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SUBORDINATION PROPERTIES
FOR SPECIAL INTEGRAL OPERATORS

KAZUO KUROKI and SHIGEYOSHI OWA

Abstract. Applying the Integral Existence Theorem for normalized analytic
functions concerning the existence and analyticity of a general integral operator
which was proven by S. S. Miller and P. T. Mocanu (J. Math. Anal. Appl. 157
(1991), 147–165), the analyticity and univalency of the functions defined by a
certain special integral operator is discussed, and some interesting subordination
criteria concerning with several integral operators are obtained.
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1. INTRODUCTION AND PRELIMINARIES

Let H denote the class of functions f(z) which are analytic in the open unit
disk U = {z ∈ C : |z| < 1}. For a positive integer n and a complex number a,
let H[a, n] be the subclass of H defined by

H[a, n] =
{
f(z) ∈ H : f(z) = a+ anz

n + an+1z
n+1 + · · ·

}
.

Also, we define the class An of normalized analytic functions f(z) as

An =
{
f(z) ∈ H : f(z) = z + an+1z

n+1 + an+2z
n+2 + · · ·

}
with A1 = A. In addition, we need the classes of convex (univalent) and
starlike (univalent) functions given respectively by

K =

{
f(z) ∈ A : Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0 (z ∈ U)

}
and

S∗ =

{
f(z) ∈ A : Re

(
zf ′(z)

f(z)

)
> 0 (z ∈ U)

}
.

Furthermore, a function f(z) ∈ A is said to be λ-spirallike in U if it satisfies

Re

(
eiλ
zf ′(z)

f(z)

)
> 0 (z ∈ U)

for some real number λ with |λ| < π

2
. We denote by Sλ the class of all such

functions. And, the class Ŝ is defined by

Ŝ =
⋃{
Sλ : |λ| < π

2

}
,
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which implies that S∗ ⊂ Ŝ. Specially, we note that all spirallike functions are
univalent in U.

We also introduce the familiar principle of differential subordinations be-
tween analytic functions. Let f(z) and g(z) be members of the class H. Then
the function f(z) is said to be subordinate to g(z) in U, written by f(z) ≺ g(z)
(z ∈ U), if there exists a function w(z) analytic in U, with w(0) = 0 and
|w(z)| < 1 (z ∈ U), and such that f(z) = g

(
w(z)

)
(z ∈ U). In particular, if

g(z) is univalent in U, then f(z) ≺ g(z) (z ∈ U) if and only if f(0) = g(0) and
f(U) ⊂ g(U).

For the function F (z) ∈ An, Miller and Mocanu [3] (see also [4]) proved the
Integral Existence Theorem concerning with the existence and analyticity of
a general integral operator of the form

(1) I[F ](z) =

{
β + γ

zγψ(z)

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

,

where α, β, γ and δ are complex constants, and ϕ(z), ψ(z) ∈ H[1, n]. This
operator was introduced by Miller, Mocanu and Reade [6].

In the present paper, applying a certain special Integral Existence Theorem
which is obtained by giving some conditions, we discuss the analyticity and
univalency of the functions defined by the following special integral operator

(2) Ĩ[F ](z) =

{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

.

Further, by making use of the properties of subordination chains [8] (see also
[4]) and the lemma given by Miller and Mocanu [2] (see also [4]) often used
in the theory of differential subordinations, we deduce some subordination
criteria concerning with

f(z) ≺
{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

(z ∈ U)

for analytic functions f(z) with f(0) = 0. Moreover, we apply our result
to find several subordination criteria for certain analytic functions defined as
follows:

If the function f(z) ∈ A with
f(z)f ′(z)

z
6= 0 in U satisfies

(3) Re

{
(1− α)

zf ′(z)

f(z)
+ α

(
1 +

zf ′′(z)

f ′(z)

)}
> 0 (z ∈ U)

for some real constant α, then f(z) is said to be α-convex in U. We denote
this class by Mα. The class of α-convex functions in U was introduced by
Mocanu [7], and was studied by Mocanu, Miller and Reade [5]. They proved
the following lemma.

Lemma 1. If f(z) ∈ Mα, then f(z) ∈ S∗. Moreover, if α = 1, then
f(z) ∈ K.
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Also, Sakaguchi and Fukui [10] proved that, if f(z) satisfies the inequality

(3), then f(z)f ′(z)
z never vanishes in U. In other words, this fact means below.

Remark 1. A necessary and sufficient condition for f(z) ∈ A to be α-
convex in U is that f(z) satisfies the inequality (3).

In 1962, Sakaguchi [9] introduced the class of k-starlike functions f(z) ∈ A
which are defined by

(4) Re

{
k
zf ′(z)

f(z)
+

(
1 +

zf ′′(z)

f ′(z)

)}
> 0 (z ∈ U),

where k is a complex constant such that Re k > −1. We denote by Sk the
class of k-starlike functions. We note that k-starlike functions are different
from α-convex functions.

Finally, we introduce the class of functions well-known as Bazilevič function.
A function f(z) ∈ A is called Bazilevič of type (a, b, λ), if there exists a function
g(z) ∈ S∗ such that

(5) Re

{
eiλ
zf ′(z)

f(z)

(
f(z)

g(z)

)a(f(z)

z

)ib
}
> 0 (z ∈ U)

for some real numbers a, b (a = 0) and λ
(
|λ| < π

2

)
. We denote by Bλ(a, b) the

class of all such functions. Then, we note that B0(0, 0) = S∗ and Bλ(0, 0) = Sλ.
In 1955, Bazilevič [1] proved that Bazilevič functions are univalent in U.

2. NOTE ON THE INTEGRAL EXISTENCE THEOREM

To considering the Integral Existence Theorem, we need to introduce the
following open door mapping which is a special mapping from U onto a slit
domain.

Definition 1. (The Open Door Function) Let c be a complex number such
that Re c > 0, let n be a positive integer, and let

(6) Cn = Cn(c) =
n

Re c

{
|c| ·

√
1 +

2Re c

n
+ Im c

}
.

If R(z) is univalent defined by R(z) = 2Cn
z

1−z2 (z ∈ U), then the open door

function Rc,n(z) is defined by

Rc,n(z) ≡ R
(
z + b

1 + bz

)
= 2Cn

(z + b)(1 + bz)

(1 + bz)2 − (z + b)2
,

where b is complex number with R(b) = c. If c > 0, then since Cn in (6) is

simplified to Cn = Cn(c) = n·
√

1 + 2c
n , and since b = b > 0 and b+ 1

b = 2(c+n)
c ,

we obtain Rc,n(z) = c1+z1−z + 2nz
1−z2 .
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Remark 2. From the above definition, we see that Rc,n(z) is univalent in
U, Rc,n(0) = c and Rc,n(U) = R(U) is the complex plane w with slits along the
half-lines Rew = 0, Imw = Cn and Rew = 0, Imw 5 −Cn. Also note that if
c > 0, then Cn+1 > Cn and lim

n→∞
Cn =∞. This leads us to Rc,n(z) ≺ Rc,n+1(z)

and lim
n→∞

Rc,n(U) = C.

Lemma 2. (Integral Existence Theorem) Let ϕ(z), ψ(z) ∈ H[1, n] with ϕ(z)·
ψ(z) 6= 0 in U. Also, let α, β, γ and δ be complex numbers with β 6= 0,
α+ δ = β + γ and Re(α+ δ) > 0. Moreover, let F (z) ∈ An and suppose that

(7) P (z) ≡ αzF
′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ ≺ Rα+δ,n(z) (z ∈ U),

where Rα+δ,n(z) is the open door function. If g(z) = I[F ](z) is defined by
(1), then

(8) g(z) ∈ An,
g(z)

z
6= 0 and Re

{
β
zg′(z)

g(z)
+
zψ′(z)

ψ(z)
+ γ

}
> 0

for z ∈ U, where all powers in (1) are principal ones.

From the assumptions of Lemma 2, we deduce that P (z) ∈ H[α + δ, n].
Also, from Remark 2, the condition P (z) ≺ Rα+δ,n(z) in (7) can be replaced
by the stronger condition ReP (z) > 0 (z ∈ U). Hence, using this result in
the Integral Existence Theorem, we find the following lemma.

Lemma 3. Let ϕ(z), ψ(z) ∈ H[1, n] with ϕ(z) · ψ(z) 6= 0 in U. Also, let α,
β, γ and δ be complex numbers with β 6= 0, α+ δ = β + γ and Re(α+ δ) > 0.
Moreover, let F (z) ∈ An and suppose that

P (z) ≡ αzF
′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ ∈ H[α+ δ, n]

satisfies ReP (z) > 0 (z ∈ U). If g(z) = I[F ](z) is defined by (1), then g(z)
satisfies the conditions (8).

We next consider a few special cases of Lemma 3. If we let ψ(z) ≡ 1 and
γ = 0, then we derive special Integral Existence Theorem below.

Lemma 4. Let ϕ(z) ∈ H[1, n] with ϕ(z) 6= 0 in U. Also, let α, β and δ be
complex numbers with β = α+ δ and Re (α+ δ) > 0. Moreover, let F (z) ∈ An
and suppose that

P (z) ≡ αzF
′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ ∈ H[β, n]

satisfies ReP (z) > 0 (z ∈ U). If g(z) = Ĩ[F ](z) is defined by (2), then

g(z) ∈ An,
g(z)

z
6= 0 and Re

(
β
zg′(z)

g(z)

)
> 0

for z ∈ U, all powers in (2) are principal ones.
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Remark 3. Since Reβ > 0, the above inequality

(9) Re

(
β
zg′(z)

g(z)

)
> 0 (z ∈ U)

shows that g(z) produces spirallike, which implies that g(z) is univalent, even
when F (z) is not univalent. That is, the above lemma provides conditions

for which the function g(z) = Ĩ[F ](z) defined by (2) will be an analytic and

univalent function. In particular, if β > 0, then g(z) ∈ S∗.

Remark 4. By Remark 3, if the function g(z) ∈ An satisfies (9), then since

g(z) is univalent in U with g(0) = 0, we can deduce the condition g(z)
z 6= 0 (z ∈

U), because we know that g(z)
z

∣∣∣
z=0

= 1 6= 0.

3. AN APPLICATION OF INTEGRAL EXISTENCE THEOREM CONCERNING WITH

DIFFERENTIAL SUBORDINATIONS

Applying special Integral Existence Theorem which was obtained in the
previous section, we discuss the following subordination

f(z) ≺
{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

(z ∈ U)

for analytic functions f(z) with f(0) = 0, and deduced a subordination crite-
rion.

In order to discuss our main result, we need some lemmas for subordination
(or Loewner) chains. A function L(z, t), z ∈ U, t = 0, is said to be a subor-
dination chain if L(·, t) is analytic and univalent in U for all t = 0, L(z, ·) is
continuously differentiable on [0,∞) for all z ∈ U, and L(z, s) ≺ L(z, t), when
0 5 s 5 t (Pommerenke [8] or Miller and Mocanu [4]). The following lemma
provides a necessary and sufficient condition for L(z, t) to be a subordination
chain.

Lemma 5. (Loewner’s Theorem) The function L(z, t) = a1(t)z + a2(t)z
2 +

· · · , with a1(t) 6= 0 for t = 0, and lim
t→∞
|a1(t)| =∞, is a subordination chain if

and only if there exist constants r ∈ (0, 1] and M > 0 such that

(i) L(z, t) is analytic in |z| < r for each t = 0, locally absolutely continuous
in t = 0 for each |z| < r, and satisfies

|L(z, t)| 5M |a1(t)|, for |z| < r and t = 0.

(ii) there exists a function p(z, t) analytic in U for all t ∈ [0,∞) and
measurable in [0,∞) for each z ∈ U, such that Re p(z, t) > 0 for z ∈ U,
t ∈ [0,∞), and

∂L(z, t)

∂t
= z

∂L(z, t)

∂z
p(z, t),

for |z| < r, and for almost all t ∈ [0,∞).
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Note that the univalency of the function L(z, t) can be extended from |z| < r
to all of U. This lemma is well-known as the Loewner’s theorem (see [8]). In
the proof of our main result, the following lemma given by Pommerenke [8] is
useful to apply the slight forms of Lemma 5.

Lemma 6. The function L(z, t) = a1(t)z + a2(t)z
2 + · · · , with a1(t) 6= 0 for

all t = 0 and lim
t→∞
|a1(t)| =∞, is a subordination chain if and only if

Re


z
∂L(z, t)

∂z
∂L(z, t)

∂t

 > 0,

for z ∈ U and t = 0.

In addition, the next lemma comes from the general theory of differential
subordinations.

Lemma 7. Let g(z) be analytic and univalent on the closed unit disk U
except for at most one pole on ∂U, where ∂U = {z ∈ C : |z| = 1}, U = U∪∂U.
Also, let a = g(0) and f(z) ∈ H[a, n] with f(z) 6≡ a. If f(z) is not subordinate
to g(z), then there exist two points z0 = r0e

iθ0 ∈ U and ζ0 ∈ ∂U, and a real
number m with m = n = 1 for which f(Ur0) ⊂ g(U), f(z0) = g(ζ0) and
z0f
′(z0) = mζ0g

′(ζ0), where Ur0 = {z ∈ C : |z| < r0}.

More general forms of this lemma are given by Miller and Mocanu [2] (see
also [4]).

Our main theorem is contained in Theorem 1.

Theorem 1. Let α, β and δ be complex numbers with β = α + δ and
Re(α + δ) > 0. Also, let F (z) ∈ An, ϕ(z) ∈ H[1, n] with ϕ(z) 6= 0 in U, and
suppose that

(10) P (z) ≡ αzF
′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ ∈ H[β, n]

satisfies ReP (z) > 0 (z ∈ U). If f(z) is analytic in U with f(0) = 0 and
satisfies the following differential subordination

(11)
(
f(z)

)β−1
β
(
zf ′(z)

) 1
β ≺

{(
F (z)

)α
ϕ(z)zδ

} 1
β

(z ∈ U),

then

f(z) ≺
{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

(z ∈ U).

Proof. From (10), we see that
F (z)

z
6= 0 in U. If we let

(12) G(z) =
{(
F (z)

)α
ϕ(z)zδ

} 1
β
,
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then G(z) can be represented by

G(z) = z

(
F (z)

z

)α
β (
ϕ(z)

) 1
β = z +An+1z

n+1 + · · · .

We note that G(z) ∈ An and
G(z)

z
6= 0 in U. Moreover, since ReP (z) > 0

(z ∈ U), we have

(13) Re

(
β
zG′(z)

G(z)

)
= Re

{
α
zF ′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ

}
> 0 (z ∈ U).

Thus, by Remark 3, we deduce that the function G(z) is univalent (spirallike)
in U, and hence the subordination (11) is well defined. Also, if we set

(14) g(z) =

{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

,

then from Lemma 4 and Remark 3, we see that the function g(z) is analytic
and univalent (spirallike) in U. And, from (12) and (14), we have(

g(z)
)β−1

β
(
zg′(z)

) 1
β =

{(
F (z)

)α
ϕ(z)zδ

} 1
β

= G(z).

We now show that

(15) L(z, t) =
(
g(z)

)β−1
β
{

(1 + t)zg′(z)
} 1
β = (1 + t)

1
βG(z) (t = 0)

is a subordination chain. Since G(z) ∈ An, the function

L(z, t) = (1 + t)
1
βG(z) = a1(t)z + an+1(t)z

n+1 + · · ·

is analytic in U for all t = 0, and is continuously differentiable on [0,∞) for
all z ∈ U. Also, we have

∂L(z, t)

∂z
= (1 + t)

1
βG′(z),

∂L(z, t)

∂t
=

1

β
(1 + t)

1
β
−1
G(z).

Then, since G(z) ∈ An, it is clear that

a1(t) =
∂L(z, t)

∂z

∣∣∣∣
z=0

= (1 + t)
1
βG′(0) = (1 + t)

1
β 6= 0 (t = 0),

and

lim
t→∞
|a1(t)| = lim

t→∞

∣∣∣(1 + t)
1
β

∣∣∣ =∞.

A simple calculation combined with the condition (13) yields

Re


z
∂L(z, t)

∂z
∂L(z, t)

∂t

 = Re

 (1 + t)
1
β zG′(z)

1
β (1 + t)

1
β
−1
G(z)

 = (1 + t)Re

(
β
zG′(z)

G(z)

)
> 0,
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for z ∈ U and t = 0. Hence by Lemma 6, L(z, t) is a subordination chain, and
we have L(z, s) ≺ L(z, t), when 0 5 s 5 t. From (15), we obtain L(z, 0) =
G(z), and hence we must have

(16) L(ζ, t) 6∈ G(U),

for |ζ| = 1 and t = 0.
Next, applying Lemma 7, we will show that(

f(z)
)β−1

β
(
zf ′(z)

) 1
β ≺ G(z) implies f(z) ≺ g(z) (z ∈ U).

We observed that the function g(z) is univalent in U. Here, without loss of
generality, we can assume that g(z) is univalent on U, and g′(ζ) 6= 0 for |ζ| = 1.
If not, then we can continue the remainder of the proof with the function g(rz)
(0 < r < 1) which is univalent on U, and obtain our final result by letting
r → 1−.

If we assume that f(z) is not subordinate to g(z), then by Lemma 7, there
exist two points z0 ∈ U and ζ0 ∈ ∂U, and a real number m = 1 such that
f(z0) = g(ζ0) and z0f

′(z0) = mζ0g
′(ζ0). Then from (15) and (16), we have(

f(z0)
)β−1

β
(
z0f
′(z0)

) 1
β =

(
g(ζ0)

)β−1
β
(
mζ0g

′(ζ0)
) 1
β = m

1
βG(ζ0)

= L(ζ0,m− 1) 6∈ G(U),

where z0 ∈ U, |ζ0| = 1 and m = 1. This contradicts the assumption (11) of
the theorem, and hence we must have f(z) ≺ g(z). Therefore, we conclude
that

f(z) ≺
{
β

∫ z

0

(
F (t)

)α
ϕ(t)tδ−1 dt

} 1
β

(z ∈ U),

which completes the proof of Theorem 1. �

As an example of Theorem 1, we give

Example 1. For the following functions

F (z) =
z

(1− z)2
∈ A and ϕ(z) =

1

(1− z)2(Reβ−α) ∈ H[1, 1],

since β = α+ δ, we see that

Re

{
α
zF ′(z)

F (z)
+
zϕ′(z)

ϕ(z)
+ δ

}
= Re

{
α

1 + z

1− z
+

2(Reβ − α)z

1− z
+ δ

}
= Re

{
(α+ δ) +

(
2Reβ − (α+ δ)

)
z

1− z

}

= Re

(
β + βz

1− z

)
> 0 (z ∈ U).
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Hence, F (z) and ϕ(z) satisfies the assumption of Theorem 1. And, we have{(
F (z)

)α
ϕ(z)zδ

} 1
β

=

{
zα+δ

(1− z)2α
· (1− z)2(α−Reβ)

} 1
β

=
z

(1− z)
2Re β
β

∈ A.

Thus, from Theorem 1, we find that(
f(z)

)β−1
β
(
zf ′(z)

) 1
β ≺ z

(1− z)
2Re β
β

implies

f(z) ≺
{
β

∫ z

0

tβ−1

(1− t)2Reβ
dt

} 1
β

(z ∈ U)

for analytic functions f(z) with f(0) = 0.

Remark 5. For the function in Example 1, we note that{
β

∫ z

0

tβ−1

(1− t)2Reβ
dt

} 1
β

=

[
β

∫ z

0

{ ∞∑
n=0

(2Reβ)n
(1)n

tβ+n−1

}
dt

] 1
β

=

{ ∞∑
n=0

β

β + n
· (2Reβ)n

(1)n
zβ+n

} 1
β

=

{
zβ
∞∑
n=0

(β)n(2Reβ)n
(β + 1)n(1)n

zn

} 1
β

= z
{

2F1(β, 2Reβ, β + 1 ; z)
} 1
β
,

where 2F1(a, b, c ; z) represents the hypergeometric function.

4. SOME SUBORDINATION CRITERIA RELATED TO SEVERAL INTEGRAL

OPERATORS

Let us consider some particular cases of Theorem 1.
Letting α = a (a > 0), δ = ib (b ∈ R), namely β = a+ ib in Theorem 1, we

obtain

Corollary 1. Let a and b be real numbers with a > 0. Also, let F (z) ∈ An
with F (z)

z 6= 0 in U, ϕ(z) ∈ H[1, n] with ϕ(z) 6= 0 in U, and suppose that

Re

(
zF ′(z)

F (z)

)
> −1

a
Re

(
zϕ′(z)

ϕ(z)

)
(z ∈ U).

If f(z) is analytic in U with f(0) = 0 and satisfies the following differential
subordination(

f(z)
)a−1+ib

a+ib
(
zf ′(z)

) 1
a+ib ≺

{(
F (z)

)a
ϕ(z)zib

} 1
a+ib

(z ∈ U),
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then

f(z) ≺
{

(a+ ib)

∫ z

0

(
F (t)

)a
ϕ(t)tib−1 dt

} 1
a+ib

(z ∈ U).

Remark 6. The function

g(z) =

{
(a+ ib)

∫ z

0

(
F (t)

)a
ϕ(t)tib−1 dt

} 1
a+ib

∈ An

has the same form as the Bazilevič function. A simple calculation yields that

ϕ(z) =
zg′(z)

g(z)

(
g(z)

F (z)

)a(g(z)

z

)ib

.

If F (z) ∈ S∗, and ϕ(z) ∈ H[1, n] satisfies Re eiλϕ(z) > 0 (z ∈ U) for some

real λ with |λ| < π

2
, then since g(z) satisfies the inequality (5), we see that

g(z) ∈ Bλ(a, b) (see [1]).

Setting ϕ(z) ≡ 1, α = k + 1 (Re k > −1) and δ = 0 in Theorem 1, we have

Corollary 2. Let k be a complex number with Re k > −1, and let F (z)
∈ An satisfies

(17) Re

{
(k + 1)

zF ′(z)

F (z)

}
> 0 (z ∈ U).

If f(z) is analytic in U with f(0) = 0 and satisfies the following differential
subordination (

f(z)
) k
k+1
(
zf ′(z)

) 1
k+1 ≺ F (z) (z ∈ U),

then

f(z) ≺

{
(k + 1)

∫ z

0

(
F (t)

)k+1

t
dt

} 1
k+1

(z ∈ U).

Remark 7. If we let

g(z) =

{
(k + 1)

∫ z

0

(
F (t)

)k+1

t
dt

} 1
k+1

∈ An,

then we have

k
zg′(z)

g(z)
+

(
1 +

zg′′(z)

g′(z)

)
= (k + 1)

zF ′(z)

F (z)
.

Thus, from (17), we see that g(z) satisfies (4) which implies that g(z) ∈ Sk.

Taking k =
1

α
− 1 (α > 0) in Corollary 2, we find
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Corollary 3. Let α be a real number with α > 0, and let F (z) ∈ An be
starlike in U. If f(z) is analytic in U with f(0) = 0 and satisfies the following
differential subordination(

f(z)
)1−α(

zf ′(z)
)α ≺ F (z) (z ∈ U),

then

f(z) ≺

 1

α

∫ z

0

(
F (t)

) 1
α

t
dt


α

(z ∈ U).

Remark 8. Since the function F (z) is starlike and α > 0, it is easy to show
that

g(z) =

 1

α

∫ z

0

(
F (t)

) 1
α

t
dt


α

∈ An

satisfies the inequality (3). That is, g(z) ∈ Mα. In addition, according to
Lemma 1, we see that g(z) is not only starlike but also convex for α = 1 (see
[5]).
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