SUBORDINATION PROPERTIES FOR SPECIAL INTEGRAL OPERATORS

KAZUO KUROKI and SHIGEYOSHI OWA

Abstract. Applying the Integral Existence Theorem for normalized analytic functions concerning the existence and analyticity of a general integral operator which was proven by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 157 (1991), 147–165), the analyticity and univalency of the functions defined by a certain special integral operator is discussed, and some interesting subordination criteria concerning with several integral operators are obtained.

MSC 2010. 34C40.

Key words. Differential subordination, integral operator, analyticity and univalency, integral existence theorem, spirallike function, subordination chain.

1. INTRODUCTION AND PRELIMINARIES

Let \mathcal{H} denote the class of functions f(z) which are analytic in the open unit disk $\mathbb{U} = \{z \in \mathbb{C} : |z| < 1\}$. For a positive integer n and a complex number a, let $\mathcal{H}[a, n]$ be the subclass of \mathcal{H} defined by

$$\mathcal{H}[a,n] = \left\{ f(z) \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \cdots \right\}$$

Also, we define the class \mathcal{A}_n of normalized analytic functions f(z) as

$$\mathcal{A}_{n} = \left\{ f(z) \in \mathcal{H} : f(z) = z + a_{n+1}z^{n+1} + a_{n+2}z^{n+2} + \cdots \right\}$$

with $A_1 = A$. In addition, we need the classes of convex (univalent) and starlike (univalent) functions given respectively by

$$\mathcal{K} = \left\{ f(z) \in \mathcal{A} : \operatorname{Re}\left(1 + \frac{zf''(z)}{f'(z)}\right) > 0 \quad (z \in \mathbb{U}) \right\}$$

and

$$\mathcal{S}^* = \left\{ f(z) \in \mathcal{A} : \operatorname{Re}\left(\frac{zf'(z)}{f(z)}\right) > 0 \quad (z \in \mathbb{U}) \right\}.$$

Furthermore, a function $f(z) \in \mathcal{A}$ is said to be λ -spirallike in \mathbb{U} if it satisfies

$$\operatorname{Re}\left(\operatorname{e}^{\mathrm{i}\lambda}\frac{zf'(z)}{f(z)}\right) > 0 \qquad (z \in \mathbb{U})$$

for some real number λ with $|\lambda| < \frac{\pi}{2}$. We denote by S^{λ} the class of all such functions. And, the class \widehat{S} is defined by

$$\widehat{\mathcal{S}} = \bigcup \left\{ \mathcal{S}^{\lambda} : |\lambda| < \frac{\pi}{2} \right\},$$

which implies that $\mathcal{S}^* \subset \widehat{\mathcal{S}}$. Specially, we note that all spirallike functions are univalent in \mathbb{U} .

We also introduce the familiar principle of differential subordinations between analytic functions. Let f(z) and g(z) be members of the class \mathcal{H} . Then the function f(z) is said to be subordinate to g(z) in \mathbb{U} , written by $f(z) \prec g(z)$ $(z \in \mathbb{U})$, if there exists a function w(z) analytic in \mathbb{U} , with w(0) = 0 and |w(z)| < 1 $(z \in \mathbb{U})$, and such that f(z) = g(w(z)) $(z \in \mathbb{U})$. In particular, if g(z) is univalent in \mathbb{U} , then $f(z) \prec g(z)$ $(z \in \mathbb{U})$ if and only if f(0) = g(0) and $f(\mathbb{U}) \subset g(\mathbb{U})$.

For the function $F(z) \in \mathcal{A}_n$, Miller and Mocanu [3] (see also [4]) proved the Integral Existence Theorem concerning with the existence and analyticity of a general integral operator of the form

(1)
$$\mathbf{I}[F](z) = \left\{ \frac{\beta + \gamma}{z^{\gamma}\psi(z)} \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}},$$

where α , β , γ and δ are complex constants, and $\varphi(z)$, $\psi(z) \in \mathcal{H}[1, n]$. This operator was introduced by Miller, Mocanu and Reade [6].

In the present paper, applying a certain special Integral Existence Theorem which is obtained by giving some conditions, we discuss the analyticity and univalency of the functions defined by the following special integral operator

(2)
$$\tilde{\mathbf{I}}[F](z) = \left\{ \beta \int_0^z (F(t))^\alpha \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}}.$$

Further, by making use of the properties of subordination chains [8] (see also [4]) and the lemma given by Miller and Mocanu [2] (see also [4]) often used in the theory of differential subordinations, we deduce some subordination criteria concerning with

$$f(z) \prec \left\{ \beta \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}} \qquad (z \in \mathbb{U})$$

for analytic functions f(z) with f(0) = 0. Moreover, we apply our result to find several subordination criteria for certain analytic functions defined as follows:

If the function $f(z) \in \mathcal{A}$ with $\frac{f(z)f'(z)}{z} \neq 0$ in \mathbb{U} satisfies

(3)
$$\operatorname{Re}\left\{(1-\alpha)\frac{zf'(z)}{f(z)} + \alpha\left(1 + \frac{zf''(z)}{f'(z)}\right)\right\} > 0 \qquad (z \in \mathbb{U})$$

for some real constant α , then f(z) is said to be α -convex in \mathbb{U} . We denote this class by \mathcal{M}_{α} . The class of α -convex functions in \mathbb{U} was introduced by Mocanu [7], and was studied by Mocanu, Miller and Reade [5]. They proved the following lemma.

LEMMA 1. If $f(z) \in \mathcal{M}_{\alpha}$, then $f(z) \in \mathcal{S}^*$. Moreover, if $\alpha \geq 1$, then $f(z) \in \mathcal{K}$.

Also, Sakaguchi and Fukui [10] proved that, if f(z) satisfies the inequality (3), then $\frac{f(z)f'(z)}{z}$ never vanishes in U. In other words, this fact means below.

REMARK 1. A necessary and sufficient condition for $f(z) \in \mathcal{A}$ to be α convex in \mathbb{U} is that f(z) satisfies the inequality (3).

In 1962, Sakaguchi [9] introduced the class of k-starlike functions $f(z) \in \mathcal{A}$ which are defined by

(4)
$$\operatorname{Re}\left\{k\frac{zf'(z)}{f(z)} + \left(1 + \frac{zf''(z)}{f'(z)}\right)\right\} > 0 \qquad (z \in \mathbb{U}),$$

where k is a complex constant such that $\operatorname{Re} k > -1$. We denote by \mathcal{S}_k the class of k-starlike functions. We note that k-starlike functions are different from α -convex functions.

Finally, we introduce the class of functions well-known as Bazilevič function. A function $f(z) \in \mathcal{A}$ is called Bazilevič of type (a, b, λ) , if there exists a function $g(z) \in \mathcal{S}^*$ such that

(5)
$$\operatorname{Re}\left\{\operatorname{e}^{\mathrm{i}\lambda}\frac{zf'(z)}{f(z)}\left(\frac{f(z)}{g(z)}\right)^{a}\left(\frac{f(z)}{z}\right)^{\mathrm{i}b}\right\} > 0 \quad (z \in \mathbb{U})$$

for some real numbers $a, b \ (a \ge 0)$ and $\lambda \left(|\lambda| < \frac{\pi}{2} \right)$. We denote by $\mathcal{B}_{\lambda}(a, b)$ the class of all such functions. Then, we note that $\mathcal{B}_{0}(0, 0) = \mathcal{S}^{*}$ and $\mathcal{B}_{\lambda}(0, 0) = \mathcal{S}^{\lambda}$. In 1955, Bazilevič [1] proved that Bazilevič functions are univalent in \mathbb{U} .

2. NOTE ON THE INTEGRAL EXISTENCE THEOREM

To considering the Integral Existence Theorem, we need to introduce the following open door mapping which is a special mapping from \mathbb{U} onto a slit domain.

DEFINITION 1. (*The Open Door Function*) Let c be a complex number such that $\operatorname{Re} c > 0$, let n be a positive integer, and let

(6)
$$C_n = C_n(c) = \frac{n}{\operatorname{Re} c} \left\{ |c| \cdot \sqrt{1 + \frac{2\operatorname{Re} c}{n}} + \operatorname{Im} c \right\}.$$

If R(z) is univalent defined by $R(z) = 2C_n \frac{z}{1-z^2}$ $(z \in \mathbb{U})$, then the open door function $R_{c,n}(z)$ is defined by

$$R_{c,n}(z) \equiv R\left(\frac{z+b}{1+\bar{b}z}\right) = 2C_n \frac{(z+b)(1+\bar{b}z)}{(1+\bar{b}z)^2 - (z+b)^2}$$

where b is complex number with R(b) = c. If c > 0, then since C_n in (6) is simplified to $C_n = C_n(c) = n \cdot \sqrt{1 + \frac{2c}{n}}$, and since $b = \overline{b} > 0$ and $b + \frac{1}{b} = \frac{2(c+n)}{c}$, we obtain $R_{c,n}(z) = c\frac{1+z}{1-z} + \frac{2nz}{1-z^2}$. REMARK 2. From the above definition, we see that $R_{c,n}(z)$ is univalent in \mathbb{U} , $R_{c,n}(0) = c$ and $R_{c,n}(\mathbb{U}) = R(\mathbb{U})$ is the complex plane w with slits along the half-lines $\operatorname{Re} w = 0$, $\operatorname{Im} w \geq C_n$ and $\operatorname{Re} w = 0$, $\operatorname{Im} w \leq -C_n$. Also note that if c > 0, then $C_{n+1} > C_n$ and $\lim_{n \to \infty} C_n = \infty$. This leads us to $R_{c,n}(z) \prec R_{c,n+1}(z)$ and $\lim_{n \to \infty} R_{c,n}(\mathbb{U}) = \mathbb{C}$.

LEMMA 2. (Integral Existence Theorem) Let $\varphi(z)$, $\psi(z) \in \mathcal{H}[1, n]$ with $\varphi(z) \cdot \psi(z) \neq 0$ in U. Also, let α , β , γ and δ be complex numbers with $\beta \neq 0$, $\alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\alpha + \delta) > 0$. Moreover, let $F(z) \in \mathcal{A}_n$ and suppose that

(7)
$$P(z) \equiv \alpha \frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \prec R_{\alpha+\delta,n}(z) \qquad (z \in \mathbb{U}),$$

where $R_{\alpha+\delta,n}(z)$ is the open door function. If $g(z) = \mathbf{I}[F](z)$ is defined by (1), then

(8)
$$g(z) \in \mathcal{A}_n, \ \frac{g(z)}{z} \neq 0 \quad and \quad \operatorname{Re}\left\{\beta \frac{zg'(z)}{g(z)} + \frac{z\psi'(z)}{\psi(z)} + \gamma\right\} > 0$$

for $z \in \mathbb{U}$, where all powers in (1) are principal ones.

From the assumptions of Lemma 2, we deduce that $P(z) \in \mathcal{H}[\alpha + \delta, n]$. Also, from Remark 2, the condition $P(z) \prec R_{\alpha+\delta,n}(z)$ in (7) can be replaced by the stronger condition $\operatorname{Re} P(z) > 0$ $(z \in \mathbb{U})$. Hence, using this result in the Integral Existence Theorem, we find the following lemma.

LEMMA 3. Let $\varphi(z)$, $\psi(z) \in \mathcal{H}[1, n]$ with $\varphi(z) \cdot \psi(z) \neq 0$ in U. Also, let α , β , γ and δ be complex numbers with $\beta \neq 0$, $\alpha + \delta = \beta + \gamma$ and $\operatorname{Re}(\alpha + \delta) > 0$. Moreover, let $F(z) \in \mathcal{A}_n$ and suppose that

$$P(z) \equiv \alpha \frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \in \mathcal{H}[\alpha + \delta, n]$$

satisfies Re P(z) > 0 $(z \in \mathbb{U})$. If $g(z) = \mathbf{I}[F](z)$ is defined by (1), then g(z) satisfies the conditions (8).

We next consider a few special cases of Lemma 3. If we let $\psi(z) \equiv 1$ and $\gamma = 0$, then we derive special Integral Existence Theorem below.

LEMMA 4. Let $\varphi(z) \in \mathcal{H}[1,n]$ with $\varphi(z) \neq 0$ in U. Also, let α , β and δ be complex numbers with $\beta = \alpha + \delta$ and $\operatorname{Re}(\alpha + \delta) > 0$. Moreover, let $F(z) \in \mathcal{A}_n$ and suppose that

$$P(z) \equiv \alpha \frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \in \mathcal{H}[\beta, n]$$

satisfies $\operatorname{Re} P(z) > 0$ $(z \in \mathbb{U})$. If $g(z) = \tilde{\mathbf{I}}[F](z)$ is defined by (2), then

$$g(z) \in \mathcal{A}_n, \ \frac{g(z)}{z} \neq 0 \ and \ \operatorname{Re}\left(\beta \frac{zg'(z)}{g(z)}\right) > 0$$

for $z \in \mathbb{U}$, all powers in (2) are principal ones.

REMARK 3. Since $\operatorname{Re} \beta > 0$, the above inequality

(9)
$$\operatorname{Re}\left(\beta\frac{zg'(z)}{g(z)}\right) > 0 \quad (z \in \mathbb{U})$$

shows that g(z) produces spirallike, which implies that g(z) is univalent, even when F(z) is not univalent. That is, the above lemma provides conditions for which the function $g(z) = \tilde{\mathbf{I}}[F](z)$ defined by (2) will be an analytic and univalent function. In particular, if $\beta > 0$, then $g(z) \in \mathcal{S}^*$.

REMARK 4. By Remark 3, if the function $g(z) \in \mathcal{A}_n$ satisfies (9), then since g(z) is univalent in \mathbb{U} with g(0) = 0, we can deduce the condition $\frac{g(z)}{z} \neq 0$ ($z \in \mathbb{U}$), because we know that $\frac{g(z)}{z}\Big|_{z=0} = 1 \neq 0$.

3. AN APPLICATION OF INTEGRAL EXISTENCE THEOREM CONCERNING WITH DIFFERENTIAL SUBORDINATIONS

Applying special Integral Existence Theorem which was obtained in the previous section, we discuss the following subordination

$$f(z) \prec \left\{ \beta \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}} \qquad (z \in \mathbb{U})$$

for analytic functions f(z) with f(0) = 0, and deduced a subordination criterion.

In order to discuss our main result, we need some lemmas for subordination (or Loewner) chains. A function L(z,t), $z \in \mathbb{U}$, $t \geq 0$, is said to be a subordination chain if $L(\cdot,t)$ is analytic and univalent in \mathbb{U} for all $t \geq 0$, $L(z, \cdot)$ is continuously differentiable on $[0, \infty)$ for all $z \in \mathbb{U}$, and $L(z, s) \prec L(z, t)$, when $0 \leq s \leq t$ (Pommerenke [8] or Miller and Mocanu [4]). The following lemma provides a necessary and sufficient condition for L(z, t) to be a subordination chain.

LEMMA 5. (Loewner's Theorem) The function $L(z,t) = a_1(t)z + a_2(t)z^2 + \cdots$, with $a_1(t) \neq 0$ for $t \geq 0$, and $\lim_{t \to \infty} |a_1(t)| = \infty$, is a subordination chain if and only if there exist constants $r \in (0,1]$ and M > 0 such that

(i) L(z,t) is analytic in |z| < r for each $t \ge 0$, locally absolutely continuous in $t \ge 0$ for each |z| < r, and satisfies

 $|L(z,t)| \leq M|a_1(t)|$, for |z| < r and $t \geq 0$.

(ii) there exists a function p(z,t) analytic in \mathbb{U} for all $t \in [0,\infty)$ and measurable in $[0,\infty)$ for each $z \in \mathbb{U}$, such that $\operatorname{Re} p(z,t) > 0$ for $z \in \mathbb{U}$, $t \in [0,\infty)$, and

$$\frac{\partial L(z,t)}{\partial t} = z \frac{\partial L(z,t)}{\partial z} p(z,t),$$

for |z| < r, and for almost all $t \in [0, \infty)$.

Note that the univalency of the function L(z,t) can be extended from |z| < r to all of U. This lemma is well-known as the Loewner's theorem (see [8]). In the proof of our main result, the following lemma given by Pommerenke [8] is useful to apply the slight forms of Lemma 5.

LEMMA 6. The function $L(z,t) = a_1(t)z + a_2(t)z^2 + \cdots$, with $a_1(t) \neq 0$ for all $t \geq 0$ and $\lim_{t \to \infty} |a_1(t)| = \infty$, is a subordination chain if and only if

$$\operatorname{Re}\left\{\frac{z\frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}}\right\} > 0,$$

for $z \in \mathbb{U}$ and $t \geq 0$.

In addition, the next lemma comes from the general theory of differential subordinations.

LEMMA 7. Let g(z) be analytic and univalent on the closed unit disk $\overline{\mathbb{U}}$ except for at most one pole on $\partial \mathbb{U}$, where $\partial \mathbb{U} = \{z \in \mathbb{C} : |z| = 1\}$, $\overline{\mathbb{U}} = \mathbb{U} \cup \partial \mathbb{U}$. Also, let a = g(0) and $f(z) \in \mathcal{H}[a, n]$ with $f(z) \neq a$. If f(z) is not subordinate to g(z), then there exist two points $z_0 = r_0 e^{i\theta_0} \in \mathbb{U}$ and $\zeta_0 \in \partial \mathbb{U}$, and a real number m with $m \geq n \geq 1$ for which $f(\mathbb{U}_{r_0}) \subset g(\mathbb{U})$, $f(z_0) = g(\zeta_0)$ and $z_0 f'(z_0) = m\zeta_0 g'(\zeta_0)$, where $\mathbb{U}_{r_0} = \{z \in \mathbb{C} : |z| < r_0\}$.

More general forms of this lemma are given by Miller and Mocanu [2] (see also [4]).

Our main theorem is contained in Theorem 1.

THEOREM 1. Let α , β and δ be complex numbers with $\beta = \alpha + \delta$ and $\operatorname{Re}(\alpha + \delta) > 0$. Also, let $F(z) \in \mathcal{A}_n$, $\varphi(z) \in \mathcal{H}[1, n]$ with $\varphi(z) \neq 0$ in \mathbb{U} , and suppose that

(10)
$$P(z) \equiv \alpha \frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta \in \mathcal{H}[\beta, n]$$

satisfies $\operatorname{Re} P(z) > 0$ $(z \in \mathbb{U})$. If f(z) is analytic in \mathbb{U} with f(0) = 0 and satisfies the following differential subordination

(11)
$$(f(z))^{\frac{\beta-1}{\beta}} (zf'(z))^{\frac{1}{\beta}} \prec \left\{ (F(z))^{\alpha} \varphi(z) z^{\delta} \right\}^{\frac{1}{\beta}} \quad (z \in \mathbb{U}),$$

then

$$f(z) \prec \left\{ \beta \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}} \qquad (z \in \mathbb{U}).$$

Proof. From (10), we see that $\frac{F(z)}{z} \neq 0$ in U. If we let

(12)
$$G(z) = \left\{ \left(F(z) \right)^{\alpha} \varphi(z) z^{\delta} \right\}^{\frac{1}{\beta}},$$

then G(z) can be represented by

$$G(z) = z \left(\frac{F(z)}{z}\right)^{\frac{\alpha}{\beta}} \left(\varphi(z)\right)^{\frac{1}{\beta}} = z + A_{n+1}z^{n+1} + \cdots$$

We note that $G(z) \in \mathcal{A}_n$ and $\frac{G(z)}{z} \neq 0$ in U. Moreover, since $\operatorname{Re} P(z) > 0$ $(z \in \mathbb{U})$, we have

(13)
$$\operatorname{Re}\left(\beta\frac{zG'(z)}{G(z)}\right) = \operatorname{Re}\left\{\alpha\frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta\right\} > 0 \qquad (z \in \mathbb{U}).$$

Thus, by Remark 3, we deduce that the function G(z) is univalent (spirallike) in U, and hence the subordination (11) is well defined. Also, if we set

(14)
$$g(z) = \left\{ \beta \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}}$$

then from Lemma 4 and Remark 3, we see that the function g(z) is analytic and univalent (spirallike) in U. And, from (12) and (14), we have

$$\left(g(z)\right)^{\frac{\beta-1}{\beta}} \left(zg'(z)\right)^{\frac{1}{\beta}} = \left\{ \left(F(z)\right)^{\alpha} \varphi(z) z^{\delta} \right\}^{\frac{1}{\beta}} = G(z).$$

We now show that

(15)
$$L(z,t) = \left(g(z)\right)^{\frac{\beta-1}{\beta}} \left\{ (1+t)zg'(z) \right\}^{\frac{1}{\beta}} = (1+t)^{\frac{1}{\beta}}G(z) \qquad (t \ge 0)$$

is a subordination chain. Since $G(z) \in \mathcal{A}_n$, the function

$$L(z,t) = (1+t)^{\frac{1}{\beta}}G(z) = a_1(t)z + a_{n+1}(t)z^{n+1} + \cdots$$

is analytic in U for all $t \ge 0$, and is continuously differentiable on $[0,\infty)$ for all $z \in \mathbb{U}$. Also, we have

$$\frac{\partial L(z,t)}{\partial z} = (1+t)^{\frac{1}{\beta}} G'(z), \quad \frac{\partial L(z,t)}{\partial t} = \frac{1}{\beta} (1+t)^{\frac{1}{\beta}-1} G(z).$$

Then, since $G(z) \in \mathcal{A}_n$, it is clear that

$$a_1(t) = \left. \frac{\partial L(z,t)}{\partial z} \right|_{z=0} = (1+t)^{\frac{1}{\beta}} G'(0) = (1+t)^{\frac{1}{\beta}} \neq 0 \qquad (t \ge 0),$$

and

$$\lim_{t \to \infty} |a_1(t)| = \lim_{t \to \infty} \left| (1+t)^{\frac{1}{\beta}} \right| = \infty.$$

A simple calculation combined with the condition (13) yields

$$\operatorname{Re}\left\{\frac{z\frac{\partial L(z,t)}{\partial z}}{\frac{\partial L(z,t)}{\partial t}}\right\} = \operatorname{Re}\left\{\frac{(1+t)^{\frac{1}{\beta}}zG'(z)}{\frac{1}{\beta}(1+t)^{\frac{1}{\beta}-1}G(z)}\right\} = (1+t)\operatorname{Re}\left(\beta\frac{zG'(z)}{G(z)}\right) > 0,$$

for $z \in \mathbb{U}$ and $t \geq 0$. Hence by Lemma 6, L(z,t) is a subordination chain, and we have $L(z,s) \prec L(z,t)$, when $0 \leq s \leq t$. From (15), we obtain L(z,0) = G(z), and hence we must have

(16)
$$L(\zeta, t) \notin G(\mathbb{U}),$$

for $|\zeta| = 1$ and $t \ge 0$.

Next, applying Lemma 7, we will show that

$$(f(z))^{\frac{\beta-1}{\beta}}(zf'(z))^{\frac{1}{\beta}} \prec G(z) \text{ implies } f(z) \prec g(z) \qquad (z \in \mathbb{U}).$$

We observed that the function g(z) is univalent in \mathbb{U} . Here, without loss of generality, we can assume that g(z) is univalent on $\overline{\mathbb{U}}$, and $g'(\zeta) \neq 0$ for $|\zeta| = 1$. If not, then we can continue the remainder of the proof with the function g(rz) (0 < r < 1) which is univalent on $\overline{\mathbb{U}}$, and obtain our final result by letting $r \to 1^-$.

If we assume that f(z) is not subordinate to g(z), then by Lemma 7, there exist two points $z_0 \in \mathbb{U}$ and $\zeta_0 \in \partial \mathbb{U}$, and a real number $m \geq 1$ such that $f(z_0) = g(\zeta_0)$ and $z_0 f'(z_0) = m\zeta_0 g'(\zeta_0)$. Then from (15) and (16), we have

$$(f(z_0))^{\frac{\beta-1}{\beta}} (z_0 f'(z_0))^{\frac{1}{\beta}} = (g(\zeta_0))^{\frac{\beta-1}{\beta}} (m\zeta_0 g'(\zeta_0))^{\frac{1}{\beta}} = m^{\frac{1}{\beta}} G(\zeta_0)$$

= $L(\zeta_0, m-1) \notin G(\mathbb{U}),$

where $z_0 \in \mathbb{U}$, $|\zeta_0| = 1$ and $m \geq 1$. This contradicts the assumption (11) of the theorem, and hence we must have $f(z) \prec g(z)$. Therefore, we conclude that

$$f(z) \prec \left\{ \beta \int_0^z (F(t))^{\alpha} \varphi(t) t^{\delta - 1} \, \mathrm{d}t \right\}^{\frac{1}{\beta}} \qquad (z \in \mathbb{U})$$

which completes the proof of Theorem 1.

As an example of Theorem 1, we give

EXAMPLE 1. For the following functions

$$F(z) = \frac{z}{(1-z)^2} \in \mathcal{A}$$
 and $\varphi(z) = \frac{1}{(1-z)^{2(\operatorname{Re}\beta-\alpha)}} \in \mathcal{H}[1,1],$

since $\beta = \alpha + \delta$, we see that

$$\operatorname{Re}\left\{\alpha\frac{zF'(z)}{F(z)} + \frac{z\varphi'(z)}{\varphi(z)} + \delta\right\} = \operatorname{Re}\left\{\alpha\frac{1+z}{1-z} + \frac{2(\operatorname{Re}\beta - \alpha)z}{1-z} + \delta\right\}$$
$$= \operatorname{Re}\left\{\frac{(\alpha+\delta) + (2\operatorname{Re}\beta - (\alpha+\delta))z}{1-z}\right\}$$
$$= \operatorname{Re}\left(\frac{\beta + \overline{\beta}z}{1-z}\right) > 0 \qquad (z \in \mathbb{U}).$$

Hence, F(z) and $\varphi(z)$ satisfies the assumption of Theorem 1. And, we have

$$\left\{\left(F(z)\right)^{\alpha}\varphi(z)z^{\delta}\right\}^{\frac{1}{\beta}} = \left\{\frac{z^{\alpha+\delta}}{(1-z)^{2\alpha}}\cdot(1-z)^{2(\alpha-\operatorname{Re}\beta)}\right\}^{\frac{1}{\beta}} = \frac{z}{(1-z)^{\frac{2\operatorname{Re}\beta}{\beta}}} \in \mathcal{A}.$$

Thus, from Theorem 1, we find that

$$(f(z))^{\frac{\beta-1}{\beta}} (zf'(z))^{\frac{1}{\beta}} \prec \frac{z}{(1-z)^{\frac{2\operatorname{Re}\beta}{\beta}}}$$

implies

$$f(z) \prec \left\{ \beta \int_0^z \frac{t^{\beta-1}}{(1-t)^{2\operatorname{Re}\beta}} \,\mathrm{d}t \right\}^{\frac{1}{\beta}} \qquad (z \in \mathbb{U})$$

for analytic functions f(z) with f(0) = 0.

REMARK 5. For the function in Example 1, we note that

$$\left\{\beta \int_0^z \frac{t^{\beta-1}}{(1-t)^{2\operatorname{Re}\beta}} \,\mathrm{d}t\right\}^{\frac{1}{\beta}} = \left[\beta \int_0^z \left\{\sum_{n=0}^\infty \frac{(2\operatorname{Re}\beta)_n}{(1)_n} t^{\beta+n-1}\right\} \,\mathrm{d}t\right]^{\frac{1}{\beta}}$$
$$= \left\{\sum_{n=0}^\infty \frac{\beta}{\beta+n} \cdot \frac{(2\operatorname{Re}\beta)_n}{(1)_n} z^{\beta+n}\right\}^{\frac{1}{\beta}}$$
$$= \left\{z^\beta \sum_{n=0}^\infty \frac{(\beta)_n (2\operatorname{Re}\beta)_n}{(\beta+1)_n (1)_n} z^n\right\}^{\frac{1}{\beta}}$$
$$= z \left\{{}_2F_1(\beta, 2\operatorname{Re}\beta, \beta+1; z)\right\}^{\frac{1}{\beta}},$$

where ${}_{2}F_{1}(a, b, c; z)$ represents the hypergeometric function.

4. SOME SUBORDINATION CRITERIA RELATED TO SEVERAL INTEGRAL OPERATORS

Let us consider some particular cases of Theorem 1.

Letting $\alpha = a \ (a > 0), \ \delta = \mathrm{i} b \ (b \in \mathbb{R})$, namely $\beta = a + \mathrm{i} b$ in Theorem 1, we obtain

COROLLARY 1. Let a and b be real numbers with a > 0. Also, let $F(z) \in \mathcal{A}_n$ with $\frac{F(z)}{z} \neq 0$ in \mathbb{U} , $\varphi(z) \in \mathcal{H}[1,n]$ with $\varphi(z) \neq 0$ in \mathbb{U} , and suppose that

$$\operatorname{Re}\left(\frac{zF'(z)}{F(z)}\right) > -\frac{1}{a}\operatorname{Re}\left(\frac{z\varphi'(z)}{\varphi(z)}\right) \qquad (z \in \mathbb{U})$$

If f(z) is analytic in \mathbb{U} with f(0) = 0 and satisfies the following differential subordination

$$\left(f(z)\right)^{\frac{a-1+ib}{a+ib}} \left(zf'(z)\right)^{\frac{1}{a+ib}} \prec \left\{\left(F(z)\right)^a \varphi(z) z^{ib}\right\}^{\frac{1}{a+ib}} \qquad (z \in \mathbb{U}),$$

then

$$f(z) \prec \left\{ (a + \mathrm{i}b) \int_0^z (F(t))^a \varphi(t) t^{\mathrm{i}b-1} \,\mathrm{d}t \right\}^{\frac{1}{a+\mathrm{i}b}} \qquad (z \in \mathbb{U}).$$

REMARK 6. The function

$$g(z) = \left\{ (a + ib) \int_0^z (F(t))^a \varphi(t) t^{ib-1} dt \right\}^{\frac{1}{a+ib}} \in \mathcal{A}_n$$

has the same form as the Bazilevič function. A simple calculation yields that

$$\varphi(z) = \frac{zg'(z)}{g(z)} \left(\frac{g(z)}{F(z)}\right)^a \left(\frac{g(z)}{z}\right)^{\mathrm{i}b}.$$

If $F(z) \in \mathcal{S}^*$, and $\varphi(z) \in \mathcal{H}[1, n]$ satisfies $\operatorname{Re} e^{i\lambda}\varphi(z) > 0$ $(z \in \mathbb{U})$ for some real λ with $|\lambda| < \frac{\pi}{2}$, then since g(z) satisfies the inequality (5), we see that $g(z) \in \mathcal{B}_{\lambda}(a, b)$ (see [1]).

Setting $\varphi(z) \equiv 1$, $\alpha = k + 1$ (Re k > -1) and $\delta = 0$ in Theorem 1, we have

COROLLARY 2. Let k be a complex number with $\operatorname{Re} k > -1$, and let $F(z) \in \mathcal{A}_n$ satisfies

(17)
$$\operatorname{Re}\left\{(k+1)\frac{zF'(z)}{F(z)}\right\} > 0 \qquad (z \in \mathbb{U}).$$

If f(z) is analytic in \mathbb{U} with f(0) = 0 and satisfies the following differential subordination

$$\left(f(z)\right)^{\frac{k}{k+1}} \left(zf'(z)\right)^{\frac{1}{k+1}} \prec F(z) \qquad (z \in \mathbb{U}),$$

then

$$f(z) \prec \left\{ (k+1) \int_0^z \frac{\left(F(t)\right)^{k+1}}{t} \,\mathrm{d}t \right\}^{\frac{1}{k+1}} \qquad (z \in \mathbb{U}).$$

REMARK 7. If we let

$$g(z) = \left\{ (k+1) \int_0^z \frac{\left(F(t)\right)^{k+1}}{t} \, \mathrm{d}t \right\}^{\frac{1}{k+1}} \in \mathcal{A}_n,$$

then we have

$$k\frac{zg'(z)}{g(z)} + \left(1 + \frac{zg''(z)}{g'(z)}\right) = (k+1)\frac{zF'(z)}{F(z)}.$$

Thus, from (17), we see that g(z) satisfies (4) which implies that $g(z) \in \mathcal{S}_k$.

Taking $k = \frac{1}{\alpha} - 1$ ($\alpha > 0$) in Corollary 2, we find

COROLLARY 3. Let α be a real number with $\alpha > 0$, and let $F(z) \in \mathcal{A}_n$ be starlike in U. If f(z) is analytic in U with f(0) = 0 and satisfies the following differential subordination

$$(f(z))^{1-\alpha}(zf'(z))^{\alpha} \prec F(z) \qquad (z \in \mathbb{U}),$$

then

$$f(z) \prec \left\{ \frac{1}{\alpha} \int_0^z \frac{\left(F(t)\right)^{\frac{1}{\alpha}}}{t} \, \mathrm{d}t \right\}^{\alpha} \qquad (z \in \mathbb{U}).$$

REMARK 8. Since the function F(z) is starlike and $\alpha > 0$, it is easy to show that

$$g(z) = \left\{ \frac{1}{\alpha} \int_0^z \frac{(F(t))^{\frac{1}{\alpha}}}{t} \, \mathrm{d}t \right\}^\alpha \in \mathcal{A}_n$$

satisfies the inequality (3). That is, $g(z) \in \mathcal{M}_{\alpha}$. In addition, according to Lemma 1, we see that g(z) is not only starlike but also convex for $\alpha \geq 1$ (see [5]).

REFERENCES

- BAZILEVIČ, I.E., On a case of integrability in quadratures of the Loewner-Kufarev equation, (Russian) Mat. Sb. N.S., 37 (79) (1955), 471–476.
- [2] MILLER, S.S. and MOCANU, P.T., Differential subordinations and univalent functions, Michigan Math. J., 28 (1981), 157–171.
- [3] MILLER, S.S. and MOCANU, P.T., Classes of univalent integral operators, J. Math. Anal. Appl., 157 (1991), 147–165.
- [4] MILLER, S.S. and MOCANU, P.T., *Differential Subordinations*, Pure and Applied Mathematics, 225, Marcel Dekker, 2000.
- [5] MILLER, S.S., MOCANU, P.T. and READE, M.O., All α-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37 (1973), 553–554.
- [6] MILLER, S.S., MOCANU, P.T. and READE, M.O., Starlike integral operators, Pacific J. Math., 79 (1978), 157–168.
- [7] MOCANU, P.T., Une propriété de convexité généralisée dans la théorie de la représentation conforme, Mathematica (Cluj), 11 (34) (1969), 127–133.
- [8] POMMERENKE, CH., Univalent Functions, Vanderhoeck & Ruprecht, Göttingen, 1975.
- [9] SAKAGUCHI, K., A note on p-valent functions, J. Math. Soc. Japan, 14 (1962), 312–321.
- [10] SAKAGUCHI, K. and FUKUI, S., On α-starlike functions and related functions, Bull. Nara Univ. Ed. Natur. Sci., 28 (1979), 5–12.

Kinki University Department of Mathematics Higashi-Osaka, Osaka 577-8502, Japan E-mail: freedom@sakai.zaq.ne.jp E-mail: owa@math.kindai.ac.jp