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HYERS-ULAM-RASSIAS STABILITY
OF GENERALIZED CAUCHY FUNCTIONAL EQUATION
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Abstract. In this paper, the Hyers-Ulam-Rassias stability of generalized Cauchy
functional equation f(αx + βy) = αf(x) + βf(y), α, β ∈ R − {0}, for A-linear
mapping over C∗-algebras will be investigate.
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1. INTRODUCTION AND PRELIMINARIES

One of the interesting questions in the theory of functional equations con-
cerning the problem of the stability of functional equations is as follows: when
is it true that a mapping satisfying a functional equation approximately must
be close to an exact solution of the given functional equation?

The first stability problem was raised by Ulam during his talk at the Uni-
versity of Wisconsin in 1940 [16].

Given a group G1, a metric group (G2, d), and a positive number ε, does
there exist a δ > 0 such that if a mapping f : G1 → G2 satisfies the inequality
d(f(xy), f(x)f(y)) < δ for all x, y ∈ G1, then there exists a homomorphism
T : G1 → G2 such that d(f(x), T (x)) < ε for all x, y ∈ G1?

Ulam’s problem was partially solved by Hyers in 1941 in the context of
Banach spaces with ε = δ as shown below [5].

Theorem 1 ([5]). Let E1 be a normed vector space, E2 a Banach space and
suppose that the mapping f : E1 → E2 satisfies the inequality

‖f(x+ y)− f(x)− f(y)‖ ≤ ε

for all x, y in E1, where ε > 0 is a constant. Then the limit

g(x) = lim
n

2−nf(2nx)

exists for each x ∈ E1, and g is the unique additive mapping satisfying

‖f(x)− g(x)‖ ≤ ε

for all x ∈ E1. Also, if for each x the function t → f(tx) from R to E2 is
continuous for each fixed x, then g is linear. If f is continuous at a single
point of E1, then g is continuous in E1.
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Aoki [1] and Th.M. Rassias [14] provided a generalization of the Hyers’
theorem for additive and linear mappings, respectively, by allowing the Cauchy
difference to be unbounded.

Theorem 2 ([14]). Let f : E → E0 be a mapping from a normed vector
space E into a Banach space E0 subject to the inequality

(1) ‖f(x+ y)− f(x)− f(y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ E, where ε and p are constants with ε > 0 and p < 1. Then the
limit

L(x) = lim
n→∞

f(2nx)

2n

exists for all x ∈ E and L : E → E0 is the unique additive mapping which
satisfies

(2) ‖f(x)− L(x)‖ ≤ 2ε

2− 2p
‖x‖p

for all x ∈ E. If p < 0 then inequality (1) holds for x, y 6= 0 and (2) for x 6= 0.
Also, if for each x ∈ E the mapping t→ f(tx) is continuous in t ∈ R, then L
is linear.

The above inequality has provided a lot of influence in the development of
what is now known as a generalized Hyers-Ulam-Rassias stability of functional
equations. P. Gavruta [4] provided a further generalization of the Th.M. Ras-
siass theorem. During the last three decades a number of papers and research
monographs have been published on various generalizations and applications of
the generalized Hyers-Ulam-Rassias stability to a number of functional equa-
tions and mappings (see [9] − [11],[16]). We also refer the readers to the books
[2], [15] and [7].

Th. M. Rassias (1990) during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be proved
for p ≥ 1. Z. Gajda (1991) gave an affirmative solution to this question for
p > 1. It is shown that there is no analogue of Rassias result for p = 1 [3].

Definition 1. Let E be a set. A function d : E × E → [0,∞] is called a
generalized metric on E if d satisfies

(1) d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ E;
(3) d(x, z) ≤ d(x, y) + d(y, z) for all x, y, z ∈ E.

We recall the following theorem by Margolis and Diaz:

Theorem 3 ([8]). Let (E, d) be a complete generalized metric space and let
J : E → E be a strictly contractive mapping with Lipschitz constant L < 1.
Then for each given element x ∈ E, either d(Jnx, Jn+1x) = ∞ for all non-
negative integers n or there exists a non-negative integer n0 such that

(1) d(Jnx, Jn+1x) <∞ for all n ≥ n0;
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(2) the sequence {Jnx} converges to a fixed point y∗ of J ;
(3) y∗ is the unique fixed point of J in the set Y = y ∈ E : d(Jn0x, y) <∞;
(4) d(y, y∗) ≤ 1

1−Ld(y, Jy) for all y ∈ Y .

Throughout this paper, let A be a unital C∗-algebra with unitary group
U(A), unit e and norm ‖.‖. Assume that X and Y are left Banach A-modules.
An additive mapping T : X → Y is called A-linear if T (ax) = aT (x) for all
a ∈ A and all x ∈ X.

In this paper, we investigate an A-linear mapping associated with the gen-
eralized Cauchy functional equation

(3) f(αx+ βy) = αf(x) + βf(y),

where α, β ∈ R−{0}, and using the fixed point method, we prove the general-
ized Hyers-Ulam-Rassias stability of A-linear mappings in Banach A-modules
associated with the functional equation (3). The first systematic study of fixed
point theorems in nonlinear analysis is due to G. Isac and Th.M. Rassias [6].

Throughout this paper, α and β are fixed non-zero real numbers. For con-
venience, we use the following abbreviation for a given a ∈ A and a mapping
f : X → Y ,

(4) Da f(x, y) := f(αx+ βay)− αf(x)− βaf(y)

for all x, y ∈ X.

2. MAIN RESULTS

At the first we need the following lemma:

Lemma 1 ([12]). Let f : X → Y be a mapping with f(0) = 0 such that
Da f(x, y) = 0 for all x, y ∈ X and all a ∈ U(A). Then f is A-linear.

Now we prove the generalized Hyers-Ulam-Rassias stability of A-linear map-
pings in Banach A-modules.

Theorem 4. Let f : X → Y be a mapping with f(0) = 0 for which there
exists a function ϕ : X2 → [0,∞) such that

lim
n→∞

2nϕ
( x

2n
,
y

2n

)
= 0,

(5) ‖Da f(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ X and all a ∈ U(A). If there exists a constant L < 1 such that
the function

x→ ψ(x) := ϕ

(
x

2α
,
x

2β

)
+ ϕ

( x

2α
, 0
)

+ ϕ

(
0,

x

2β

)
has the property

(6) 2ψ(x) ≤ Lψ(2x)
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for all x ∈ X, then there exists a unique A-linear mapping T : X → Y such
that

(7) ‖f(x)− T (x)‖ ≤ 1

1− L
ψ(x)

for all x ∈ X.

Proof. Letting y = 0 in (6), we get

(8) ‖f(αx)− αf(x)‖ ≤ ϕ(x, 0)

for all x ∈ X. Similarly, letting x = 0 and a = e ∈ U(A) in (6), we get

(9) ‖f(βy)− βf(y)‖ ≥ ϕ(0, y)

for all y ∈ X. So it follows from (6), (8) and (9) that

‖f(αx+ βy)− f(αx)− f(βy)k‖ ≤ ϕ(x, y) + ϕ(x, 0) + ϕ(0, y)

for all x, y ∈ X. Hence

(10) ‖f(x+ y)− f(x)− f(y)‖ ≤ ϕ
(
x

α
,
y

β

)
+ ϕ

(x
α
, 0
)

+ ϕ

(
0,
y

β

)
for all x, y ∈ X. Letting y = x in (10), we get

‖f(2x)− 2f(x)‖ ≤ ϕ
(
x

α
,
x

β

)
+ ϕ

(x
α
, 0
)

+ ϕ

(
0,
x

β

)
for all x ∈ X . Hence

(11) ‖f(x)− 2f
(x

2

)
‖ ≤ ψ(x)

for all x ∈ X. Let E := {g : X → Y, g(0) = 0}. We introduce a generalized
metric on E as follows:

d(g, h) := inf{C ∈ [0,∞] : ‖g(x)− h(x)‖ ≤ Cψ(x) ∀x ∈ X}.
It is easy to show that (E, d) is a generalized complete metric space [3]. Now
we consider the mapping Λ : E → E defined by

(Λg)(x) = 2g
(x

2

)
, ∀g ∈ E, x ∈ X.

Let g, h ∈ E and let C ∈ [0,∞] be an arbitrary constant with d(g, h) ≤ C.
From the definition of d, we have ‖g(x) − h(x)‖ ≤ Cψ(x) for all x ∈ X. By
the assumption and last inequality, we have

‖(Λg)(x)− (Λh)(x)‖ = 2‖g
(x

2

)
− g

(x
2

)
‖ ≤ 2ψ

(x
2

)
≤ CLψ

(x
2

)
for all x ∈ X. So d(Λg,Λh) ≤ Ld(g, h) for any g, h ∈ E. It follows from (11)
that d(Λf, f) ≤ 1. Therefore according to Theorem 3, the sequence {Λnf}
converges to a fixed point T of Λ, i.e.,

T : X → Y, T (x) = lim
n

(Λnf)(x) = lim
n

2nf
( x

2n

)
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and T (2x) = 2T (x) for all x ∈ X. Also T is the unique fixed point of Λ
in the set E∗ = g ∈ E : d(f, g) <∞ and d(T, f) ≤ 1

1−Ld(Λf, f) ≤ 1
1−L , i.e.,

inequality (7) holds true for all x ∈ X. It follows from the definition of T ,
(5) and (6) that ‖Da T (x, y)‖ = lim 2n‖Da f

(
x
2n ,

y
2n

)
‖ ≤ lim 2nϕ

(
x
2n ,

y
2n

)
= 0

for all x, y ∈ X and all a ∈ U(A). By Lemma 1, the mapping T : X → Y is
A-linear. Finally it remains to prove the uniqueness of T . Let P : X → Y
be another A-linear mapping satisfying (7). Since d(f, P ) ≤ 1

1−L and P is

additive, P ∈ E∗ and (ΛP )(x) = 2P (x/2) = P (x) for all x ∈ X, i.e., P is a
fixed point of Λ. Since T is the unique fixed point of Λ in E∗, P = T . �

Corollary 1. Let r > 1 and θ be non-negative real numbers and let f :
X → Y be a mapping satisfying f(0) = 0 and the inequality

‖Da f(x, y)‖ ≤ θ(‖x‖r + ‖y‖r)

for all x, y ∈ X and all a ∈ U(A). Then there exists a unique A-linear mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ 2(|α|r + |β|r)θ
(2r − 2)|αβ|r

‖x‖r

for all x ∈ X.

Proof. The proof follows by letting ϕ(x, y) = θ(‖x‖r + ‖y‖r) and L = 21−r

in the Theorem 4. �

By using the method of proof Theorem 4, we can prove:

Theorem 5. [12] Let f : X → Y be a mapping with f(0) = 0 and there is
a function Ω : X ×X → [0,∞) such that

lim
n

1

2n
Ω(2nx, 2ny) = 0, ‖Da f(x, y)‖ ≤ Ω(x, y)

for all x, y ∈ X and a ∈ U(A). If there exists a constant L < 1 such that the
function

x 7→ Ψ(x) := Ω

(
x

α
,
x

β

)
+ Ω

(x
α
, 0
)

+ Ω

(
0,
x

β

)
has the property

Ψ(2x) ≤ 2LΨ(x)

for all x ∈ X, then there is a unique A-linear map T : X → Y such that

‖f(x)− T (x)‖ ≤ 1

2− 2L
Ψ(x)

for all x ∈ X.

Corollary 2. Let 0 < r < 1 and θ, δ be non-negative real numbers and
let f : X → Y be a mapping satisfying f(0) = 0 and the inequality

‖Da f(x, y)‖ ≤ δ + θ(‖x‖r + ‖y‖r)
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for all x, y ∈ X and all a ∈ U(A). Then there exists a unique A-linear mapping
T : X → Y such that

‖f(x)− T (x)‖ ≤ 3δ

2− 2r
+

2(|α|r + |β|r)θ
(2− 2r)|αβ|r

‖x‖r

for all x ∈ X.

Proof. The proof follows from Theorem 5 by taking Ω(x, y) := δ+ θ(‖x‖r +
‖y‖r) for all x, y ∈ X. Then we can choose L = 2r− 1 and we get the desired
result. �
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