ON HARMONIC MAPPINGS LIFTING TO MINIMAL SURFACES

HAKAN METE TAŞTAN and YAŞAR POLATOĞLU

Abstract

The projection on the base plane of a regular minimal surface S in \mathbb{R}^{3} with isothermal parameters defines a complex-valued univalent harmonic function f. We obtain distortion theorems for the Weierstrass-Enneper parameters and the Gaussian curvature of the minimal surface S, provided that the corresponding univalent harmonic function f belongs to the class $\mathcal{S}_{\mathrm{H}}^{*}$.

MSC 2010. Primary 30C99; Secondary 31A05, 53A10.
Key words. Minimal surface, harmonic mapping, distortion theorem, isothermal parametrization, Weierstrass-Enneper representation.

1. INTRODUCTION

Minimal surfaces are most commonly known as which have the minimum area amongst all other surfaces spanning a given closed curve in \mathbb{R}^{3}. Geometrically, the definition of a minimal surface is that the mean curvature H is zero at every point of the surface. If locally one can write the minimal surface in \mathbb{R}^{3} as $(x, y, \Phi(x, y))$ the minimal surface equation $\mathrm{H}=0$ is equivalent to

$$
\left(1+\Phi_{y}^{2}\right) \Phi_{x x}-2 \Phi_{x} \Phi_{y} \Phi_{x y}+\left(1+\Phi_{x}^{2}\right) \Phi_{y y}=0
$$

There exists a choice of isothermal parameters $(u, v) \in \Omega \subset \mathbb{R}^{2}$ so that the surface $X(u, v)=(x(u, v), y(u, v), \Phi(u, v)) \in \mathbb{R}^{3}$ satisfying the minimal surface equation is given by

$$
E=\left|X_{u}\right|^{2}=\left|X_{v}\right|^{2}=G>0, \quad F=<X_{u}, X_{v}>=0, \quad \triangle_{(u, v)} X=0
$$

(where Δ denotes the Laplacian operator). The general solution of such an equation is called the local Weierstrass-Enneper representation [2].

A complex-valued function f which is harmonic in a simply connected domain $\mathbb{D} \subset \mathbb{C}$ has the canonical representation $f=h+\bar{g}$, where h and g are analytic in \mathbb{D} and $g\left(z_{0}\right)=0$ for some prescribed point $z_{0} \in \mathbb{D}$. According to a theorem of H . Lewy [1]; f is locally univalent if and only if its Jacobian $\left(\left|f_{z}\right|^{2}-\left|f_{\bar{z}}\right|^{2}=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}\right)$ does not vanish. f is said to be sensepreserving if its Jacobian is positive. In this case $h^{\prime}(z)$ does not vanish and the analytic function $\omega(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}$, called the second dilatation of f, has the property $|\omega(z)|<1$ for all $z \in \mathbb{D}$. Throughout this paper we will assume that f is locally univalent sense -preserving, and we call f a harmonic mapping.

A harmonic mapping $f=h+\bar{g}$ can be lifted locally to a regular minimal surface given by conformal (or isothermal) parameters if and only if its dilatation is the square of an analytic function $\omega(z)=q^{2}(z)$ for some analytic function q with $|q(z)|<1$. Equivalently, the requirement is that any zero
of ω be of even order, unless $\omega \equiv 0$ on its domain, so that there is no loss of generality in supposing that z ranges over the unit disc \mathbb{D}, because any other isothermal representation can be precomposed with a conformal map from the unit disc \mathbb{D} whose existence is guaranteed by the Riemann mapping theorem. For such a harmonic mapping $f=u+\mathrm{i} v$, the minimal surface has the Weierstrass-Enneper representation with parameters (u, v, t) given by

$$
\begin{align*}
& u=\operatorname{Re}\{f(z)\}=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{1}(\zeta) \mathrm{d} \zeta\right\}, \\
& v=\operatorname{Im}\{f(z)\}=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{2}(\zeta) \mathrm{d} \zeta\right\}, \tag{1}\\
& t=\operatorname{Re}\left\{\int_{0}^{z} \varphi_{3}(\zeta) \mathrm{d} \zeta\right\},
\end{align*}
$$

for $z \in \mathbb{D}$ with

$$
\begin{align*}
& \varphi_{1}=h^{\prime}+g^{\prime}=p\left(1+q^{2}\right)=\frac{\partial u}{\partial z} \\
& \varphi_{2}=-\mathrm{i}\left(h^{\prime}-g^{\prime}\right)=-\mathrm{i} p\left(1-q^{2}\right)=\frac{\partial v}{\partial z} \tag{2}\\
& \varphi_{3}=-2 \mathrm{i} p q=\frac{\partial t}{\partial z}, \quad \varphi_{3}^{2}=-4 \omega\left(h^{\prime}\right)^{2} \quad \text { and } \quad h^{\prime}=p
\end{align*}
$$

See [1] and [4, p. 176].
The metric of the surface has the form $\mathrm{d} s=\lambda|\mathrm{d} z|$, where $\lambda=\lambda(z)>0$. Here, the function λ takes the form

$$
\begin{equation*}
\lambda=\left|h^{\prime}\right|+\left|g^{\prime}\right|=\left|h^{\prime}\right|(1+|\omega|)=|p|\left(1+|q|^{2}\right) . \tag{3}
\end{equation*}
$$

A general theorem of differential geometry says that if any regular surface is represented by conformal parameters (or isothermal parameters) so that its metric has the form $\mathrm{d} s=\lambda|\mathrm{d} z|$ for some positive function λ, then the Gauss curvature of the surface is $\mathrm{K}=-\lambda^{-2} \Delta(\log \lambda)$. This quantity K is also known as the curvature of the metric. In our special case of a minimal surface associated with a harmonic mapping $f=h+\bar{g}$, the formula for curvature reduces to

$$
\begin{equation*}
\mathrm{K}=-\frac{4\left|q^{\prime}\right|^{2}}{|p|^{2}\left(1+|q|^{2}\right)^{4}} . \tag{4}
\end{equation*}
$$

Since the underlying harmonic mapping f has dilatation $\omega=\frac{g^{\prime}}{h^{\prime}}=q^{2}$ and $h^{\prime}=p$. An equivalent expression is the following

$$
\begin{equation*}
\mathrm{K}=-\frac{\left|\omega^{\prime}\right|^{2}}{\left|h^{\prime} g^{\prime}\right|(1+|\omega|)^{4}} . \tag{5}
\end{equation*}
$$

Now we define the following class of harmonic functions [2], which is used throughout this paper.

Let $h(z)=a_{0}+a_{1} z+a_{2} z^{2}+\cdots$ and $g(z)=b_{0}+b_{1} z+b_{2} z^{2}+\cdots$ be analytic functions in the open unit disc $\mathbb{D}=\{z \in \mathbb{C}:|z|<1\}$. The class of all
sense-preserving harmonic functions in \mathbb{D} with $a_{0}=b_{0}=0$ and $a_{1}=1$ will be denoted by \mathcal{S}_{H}. Thus \mathcal{S}_{H} contains the standard class \mathcal{S} of analytic functions. See [3] and [4].

Let $s(z)=z+c_{2} z+c_{3} z^{2}+\cdots$ be analytic function in the open unit disc \mathbb{D}. If $s(z)$ satisfies the condition

$$
\begin{equation*}
\operatorname{Re}\left[z \frac{s^{\prime}(z)}{s(z)}\right]>0, \quad(z \in \mathbb{D}) . \tag{6}
\end{equation*}
$$

then $s(z)$ is called starlike function in \mathbb{D}, and the class of starlike functions in \mathbb{D} is denoted by \mathcal{S}^{*}.

Let Ω be the family of functions $\phi(z)$ which are regular and satisfy the conditions $\phi(0)=0$ and $|\phi(z)|<1$ for every $z \in \mathbb{D}$, and let $\Omega(a)$, where $a=\left|b_{1}\right|$, be the class of functions $\omega(z)$ which are analytic in \mathbb{D} and satisfy $\omega(0)=b_{1} \neq 0,|\omega(z)|<1$ for all $z \in \mathbb{D}$. We note that Ω_{\cup} be the union of all classes $\Omega(a)$ whereas a ranges over $(0,1)$.

We denote by $\mathcal{S}_{\mathrm{H}}^{*}$ the subclass of \mathcal{S}_{H} consisting of all univalent harmonic functions whose analytic part is starlike.

2. MAIN RESULTS

Lemma 1. Let ω be an element of Ω_{\cup}. Then

$$
\begin{equation*}
\frac{|a-r|}{1-a r} \leq|\omega(z)| \leq \frac{a+r}{1+a r} . \tag{7}
\end{equation*}
$$

Proof. The inequality (7) is clear for $z=0$, whence $r=|z|=0$. Now, let $z \in \mathbb{D} \backslash\{0\}$, and define $b_{1}=a \mathrm{e}^{\mathrm{i} \theta}$ for some $\theta \in \mathbb{R}$. Now we consider the function

$$
\phi(z)=\frac{\mathrm{e}^{-\mathrm{i} \theta} \omega(z)-a}{1-a \mathrm{e}^{-\mathrm{i} \theta} \omega(z)}, \quad z \in \mathbb{D} .
$$

This function satisfies the conditions of Schwarz's lemma. The estimation of Schwarz's lemma, $|\phi(z)| \leq|z|=r$, gives

$$
\begin{equation*}
|\phi(z)|=\left|\frac{\mathrm{e}^{-\mathrm{i} \theta} \omega(z)-a}{1-a \mathrm{e}^{-\mathrm{i} \theta} \omega(z)}\right| \leq r \Rightarrow\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)-a\right| \leq r\left|1-a \mathrm{e}^{-\mathrm{i} \theta} \omega(z)\right| . \tag{8}
\end{equation*}
$$

The inequality (8) is equivalent to

$$
\begin{equation*}
\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)-\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} . \tag{9}
\end{equation*}
$$

The equality holds in the inequality (9) only for the function

$$
\omega(z)=\mathrm{e}^{\mathrm{i} \theta} \cdot \frac{\mathrm{e}^{\mathrm{i} \varphi} z+a}{1+a \mathrm{e}^{\mathrm{i} \varphi} z}, \quad z \in \mathbb{D}, \varphi \in \mathbb{R} .
$$

If we use the triangle inequality in the inequality (9), we get

$$
\left|\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)\right|-\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right|\right| \leq\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)-\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} .
$$

Therefore, we have

$$
\begin{gathered}
-\frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}} \leq\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)\right|-\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}}, \\
-\frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}}+\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right| \leq\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)\right| \leq \frac{r\left(1-a^{2}\right)}{1-a^{2} r^{2}}+\left|\frac{a\left(1-r^{2}\right)}{1-a^{2} r^{2}}\right|,
\end{gathered}
$$

and this last inequalities are equivalent to

$$
\begin{equation*}
\frac{a-r}{1-a r} \leq|\omega(z)|=\left|\mathrm{e}^{-\mathrm{i} \theta} \omega(z)\right| \leq \frac{a+r}{1+a r} . \tag{10}
\end{equation*}
$$

Similarly, if we replace a with r in the inequality (8), we finally get

$$
\begin{equation*}
\frac{r-a}{1-a r} \leq|\omega(z)| \leq \frac{a+r}{1+a r} . \tag{11}
\end{equation*}
$$

From the inequalities (10) and (11), we obtain (7).
Corollary 1. If $\omega \in \Omega_{\cup}$, then

$$
\begin{equation*}
\frac{(1-a)(1-r)}{1+a r} \leq(1-|\omega(z)|) \leq \frac{1-a r-|a-r|}{1-a r} \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{1-a r+|a-r|}{1-a r} \leq 1+|\omega(z)| \leq \frac{(1+a)(1+r)}{1+a r} \tag{13}
\end{equation*}
$$

for all $|z|=r<1$.
Proof. These inequalities are simple consequences of Lemma 1.
Corollary 2. Let $f=h+\bar{g}$ be an element of $\mathcal{S}_{\mathrm{H}}^{*}$. Then

$$
\begin{equation*}
\frac{(1-r)|a-r|}{(1+r)^{3}(1-a r)} \leq\left|g^{\prime}(z)\right| \leq \frac{(1+r)(a+r)}{(1-r)^{3}(1+a r)} . \tag{14}
\end{equation*}
$$

Proof. Recall that if the analytic part h of f is starlike, then we have

$$
\begin{equation*}
\frac{1-r}{(1+r)^{3}} \leq\left|h^{\prime}(z)\right| \leq \frac{1+r}{(1-r)^{3}} . \tag{15}
\end{equation*}
$$

On the other hand, if we consider Lemma 1 and the definition of the second dilatation of f, then we can write

$$
\begin{equation*}
\frac{|a-r|}{1-a r} \leq\left|\frac{g^{\prime}(z)}{h^{\prime}(z)}\right| \leq \frac{a+r}{1+a r} . \tag{16}
\end{equation*}
$$

Considering the inequalities (15) and (16) together, we obtain (14).

3. APPLICATIONS TO MINIMAL SURFACES

Theorem 1. Let the functions φ_{k} for $k=1,2,3$, be the WeierstrassEnneper parameters of a regular minimal surface S and $f=(h+\bar{g}) \in \mathcal{S}_{\mathrm{H}}^{*}$ lifts to the minimal surface S , then

$$
\begin{align*}
& \frac{(1-a)(1-r)^{2}}{(1+a r)(1+r)^{3}} \leq\left|\varphi_{1}\right| \leq \frac{(1+a)(1+r)^{2}}{(1+a r)(1-r)^{3}} \tag{17}\\
& \frac{(1-a)(1-r)^{2}}{(1+a r)(1+r)^{3}} \leq\left|\varphi_{2}\right| \leq \frac{(1+a)(1+r)^{2}}{(1+a r)(1-r)^{3}} \tag{18}
\end{align*}
$$

and

$$
\begin{equation*}
\frac{4(1-r)^{2}|a-r|}{(1-a r)(1+r)^{6}} \leq\left|\varphi_{3}\right|^{2} \leq \frac{4(a+r)(1+r)^{2}}{(1+a r)(1-r)^{6}} \tag{19}
\end{equation*}
$$

Proof. Using the formulas (2) and the Corollary 1. we obtain (17), (18) and (19).

Theorem 2. Let K be the Gaussian curvature of the regular minimal surface S and $f=(h+\bar{g}) \in \mathcal{S}_{\mathrm{H}}^{*}$ lifts to the minimal surface S , then

$$
\begin{equation*}
|\mathrm{K}| \leq \frac{(1-a r-|a-r|)^{2}(1+r)^{6}(1-a r)^{3}(1+a)^{2}}{(1-a r+|a-r|)^{4}(1-r)^{4}(1+a r)^{2}|a-r|} . \tag{20}
\end{equation*}
$$

Proof. Using the Corollary 2. and after the simple calculations we get

$$
\begin{equation*}
\frac{(1-r)^{6}(1+a r)}{(1+r)^{2}(a+r)} \leq \frac{1}{\left|g^{\prime}(z) h^{\prime}(z)\right|} \leq \frac{(1+r)^{6}(1-a r)}{(1-r)^{2}|a-r|} \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathrm{K}|=\frac{\left|\omega^{\prime}(z)\right|^{2}}{\left|g^{\prime}(z) h^{\prime}(z)\right|(1+|\omega(z)|)^{4}} \leq \frac{\left|\omega^{\prime}(z)\right|^{2}(1+r)^{6}(1-a r)}{(1+|\omega(z)|)^{4}(1-r)^{2}|a-r|} . \tag{22}
\end{equation*}
$$

On the other hand, if we use the Schwarz-Pick's Lemma for the function

$$
\phi(z)=\frac{\omega(z)-\omega(0)}{1-\overline{\omega(0)} \omega(z)},
$$

we obtain

$$
\begin{equation*}
\left|\omega^{\prime}(z)\right|^{2} \leq \frac{\left(1-|\omega(z)|^{2}\right)^{2}}{\left(1-r^{2}\right)^{2}}=\frac{(1-|\omega(z)|)^{2}(1+|\omega(z)|)^{2}}{(1-r)^{2}(1+r)^{2}} . \tag{23}
\end{equation*}
$$

Considering the inequalities (12), (13), (22) and (23), we obtain (20).
Example 1. Consider the function $f(z)=z-\frac{1}{2} \frac{\bar{z}}{2-\bar{z}}, z \in \mathbb{D}$. Since $\triangle f=$ $\frac{4 \partial^{2} f}{\partial z \partial z}=0$, then f is harmonic.

The functions $h(z)=z$ and $g(z)=-\frac{1}{2} \cdot \frac{z}{2-z}$, the analytic and co- analytic parts of f are analytic in \mathbb{D} and they satisfy $h(0)=g(0)=0$.
$\mathrm{J}_{f}(z)=\left|h^{\prime}(z)\right|^{2}-\left|g^{\prime}(z)\right|^{2}=1-\frac{1}{|2-z|^{2}}>0$ in \mathbb{D}, so f is sense-preserving and univalent.

Furthermore, the analytic part $h(z)=z$ of f is starlike, so f belongs to the class $\mathcal{S}_{\mathrm{H}}^{*}$. The second dilatation of f is $\omega(z)=\frac{g^{\prime}(z)}{h^{\prime}(z)}=-\left(\frac{1}{2-z}\right)^{2}$. Since $|\omega(0)|=\frac{1}{4} \in(0,1)$ and $|\omega(z)|<1$, in \mathbb{D}, so $\omega \in \Omega_{\cup}$.

On the other hand $\omega(z)$ is the square of the analytic function $q(z)=\frac{\mathrm{i}}{2-z}$ in \mathbb{D}. Thus univalent harmonic function f can lift locally to a (regular) minimal surface.

Now, let find the minimal surface, using by formulas (1), we get $p(z) \equiv 1$ and $q(z)=\frac{\mathrm{i}}{2-z}$. We know that these functions p and q are the WeierstrassEnneper parameters of the minimal surface Catenoid.

REFERENCES

[1] Chuaqui, M., Duren, P. and Osgood, B., The Schwarzian derivative for harmonic mappings, J. Anal. Math., 91 (2003), 329-351.
[2] Dey, R., The Weietstrass-Enneper repsentation using hodographic coordinates on a minimal surface, Proc. Indian Acad. Sci. Math. Sci. (Math. Sci.) 113 (2003), No. 2, 189-193.
[3] Duren, P., Univalent functions, Grundlehren der mathematischen Wissenschaften, 259, Springer-Verlag, Berlin, New York, 1983.
[4] Duren, P., Harmonic mappings in the plane, Cambridge University Press, Cambridge, 2004.
[5] Lewandoski, Z. Starlike majorants and subordination, Ann. Univ. Mariae CurieSklodowska Sect. A, 15(1961), 79-84.

İstanbul University
Department of Mathematics
Vezneciler-34134, İstanbul, Turkey
E-mail: hakmete@istanbul.edu.tr
İstanbul Kültür University
Department of Mathematics and Computer Science
Bakirköy-34156, İstanbul, Turkey
E-mail: y.polatoglu@iku.edu.tr

