1−||z||k+1)·(G(z)−1◦DG(z)(z, ·))|| ≤ c on B.

Then there exists F : Cn → Cn Q - quasiconformal so that F |B = g.

Proof. We see from Theorem C that g is quasiconformal and let f : B ×
(0,∞)→ Rn, f(z, t) = g(ze−t) + (ekt− e−t)G(ze−t)(z) for (z, t) ∈ B× (0,∞).

Let H : B × (0,∞) → Cn, H(z, t) = −((e−(k+1)t(G(ze−t)−1 ◦ Dg(ze−t) − I)

+(1− e−(k+1)t)G(ze−t)−1 ◦DG(ze−t)(ze−t, ·) for z ∈ B, t ≥ 0 and

E(z) = ||z||k+1 · (G−1(z) ◦Dg(z)− I) + (1− ||z||k+1) ·G(z)−1 ◦DG(z)(z, ·)
for z ∈ B. Then ||H(z, t)|| = ||E(ze−t)|| ≤ c < 1 if z ∈ Sn, t > 0 and
applying the maximum principle we see that ||H(z, t)|| ≤ c on B for every
t > 0. It results that there exists (I −H(z, t))−1 for (z, t) ∈ B × (0,∞) and
let h(z, t) = (I − H(z, t))−1 ◦ (kI + H(z, t))(z) for (z, t) ∈ B × (0,∞). Then

Dft(z) = ekt · G(ze−t)(I − H(z, t)), ∂f∂t (z, t) = ekt · G(ze−t)(kI + H(z, t))(z)

and ∂f
∂t (z, t) = D(ft)(z)(h(z, t)) for (z, t) ∈ B × (0,∞) and using relations
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(12) and (13) from [7] we see that Re〈h(z, t), z〉 ≥ k2−c2
2(k+c2)

||z||2 and ||h(z, t)|| ≤
k+c
1−c ||z|| for (z, t) ∈ B × (0,∞). We have that

H(z, ft) =
||Dft(z)||
l(Dft(z))

=
||ekt ·G(ze−t)(I −H(z, t))||
l(ekt ·G(ze−t)) ◦ (I −H(z, t))

≤ ||G(ze−t)||
l(G(ze−t))

· ||I −H(z, t)||
l(I −H(z, t))

≤ H(G(ze−t)) · 1 + c

1− c

≤ K0(G(ze−t)) · 1 + c

1− c
≤ K · 1 + c

1− c
for (z, t) ∈ B × (0,∞).

We apply now Theorem B to find F : Cn → Cn Q quasiconformal so that
F |B = g. �

Remark 1. The result extends a similar one from [24] and [16] established
in the case k = 1 (see also Example 8.5.4 from [12]). The important instrument
we used in the case of holomorphic mappings was the maximum principle and
this allowed us to find that ||H(z, t)|| ≤ c for z ∈ B, t > 0.

3. APPLICATIONS OF LOEWNER’S DIFFERENTIAL EQUATION TO THE STUDY

OF THE GROWTH OF THE MODULUS OF C2 MAPPINGS

Let n ≥ 2, D ⊂ Rn a set with 0 ∈ D, Φ : D → Rn a C2 map so that
Φ(0) = 0. We say that D is Φ like if the equation dw

dt = −Φ(w), w(0) = z has
an unique solution wz : [0,∞) → D for every z ∈ D. If A ∈ L(Rn,Rn), then
the equation dw

dt = −A(w), w(0) = z has the unique solution wz(t) = e−tA · z
for z ∈ B, t ≥ 0. If m(A) = inf

||z||=1
Re〈A(z), z〉 > 0, then Re〈A(z), z〉 ≥ m(A) ·

||z||2 for every z ∈ B and we see from Remark 3 from [7] that lim
t→∞

wz(t) =

lim
t→∞

e−tA ·z = 0. A set D ⊂ Rn with 0 ∈ D which is A like is called of spirallike

type and this is equivalent with the fact that e−tA · z ∈ D for every z ∈ D and
every t ≥ 0. If A = I, a set D ⊂ Rn with 0 ∈ D is I like if and only is starlike,
i.e. if [0, z] ⊂ D for every z ∈ D. If X ⊂ Rn is a C1 manifold with boundary,
dimX = n and x ∈ ∂X, we set I − TXx = {u ∈ Rn\T (∂X)x| there exists γ :
[0, 1]→ X a C1 path so that γ(0) = x and γ′(0) = u}.

Let n ≥ 2, g ∈ C2(B,Rn) so that g(0) = 0, Jg(z) 6= 0 on B and let
Φ ∈ C1(g(B),Rn) be so that Φ(0) = 0. We say that g is Φ like if Re〈Dg(z)−1◦
Φ(g(z)), z〉 > 0 on B\{0}. We say that g is asymptotic Φ like if g is in-
jective, g(B(0, r)) is Φ like for every 0 < r < 1 and the unique solution
wz : [0,∞) → g(B(0, ||z||)) of the equation dw

dt = −Φ(w), w(0) = g(z)

is so that w′z(0) ∈ I − T (g(B(0, ||z||)))g(z) for every z ∈ B. The relation

w′z(0) ∈ I −T (g(B(0, ||z||)))g(z) says that the path wz : [0,∞)→ g(B(0, ||z||))
and the n−1 manifold g(S(0, ||z||)) are transversal in the point z. If Φ(z) = A
for z ∈ B, where A ∈ L(Rn,Rn) and g is asymptotic Φ like, we say that g is as-
ymptotic spirallike, and if A = I, we say that g is asymptotic starlike. These
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definitions are similar with those from [12], Definition 6.4.1 and from [13],
Definition 2.1 and the next theorems extend similar results from the theory of
holomorphic mappings (see Theorem 6.4.5 and 6.4.7 from [12]).

Theorem 7. Let n ≥ 2, g ∈ C2(B,Rn) be so that g(0) = 0, Jg(z) 6= 0 on
B and let Φ ∈ C1(g(B),Rn) be so that Φ(0) = 0 and g is Φ like. Then g(B)
is Φ like. Let h : B → Rn be defined by h(z) = Dg(z)−1 ◦ Φ(g(z)) for z ∈ B
and the equations

(∗) dv

dt
= −h(v), v(0) = z

(∗∗) dw

dt
= −Φ(w), w(0) = g(z), z ∈ B

Suppose that one of the following conditions hold:
a) Every solution vz : [0,∞)→ Rn of the equation (∗) is so that

lim
t→∞

vz(t) = 0 for every z ∈ B.

b) There exists c > 0 so that Re〈h(z), z〉 ≥ c||z||2 for every z ∈ B.
c) g−1(g(0)) = {0} and every solution wz : [0,∞) → Rn of the equation

(∗∗) is so that lim
t→∞

wz(t) = 0.

d) g−1(g(0)) = {0} and there exists c > 0 so that Re〈Φ(w), w〉 ≥ c · ||w||2
for every w ∈ g(B).

Then g is univalent on B and g is asymptotic Φ like.

Proof. Let z ∈ B. Since Re〈h(x), x〉 > 0 on B\{0}, we see from Theorem
A that there exists an unique solution vz of equation (∗) and ||vz(t)|| ≤ ||z||
for t ≥ 0. Let wz : [0,∞) → Rn, wz = g ◦ vz. Then wz is well defined,
Imwz ⊂ g(B), wz(0) = g(z) and

dwz
dt

= Dg(vz(t)) ·
dvz
dt

= Dg(vz(t))(−h(vz(t))

= −Dg(vz(t)) ◦ (Dg(vz(t)))
−1 · Φ(g(vz(t))) = −Φ(wz(t)) for t ≥ 0,

hence wz is the unique solution of equation (∗∗) and hence g(B) is Φ like.
Suppose that condition a) holds. Let a, b ∈ B be so that g(a) = g(b) and let

wa, wb be the solutions of equation (∗∗). Since wa(0) = g(a) = g(b) = wb(0),
it results that wa(t) = wb(t) for t ≥ 0. Let ε > 0 be so that g is univalent
on B(0, ε) and let tε > 0 be so that va(t) ∈ B(0, ε), vb(t) ∈ B(0, ε) for
t ≥ tε. Then g(va(tε)) = wa(tε) = wb(tε) = g(vb(tε)), va(tε), vb(tε) ∈ B(0, ε)
and g is injective on B(0, ε), hence va(tε) = vb(tε). Since g ◦ (va|[0, tε]) =
g ◦ (vb|[0, tε]) = wa[0, tε] and g is a local homeomorphism, we use the property
of the uniqueness of path lifting to find that va(t) = vb(t) for t ∈ [0, tε]. It
results that a = va(0) = vb(0) = b, hence g is injective on B.

Suppose that condition b) holds and let c > 0 be so that Re〈h(z), z〉 ≥
c · ||z||2 for z ∈ B. Using Theorem A, we see that the unique solution vz :
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[0,∞)→ Rn of the equation (∗) is so that ||vz(t)|| ≤ ||z|| · e−ct for t ≥ 0, hence
lim
t→∞

vz(t) = 0 and we apply the preceding step.

Suppose that condition c) holds. Let z ∈ B be fixed, let vz : [0,∞) → Rn
be the unique solution of equation (∗) and let wz = g ◦ vz. Then wz is the
unique solution of equation (∗∗), hence lim

t→∞
wz(t) = 0. Since ||vz(t)|| ≤ ||z||

for t ≥ 0, we see that vz : [0,∞) → B(0, ||z||) has at least a limit point, and
if b ∈ B is such a limit point than g(b) = 0 and hence b = 0. It results that
lim
t→∞

vz(t) = 0 and using condition a), we see that g is injective on B.

Suppose now that condition d) holds. Using Theorem A, we see that the
equation (∗∗) has a unique solution wz : [0,∞)→ Rn so that

||wz(t)|| ≤ ||z||e−ct for every z ∈ B and every t ≥ 0,

hence lim
t→∞

wz(t) = 0. We use now condition c) to see that g is injective on B.

Suppose now that one of the conditions a), b), c), d) hold. Then g is
injective on B. Let z ∈ B, r = ||z||, let vz : [0,∞) → Rn be the unique
solution of equation (∗) and let wz = g ◦ vz. Then wz is the unique solution of
equation (∗∗) and w′z(0) = Dg(z)(v′z(0)). Let ρ : [0,∞)→ R+, ρ(t) = ||vz(t)||2
for t ≥ 0. Then

ρ′(t) = 2Re〈v′z(t), vz(t)〉 = −2Re〈h(vz(t)), vz(t)〉 ≤ 0 for t ≥ 0,

hence ρ is decreasing on [0,∞). Suppose that there exists t0 > 0 so that
ρ(t0) = 0. Then ρ(t) = 0 for t ≥ t0 and let t1 = inf{t > 0|ρ(t) = 0}. Since
ρ(0) = r > 0, we see that t1 > 0 and ρ(t) > 0 on [0, t1), ρ(t) = 0 on [t1,∞).
Also, ρ′(t) = −2Re〈h(vz(t)), vz(t)〉 < 0 on [0, t1), hence ρ is strictly decreasing
on [0, t1). If ρ(t) > 0 for every t > 0, then ρ is strictly decreasing on [0,∞)
and in both cases we see that vz(t) ∈ B(0, r) for t > 0, hence

wz(t) = g(vz(t)) ∈ g(B(0, r)), for t > 0.

Since 2Re〈v′z(0), vz(0)〉 = −2Re〈h(z), z〉 < 0, we see that Re〈v′z(0), z〉 6= 0,
hence v′z(0) ∈ I − T (B(0, r))z and since w′z(0) = Dg(z)(v′z(0)), we see that
w′z(0) ∈ I−T (g(B(0, r)))g(z). It results that g is asymptotic Φ like. Moreover,
if z ∈ B and r = ||z||, then every solution wz : [0,∞) → Rn of equation (∗∗)
is so that wz(t) ∈ g(B(0, r)) for t > 0 and w′z(0) ∈ I − T (g(B(0, r)))g(z). �

Theorem 8. Let n ≥ 2, g ∈ C2(B,Rn) be injective so that g(0) = 0,
Jg(z) 6= 0 on B, let Φ ∈ C1(g(B),Rn) be so that Φ(0) = 0 and g is asymptotic
Φ like. Then g is Φ like.

Proof. Let h : B → Rn, h(z) = Dg(z)−1 ◦ Φ(g(z)) for z ∈ B. Let z ∈ B,
r = ||z|| and let wz : [0,∞) → g(B(0, r)) be so that wz(0) = g(z), dwz

dt =

−Φ(wz(t)) for t ≥ 0 and w′z(0) ∈ I − T (g(B(0, r)))g(z). Let vz = g−1 ◦ wz.
Then vz(0) = g−1(wz(0)) = g−1(g(z)) = z and

dvz
dt

= D(g−1)(wz(t))(w
′
z(t)) = Dg(vz(t))

−1(−Φ(wz(t)))
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= −Dg(vz(t))
−1 ◦ Φ(g(vz(t))) = −h(vz(t)) for t ≥ 0.

Let ρ : [0,∞)→ [0,∞), ρ(t) = ||vz(t)||2 for t ≥ 0. Since

vz(t) = g−1(wz(t)) ∈ g−1(g(B(0, r))) ⊂ B(0, r)

for t ≥ 0, we see that ρ(t) = ||vz(t)|| ≤ r = ρ(0) for t ≥ 0, hence ρ′(0) ≤ 0.
Since

ρ′(0) = 2Re〈v′z(0), vz(0)〉 = −2Re〈h(z), z〉,
we find that Re〈h(z), z〉 ≥ 0. If Re〈h(z), z〉 = 0, then h(z) ∈ T (S(0, r))z and
v′z(0) = −h(vz(0)) = −h(z) ∈ T (S(0, r))z. Then

w′z(0) = Dg(z)(v′z(0)) ∈ Dg(z)(T (S(0, r))z) = T (g(S(0, r)))g(z)

and we reached a contradiction. We proved that Re〈h(z), z〉 > 0 on B\{0},
hence g is Φ like. �

We immediately obtain:

Theorem 9. Let n ≥ 2, g ∈ C2(B,Rn) so that g−1(g(0)) = {0}, Jg(z) 6= 0
on B and let A ∈ L(Rn,Rn) be so that Re〈A(x), z〉 > 0 on B\{0}. Then g is
A like if and only if is asymptotic A like.

Theorem 10. Let n ≥ 2, g ∈ C2(B,Rn) be such that g−1(g(0)) = {0} and
Jg(z) 6= 0 on B. Then Re〈Dg(z)−1(g(z)), z〉 > 0 on B\{0} if and only if g is
asymptotic starlike.

If g ∈ C2(B,Rn), g−1(g(0)) = {0}, Jg(z) 6= 0 on B and A ∈ L(Rn,Rn),
detA 6= 0 is so that Re〈A(z), z〉 > 0 on B\{0} and g is A like, we can define
m(A) = inf

||z||=1
Re〈A(z), z〉, K(A) = sup

||z||=1
Re〈A(z), z〉, mg(r) = inf

||z||=r
Re〈Dg(z)

−1 ◦ A(g(z)), z〉/r2, Mg(r) = sup
||z||=r

Re〈Dg(z)−1 ◦ A(g(z)), z〉/r2 for 0 < r < 1.

We see that 0 < m(A) < K(A) ≤ ||A||, 0 < mg(r) ≤Mg(r) <∞ for 0 < r < 1.
We have the following estimate of the growth of the modules of a A like

map.

Theorem 11. Let n ≥ 2, g ∈ C2(B,Rn) be so that

g−1(g(0)) = {0}, Dg(0) = I, Jg(z) 6= 0 on B

and there exists A ∈ L(Rn,Rn) so that 0 < m(A) = K(A) and g is A-like.
Then

||z|| · exp

 ||z||∫
0

1

x

(
m(A)

Mg(x)
− 1

)
dx


≤||g(z)|| ≤ ||z|| · exp

 ||z||∫
0

1

x

(
K(A)

mg(x)
− 1

)
dx


for every z ∈ B.
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Proof. We see from Theorem 7 that g is injective on B. Let h : B → Rn,

h(z) = Dg(z)−1 ◦A(g(z)) for z ∈ B.
Let z ∈ B and let vz be the unique solution of the equation

dv

dt
= −h(v), v(0) = z.

Since wz(t) = e−tA · g(z) is the unique solution of the equation

dw

dt
= −A(w), w(0) = g(z),

we see that vz = g−1 ◦ wz.
Indeed, let v : [0,∞)→ Rn, v(t) = g−1(e−tAg(z)) for t ≥ 0. Then g(v(t)) =

e−tAg(z) for t ≥ 0 and

dv

dt
= D(g−1)(wz(t))

(
dwz
dt

)
= D(g−1)(e−tA · g(z))(−A(wz(t)))

= −D(g−1)(g(v(t)))(A(g(v(t))) = −Dg(v(t))−1 ◦A(g(v(t)) = −h(v(t))

and v(0) = g−1(g(z)) = z, hence v = vz.

We show that etAvz(t)→ g(z) if t→∞. Since ||e−tAg(z)|| ≤ e−m(A)·t||g(z)||
for z ∈ B, t ≥ 0, we see that e−tAg(z)→ 0 if t→∞. We also see from Lemma

2.1 from [10] that em(A)·t · ||u|| ≤ ||etAu|| ≤ eK(A)·t · ||u|| and e−K(A)·t · ||u|| ≤
||e−tAu|| ≤ e−m(A)·t · ||u|| for u ∈ Rn and t ≥ 0. Since D(g−1)(0) = Dg(0)−1 =
I, we see that for ε > 0 there exists δε > 0 so that ||g−1(u)− u|| ≤ ε · ||u|| for
||u|| ≤ δε. Let tε > 0 be so that ||e−tAg(z)|| ≤ δε for t ≥ tε. Then

||etA · vz(t)− g(z)|| = ||etA(g−1(e−tAg(z))− e−tAg(z))||

≤eK(A)t · ||g−1(e−tAg(z))− e−tAg(z)|| ≤ ε · eK(A)t · ||e−tAg(z)||

≤ε · e(K(A)−m(A))·t · ||g(z)|| = ε||g(z)|| for t ≥ tε,

hence etA · vz(t)→ g(z) if t→∞. Also, ||vz(t)|| ≤ e−m(A)·t · ||etAvz(t)||, hence
vz(t)→ 0 if t→∞.

Let ρ : [0,∞)→ [0,∞), ρ(t) = ||vz(t)||2 for t ≥ 0. Then

2ρ(t) · ρ′(t) = ρ2(t)′ = 2Re〈v′z(t), vz(t)〉 = −2Re〈h(vz(t)), vz(t)〉 ≤ 0 for t ≥ 0,

hence ρ is decreasing on (0,∞).
Using the substitution x = ρ(u), we have

||z||∫
ρ(t)

dx

x ·mg(x)
=

0∫
t

ρ′(u)du

ρ(u) ·mg(ρ(u))
= −

t∫
0

ρ(u) · ρ′(u)du

ρ2(u) ·mg(ρ(u))

=

t∫
0

Re〈h(vz(u)), vz(u)〉du
||vz(u)||2 ·mg(||vz(u)||)

≥ t.
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Then
||z||∫
ρ(t)

1
x

(
K(A)
mg(x)

− 1
)

dx ≥ K(A) · t− ln ||z||ρ(t) , hence

exp

 ||z||∫
ρ(t)

1

x

(
K(A)

mg(x)
− 1

)
dx

 ≥ eK(A)·t · ρ(t)

||z||
.

We have

ρ(t) ≤−K(A)·t ·||z|| · exp

 ||z||∫
ρ(t)

1

x

(
K(A)

mg(x)
− 1

)
dx

 for t ≥ 0.

We also have

||z||∫
ρ(t)

dx

x ·Mg(x)
=

0∫
t

ρ′(u)du

ρ(u) ·Mg(ρ(u))
=

t∫
0

Re〈h(vz(u)), vz(u)〉du
||vz(u)||2 ·Mg(||vz(u)||)

≤ t,

hence
||z||∫
ρ(t)

1
x

(
m(A)
Mg(x)

− 1
)

dx ≤ m(A)·t−ln ||z||ρ(t) and exp

(
||z||∫
ρ(t)

1
x

(
m(A)
Mg(x)

− 1
)

dx

)
≤ em(A)·t · ρ(t)||z|| . We obtained that

e−m(A)·t · ||z|| · exp

 ||z||∫
ρ(t)

1

x

(
m(A)

Mg(x)
− 1

)
dx



≤ ρ(t) ≤ e−K(A)t · ||z|| · exp

 ||z||∫
ρ(t)

1

x

(
K(A)

mg(x)
− 1

)
dx

 .

We have that

||etA · vz(t)|| ≤ eK(A)·t · ||vz(t)|| ≤ ||z|| · exp

 ||z||∫
ρ(t)

1

x

(
K(A)

mg(x)
− 1

)
dx


and ||etAvz(t)|| ≥ em(A)t · ||vz(t)|| ≥ ||z|| exp

(
||z||∫
ρ(t)

1
x

(
m(A)
Mg(x)

− 1
)

dx

)
, hence

||z||·exp
( ||z||∫
ρ(t)

1

x

( m(A)

Mg(x)
−1
)

dx
)
≤ ||etAvz(t)|| ≤ ||z|| exp

( ||z||∫
ρ(t)

1

x

(K(A)

mg(x)
−1
)

dx
)
,
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for every t > 0. Letting t→∞, we find that

||z||·exp
( ||z||∫

0

1

x

( m(A)

Mg(x)
−1
)

dx
)
≤ ||g(z)|| ≤ ||z||·exp

( ||z||∫
0

1

x

(K(A)

mg(x)
−1
)

dx
)
,

for every z ∈ B. �

Remark 2. If g ∈ H(B) then g is A like if and only if g is injective and
e−tAg(z) ∈ g(B) for every (z, t) ∈ B× [0,∞) and g is I like if and only if g(B)
is starlike and g is injective. We have for A like holomorphic mappings some
estimates of the growth of the modulus of g(z) in Lemma 2.11 from [10] and
for starlike mappings we have the well known formulae:

||z||
(1 + ||z||)2

≤ ||g(z)|| ≤ ||z||
(1− ||z||)2

for z ∈ B.

In fact, for holomorphic starlike mappings we see from Lemma 6.1.32 from
[12] that mg(r) = 1−r

1+r , Mg(r) = 1+r
1−r for 0 < r < 1 and using Theorem 11 we

find this formulae.
Some of the result also hold on arbitrary Hilbert spaces.

Theorem 12. Let K = R,C, E a Hilbert space over the field K, g ∈
C2(B,E) so that g−1(g(0)) = {0}, g′(z) ∈ Isom(E,E) for every z ∈ B and
suppose that Re〈Dg(z)−1(g(z)), z〉 > 0 on B\{0}. Then g is univalent and
g(B) is starlike.

Theorem 13. Let K = R,C, E be a Hilbert space over the field K, b ∈
(0,∞], h : B × (0, b) → E continuous, satisfying conditions (1), (2), (3)
so that there exists c, d : (0, b) → R+ continuous so that c(||z||) · ||z||2 ≤
Re〈h(z, t), z〉 ≤ d(||z||) · ||z||2 for every z ∈ B\{0} and every 0 < t < b. Then,
if z ∈ B, 0 < s < b and φ(·, s, z) is the solution of Loewner’s differential
equation dv

dt = −h(v, t), v(s) = z and ρ(t) = ||φ(t, s, z)|| for s ≤ t ≤ b, we
have

es ·||z||·exp
( ||z||∫
ρ(t)

1

x

( 1

d(x)
−1
)

dx
)
≤ etρ(t) ≤ es ·||z||·exp

( ||z||∫
ρ(t)

1

x

( 1

c(x)
−1
)

dx
)
.

4. QUASICONFORMAL EXTENSION OF A LIKE MAPPINGS

The following theorem extends some results of Chuaqui [3] and Hamada
and Kohr [16, 17] established for holomorphic mappings:

Theorem 14. Let n ≥ 2, g ∈ C2(B,Rn) K quasiconformal so that g(0) =
0, Jg(z) 6= 0 on B and let A ∈ L(Rn,Rn) and c,M > 0 be so that 0 < m(A) =
K(A), Re〈Dg(z)−1 ◦ A(g(z)), z〉 ≥ c · ||z||2 on B and ||Dg(z)−1 ◦ A(g(z))|| ≤
M on B. Then g is a Lipschitz map on B and there exists F : Rn → Rn Q
quasiconformal so that F |B = g.
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Proof. We see from Theorem 7 that g is injective on B. Since A ◦ g is
differentiable in 0, there exists ε1 > 0, M1 > 0 so that ||A(g(z))|| ≤ M1 ·
||z|| for ||z|| ≤ ε1. Since g(0) = 0 and (g−1)′ is continuous in 0, there exists
0 < ε < ε1 and M2 > 0 so that ||(g−1)′(g(z))− (g−1)′(0)|| ≤ M2 for ||z|| ≤ ε.
Let z ∈ B(0, ε). Then

||Dg(z)−1(A(g(z)))||
||z||

=
||(g−1)′(g(z))(A(g(z)))||

||z||

≤ ||(g
−1)′(g(z))(A(g(z)))− (g−1)′(0)(A(g(z)))||

||z||
+
||(g−1)′(0)(A(g(z)))||

||z||

≤ ||(g−1)′(g(z))− (g−1)′(0)|| · ||A(g(z))||
||z||

+ ||(g−1)′(0)|| · ||A(g(z))||
||z||

≤M1(M2 + ||(g−1)′(0)||).
Let M3 = M1(M2 + ||(g−1)′(0)||) and M0 = max

{
M3,

M
ε

}
. We showed that

||Dg(z)−1(A(g(z)))|| ≤M0 · ||z|| for every z ∈ B. Also,

c · ||z||2 ≤ Re〈Dg(z)−1(A(g(z))), z〉

≤ |〈Dg(z)−1(A(g(z))), z〉| ≤ ||Dg(z)−1(A(g(z)))|| · ||z||,
hence c · ||z|| ≤ ||Dg(z)−1(A(g(z)))|| for every z ∈ B. Let h : B → Rn, h(z) =
Dg(z)−1(A(g(z))) for z ∈ B and the initial value problem

dv

dt
= −h(v), v(0) = z for z ∈ B.

Since Re〈h(z), z〉 ≥ c · ||z||2 for every z ∈ B we see from Theorem A that there
exists an unique solution vz : [0,∞) → Rn of this equation and ||vz(t)|| ≤
||z||·e−ct for z ∈ B, t ≥ 0. As in Theorem 11 we see that vz(t) = g−1(e−tAg(z))
for z ∈ B, t ≥ 0, hence ||g−1(e−tAg(z))|| ≤ ||z|| · e−ct for z ∈ B, t ≥ 0. Let
t > 0, r > 0 and z ∈ B(0, r). We see from Theorem 7 that g is asymptotic
A like, hence there exists w ∈ B(0, r) so that e−tAg(z) = g(w) and since
||w|| = ||g−1(g(w))|| = ||g−1(e−tAg(z))|| ≤ ||z|| · e−ct ≤ r · e−ct, we see that
e−tAg(z) = g(w) ∈ g(B(0, re−ct)) ∈ g(B(0, e−ct)). Let Kt > 0 be so that

g(B(0, e−ct)) ⊂ B(0,Kt). Then ||g(z)|| ≤ eK(A)·t||e−tAg(z)||, hence g(z) ∈
B(0,Kt · eK(A)·t). It results that g(B) ⊂ B(0,Kt · eK(A)·t), hence g is bounded
on B and let K0 > 0 be so that ||A(g(z))|| ≤ K0 for every z ∈ B.

We show that there exists δ > 0 so that ||Dg(z)−1|| ≥ δ for every z ∈ B.
Indeed, otherwise we can find zp ∈ B and up ∈ Sn so that ||Dg(zp)

−1(up)|| →
0.

Let λ : g(B)→ B be the inverse of g. Then λ is also K quasiconformal and

K ≥ ||λ
′(g(zp))||

l(λ′(g(zp)))
≥ ||λ

′(g(zp))(A(g(zp))/||A(g(zp))||)
||λ′(g(zp))(up)||

=
||Dg(zp)

−1(A(g(zp)))||
||A(g(zp))|| · ||Dg(zp)−1(up)||

≥ c · ||zp||
||A(g(zp))||

· 1

||Dg(zp)−1(up)||
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≥ c ·min

{
1

M1
,
ε

K0

}
· 1

||Dg(zp)−1(up)||
→ ∞ if p→∞.

We reached a contradiction, hence we proved that there exists δ > 0 so that
||Dg(z)−1|| ≥ δ for every z ∈ B. Then

||g′(z)|| = H(z, g) · l(g′(z)) ≤ K · l(g′(z)) =
K

||Dg(z)−1||
≤ K

δ
,

for every z ∈ B, and this implies that g is a Lipschitz map on B and hence it
extends continuously at B.

Let ft : B → Rn, ft(z) = etAg(z) for z ∈ B, t ≥ 0. We see that Dft(z) =

etA ◦Dg(z), ∂f∂t (z, t) = A ◦ etAg(z) for (z, t) ∈ B × [0,∞), hence

Dft(z)(h(z)) = etADg(z)(Dg(z)−1(A(g(z))))

= etA ◦A(g(z)) = A ◦ etA(g(z)) =
∂f

∂t
(z, t),

for z ∈ B and t ≥ 0. Also, ft → g uniformly on the compact subsets of B,
every map ft is injective on B, f extends continuously on B × (0,∞) and
Re〈h(z), z〉 ≥ c · ||z||2 on B, ||h(z)|| ≤M0 · ||z|| for z ∈ B and h is a C1 map.

Also,

H(z, ft) =
||Dft(z)||
l(Dft(z))

≤ ||e
tA ◦Dg(z)||

l(etA ◦Dg(z))
≤ ||e

tA|| · ||Dg(z)||
l(etA) · l(Dg(z))

≤ eK(A)t · ||Dg(z)||
em(A)·t · l(Dg(z))

= H(z, g) ≤ K

for every z ∈ B and every t ≥ 0, hence all the mappings ft are K quasicon-
formal. We apply now Theorem B to find F : Rn → Rn Q quasiconformal so
that F |B = g. �

Remark 3. If a > 0 and A + A∗ = 2aI, then 0 < a = m(A) = K(A).
Also, the condition Re〈Dg(z)−1(A(g(z))), z〉 ≥ c · ||z||2 for every z ∈ B\{0} is
satisfied if f is strongly starlike (see Definition 8.3.22 in [12]) or if f is strongly
starlike of order α (see Definition 8.5.12 from [12]). Indeed, in both cases

there exists 0 < c < 1 so that
∣∣∣ 〈h(z),z〉||z||2 −

1+c2

1−c2

∣∣∣ ≤ 2c
1−c2 for every B\{0}, hence

〈h(z),z〉
||z||2 ∈ B

(
1+c2

1−c2 ,
2c

1−c2

)
for every z ∈ B\{0} and we see that Re〈h(z),z〉

||z||2 ≥
1−c
1+c on B\{0}. It results that Theorem 14 extends the results from [3], [16],

[17] even in the case of holomorphic mappings.

Finally we give the proof of the eliminability result for quasiregular map-
pings from Theorem 2 from [7], which was omitted in [7].

Theorem 15. Let n ≥ 2, D ⊂ Rn a domain, E ⊂ D closed in D so that
µn(E) = 0 and let f : D → Rn be continuous, open, discrete on D and K-
quasiregular on D\E. Let Hi = {x ∈ Rn|〈x, ei〉 = 0} for i = 1, . . . , n and
let Pi : Rn → Hi be the projections on Hi for i = 1, . . . , n and suppose that
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P−1i (y) ∩ E is at most countable for a.e. y ∈ Hi, i = 1, . . . , n. Then f is K
quasiregular on D.

Proof. We see from Proposition 1.2 page 6 from [25] that the weak partial
derivatives and the ordinary partial derivatives of f coincide a.e. in D\E. We

denote by ∂f
∂xi

(x) the ordinary partial derivatives of f in x, i = 1, . . . , n, while

f ′(x) and Jf (x) will denote the weak derivative of f in x, respectively the
weak Jacobian of f in x.

Let x ∈ D be fixed. Since f is continuous, open, discrete on D, there exists
rx > 0, Nx ≥ 1 and Ux ∈ V (x) so that Ux ⊂⊂ D, f(Ux) = B(f(x), rx) and

N(f, Ux) ≤ Nx. Since f ∈W 1,1
loc (D\E), we use the change of variable formulae

(3) from [18] to see that
∫
Ux

|Jf (z)|dz =
∫

Ux\E
|Jf (z)|dz ≤

∫
Rn

N(y, f, Ux\E)dy

≤ Nx ·µn(B(f(x), rx)) <∞. We therefore proved that Jf ∈ L1loc(D) and since
||f ′(z)||n ≤ K · Jf (z) a.e. in D, we see that

∫
Q

||f ′(z)||ndz < ∞ for every

case Q ⊂⊂ D with the sides parallel to coordinate axes. Let Q ⊂⊂ D be
such a cube, let i ∈ {1, . . . , n} and let Qi be the face of Q which is parallel
to Hi and let Jy = P−1i (y) ∩ Q for y ∈ Qi. Since

∫
Q

||f ′(z)||dz < ∞, we use

Fubini’s theorem to see that
∫
Jy

|| ∂f∂xi (z)||dz < ∞ for a.e. y ∈ Qi. Since f is

quasiregular on D\E, we see that f |Jy : Jy → Rn is absolutely continuous on
every closed internal J ⊂ Jy ∩ (D\E) for a.e. y ∈ Qi, and since Jy ∩ E is at
most-countable for a.e. y ∈ Qi, it results that all the components of the map
f |Jy : Jy → Rn satisfy condition (N) for a.e. y ∈ Qi. Using Barry’s theorem
(see [27], page 285), we see that all the components of f |Jy : Jy → Rn are
absolutely continuous on Jy for a.e. y ∈ Qi, i = 1, . . . , n, hence f is ACL
on D. Since

∫
Q

||f ′(z)||ndz ≤ K ·
∫
Q

|Jf (z)|dz < ∞ for every cube Q ⊂⊂ D

with the sides parallel to coordinate axes, we see that f is ACLn on D and
||f ′(z)||n ≤ K ·Jf (z) a.e. in D. We proved that f is K-quasiregular on D. �
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