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CONVOLUTION TYPE OPERATORS WITH OSCILLATING
SYMBOLS ON WEIGHTED LEBESGUE SPACES

ON A UNION OF INTERVALS

YURI KARLOVICH and JUAN LORETO HERNÁNDEZ

Abstract. We establish Fredholm criteria for convolution type operators W
with oscillating symbols, continuous on R and admitting mixed (slowly oscillating
and semi-almost periodic) discontinuities at ±∞, on weighted Lebesgue spaces
on a union of intervals with weights in a subclass of Muckenhoupt weights.
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1. INTRODUCTION

Let B(X) be the Banach algebra of all bounded linear operators on a Banach
space X, and K(X) the closed two-sided ideal of all compact operators in
B(X). An operator A ∈ B(X) is called Fredholm if Im A is closed in X and
the numbers n(A) := dim Ker A and d(A) := dim(X/Im A) are finite (see, e.g.,
[7]). In that case

Ind A := n(A)− d(A).

Given 1 ≤ p ≤ ∞, let Lp(R) be the usual Lebesgue space with norm denoted
by ‖·‖p. A measurable function w : R→ [0,∞] is called a weight if w−1({0,∞})
has Lebesgue measure zero. For 1 ≤ p < ∞ and a weight w, we denote by
Lp(R, w) the weighted Lebesgue space with the norm

‖f‖p,w :=

(∫
R
|f(x)|pwp(x)dx

)1/p

.

Let LpN (R, w) be the Banach space of vector functions f = (fk)
N
k=1 with entries

fk ∈ Lp(R, w) and the norm ‖f‖Lp
N (R,w) =

(∑N
k=1 ‖fk‖

p
p,w

)1/p
, where N ∈ N.

If A is a subalgebra of L∞(R), then AN×N or [A]N×N denote the matrix
functions a : R→ CN×N whose entries belong to A.

In what follows we assume that 1 < p <∞ and w is a Muckenhoupt weight
(that is, w ∈ Ap(R)), which means (see [11] and also [9], [5]) that

sup
I

(
1

|I|

∫
I
wp(x) dx

)1/p( 1

|I|

∫
I
w−q(x) dx

)1/q

<∞,
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where 1/p+ 1/q = 1, I ranges over all bounded intervals I ⊂ R, and |I| is the
length of I.

Let F : L2(R)→ L2(R) denote the Fourier transform,

(Ff)(x) :=

∫
R
f(t)eitxdt, x ∈ R.

A function a ∈ L∞(R) is called a Fourier multiplier on Lp(R, w) if the convolu-
tion operator W0(a) := F−1aF maps L2(R)∩Lp(R, w) into itself and extends
to a bounded linear operator on Lp(R, w) (notice that L2(R) ∩ Lp(R, w) is
dense in Lp(R, w) if w ∈ Ap(R)). Let [Mp,w]N×N stand for the Banach algebra
of all Fourier multipliers a on LpN (R, w) equipped with the norm

‖a‖[Mp,w]N×N
:=
∥∥W0(a)

∥∥
B(Lp

N (R,w))

Let χ+ be the characteristic function of R+ = [0,∞). By Lp(R+, w) we
understand the space Lp(R+, w|R+). For a ∈Mp,w, the Wiener-Hopf operator
W(a) is defined on the space Lp(R+, w) by

W(a)f = χ+W0(a)χ+f, for f ∈ Lp(R+, w).

Let Ṙ = R∪{∞}, R = [−∞,+∞], and let PC be the C∗-algebra of all func-

tions on R having finite one-sided limits at every point t ∈ Ṙ. By Stechkin’s
inequality (see, e.g., [6, Theorem 17.1]), every function a ∈ PC of finite total

variation belongs to Mp,w. We denote by Cp,w(Ṙ) (resp. Cp,w(R)) the closure

in Mp,w of the set of all functions a ∈ C(Ṙ) (resp. a ∈ C(R)) with finite total

variation. Obviously, Cp,w(Ṙ) ⊂ C(Ṙ), Cp,w(R) ⊂ C(R).
To study Wiener-Hopf operators with semi-almost periodic (SAP ) symbols,

we need to consider the set A0
p(R) consisting of all weights w ∈ Ap(R) for which

the functions eλ : x 7→ eiλx belong to Mp,w for all λ ∈ R. Let w ∈ A0
p(R).

Then the set AP 0 of all almost periodic polynomials
∑

λ∈Λ0
cλeλ, where cλ ∈ C

and Λ0 is a finite subset of R, is contained in Mp,w. We define APp,w as the
closure of AP 0 in Mp,w. Clearly, APp,w is a Banach subalgebra of Mp,w. Let

SAPp,w denote the smallest closed subalgebra of Mp,w that contains Cp,w(R)
and APp,w. It is clear that

APp,w ⊂ AP := AP2,1 ⊂ L∞(R), SAPp,w ⊂ SAP := SAP2,1 ⊂ L∞(R).

Let Cb(R) be the C∗-algebra of all bounded continuous functions a : R→ C.
Following [18] we denote by SO the C∗-algebra of slowly oscillating at ∞
functions,

(1) SO :=
{
f ∈ Cb(R) : lim

x→+∞
sup

t,s∈[−2x,−x]∪[x,2x]
|f(t)− f(s)| = 0

}
.

Consider the commutative Banach algebra

SO3 :=
{
a ∈ SO ∩ C3(R) : lim

|x|→∞
(Dγa)(x) = 0, γ = 1, 2, 3

}
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equipped with the norm ‖a‖SO3 := max
γ=0,1,2,3

‖Dγa‖L∞(R) where (Da)(x) =

xa′(x) for x ∈ R. By [13, Corollary 2.10], SO3 ⊂ Mp,w. For 1 < p < ∞ and
w ∈ Ap(R), let SOp,w denote the closure of SO3 in Mp,w. Clearly, SOp,w is
a commutative Banach subalgebra of Mp,w. Since Mp,w ⊂ M2 = L∞(R), we
conclude that SOp,w ⊂ SO.

Let [A,B] denote the smallest Banach algebra that contains Banach algebras
A and B. Then [SOp,w, SAPp,w] is the Banach subalgebra of Mp,w generated
by all functions in SOp,w and SAPp,w. We will omit index w, if w = 1.

The Fredholmness in Banach algebras generated by all operators aW0(b)
with a ∈ [SO, PC]N×N and b ∈ [SOp, PCp]N×N on unweighted Lebesgue
spaces LpN (R) was studied in [1], [2]. Wiener-Hopf operators with slowly oscil-
lating matrix symbols on weighted Lebesgue spaces were investigated in [13].

Wiener-Hopf operators with semi-almost periodic symbols on the spaces
Lp(R+) (1 < p <∞) were studied by R.V. Duduchava and A.I. Saginashvili [8]
(for preceding results on integro-difference operators see [10]). The Fredholm
theory for Wiener-Hopf operators with semi-almost periodic matrix symbols
on the spaces LpN (R+) (1 < p < ∞, N > 1) based on the concept of al-
most periodic (AP ) factorization was constructed by I.M. Spitkovsky and the
first author (see [6], [15] and the references therein). Wiener-Hopf operators
with semi-almost periodic matrix symbols on weighted Lebesgue spaces were
investigated in [12].

A Fredholm theory for Toeplitz operators with oscillating matrix symbols
a ∈ [SO, SAP ]N×N on Hardy spaces Hp

N was constructed in [4]. Fred-
holm criteria for Wiener-Hopf operators W(a) with oscillating symbols a ∈
[SOp,w, SAPp,w]N×N on weighted Lebesgue spaces LpN (R+, w) with Mucken-
houpt weights w ∈ A0

p(R) were obtained in [14].

Let J =
⋃n
m=1 Jm where Jm = [am−1, am] are intervals of R admitting only

endpoints in common, and 0 = a0 < a1 < a2 < . . . < an <∞. In the present
paper we establish Fredholm criteria for the convolution type operator

(2) W := χ+

∑n

m=1
F−1KmFχJmI : Lp(J,w)→ Lp(J,w),

where Km ∈ [SOp,w, SAPp,w], χJm are the characteristic functions of Jm, and
f ∈ Lp(J,w) is extended by zero to R \ J .

The paper is organized as follows. In Section 2 we collect results on alge-
bras of slowly oscillating and semi-almost periodic functions, their maximal
ideal spaces, and present invertibility and Fredholm criteria for Wiener-Hopf
operators with almost periodic and semi-almost periodic matrix symbols, re-
spectively.

In Section 3, applying the Allan-Douglas local principle (see, e.g., [7, Sec-
tion 1.7]) we obtain an intermediate Fredholm criterion for Wiener-Hopf ope-
rators W(a) with symbols a ∈ [SOp,w, SAPp,w]N×N on the space LpN (R+, w),
and also give necessary Fredholm conditions for W(a) in terms of invertibility
of simpler Wiener-Hopf operators with symbols in the algebra [APp,w]N×N .
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In Section 4 we consider an equivalent reduction of the convolution type
operator W defined by (2) to the Wiener-Hopf operator W(G) with some
matrix symbol G ∈ [SOp,w, SAPp,w]N×N where N = n + 1, and give its
applications to the invertibility and Fredholmness of W.

In Section 5, making use of the results of Sections 3–4, we study the Fred-
holmness of the convolution type operator (2) on the space Lp(J,w).

In Section 6, applying the concept of canonical generalized AP factorization,
we establish a Fredholm criterion for the operator (2) on the space L2(J).

2. AUXILIARY RESULTS

2.1. Slowly oscillating Fourier multipliers on Lp(R, w). Consider the
commutative C∗-algebra SO of slowly oscillating functions defined by (1).

Clearly, SO is a subalgebra of L∞(R) which contains all functions in C(Ṙ).

Identifying the points t ∈ Ṙ with the evaluation functionals δt on Ṙ, δt(f) =
f(t), we see that the maximal ideal space M(SO) of SO is of the form

M(SO) = R ∪M∞(SO), where M∞(SO) :=
{
ξ ∈M(SO) : ξ|C(Ṙ) = δ∞

}
is the fiber of M(SO) over ∞. By [4, Proposition 5],

M∞(SO) = (closSO∗ R) \ R,

where closSO∗ R is the weak-star closure of R in SO∗, the dual space of SO.

Lemma 1 ([13]). If 1 < p < ∞ and w ∈ Ap(R), then the maximal ideal
spaces of SOp,w and SO coincide as sets, that is, M(SOp,w) =M(SO).

Lemma 1 and the Gelfand theory immediately give the following assertion.

Corollary 1. If 1 < p < ∞ and w ∈ Ap(R), then the Banach algebra
SOp,w is inverse closed in the C∗-algebras SO and L∞(R), that is, if a ∈ SOp,w
is invertible, then a−1 ∈ SOp,w too.

2.2. The fiber M∞([SO, SAP ]). By [19], any function a ∈ SAP can be
uniquely represented in the form

(3) a = a+u+ + a−u− + a0

where a± ∈ AP , a0 ∈ C(Ṙ), a0(∞) = 0, u±(x) = (1 ± tanhx)/2, and the
mappings ν± : a 7→ a± are C∗-algebra homomorphisms of SAP onto AP .

According to [18, Section 3], the C∗-algebras SO and SAP are asymptoti-
cally independent, which means the following.

Proposition 1. The fiber M∞([SO, SAP ]) is naturally homeomorphic to
the set M∞(SO)×M∞(SAP ), that is, for every µ ∈M∞([SO, SAP ]) there
are characters ξ ∈ M∞(SO) and ν ∈ M∞(SAP ) such that µ|SO = ξ and
µ|SAP = ν.
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Identifying µ ∈M∞([SO, SAP ]) with pairs (ξ, ν) ∈M∞(SO)×M∞(SAP )
due to Proposition 1, for every ξ ∈M∞(SO) we obtain a homomorphism

βξ : [SO, SAP ]→ SAP |M∞(SAP ), (βξ ϕ)(ν) = (ξ, ν)ϕ for ν ∈M∞(SAP ).

Hence, for every ϕ ∈ [SO, SAP ] there exists a non-unique function ϕξ ∈
SAP with uniquely determined almost periodic representatives ϕξ,± at ±∞
such that βξ ϕ = ϕξ

∣∣
M∞(SAP )

. Since the fiber M∞(AP ) is homeomorphic to

M(AP ), identifyingM∞(SAP ) andM∞(AP )×M∞(AP ), we conclude that
the maps

γ± : ϕξ |M∞(SAP ) 7→ ϕξ,±|M∞(AP ) 7→ ϕξ,±

are Banach algebra homomorphisms of SAP |M∞(SAP ) onto AP . Thus the
maps

(4) νξ,± = γ± ◦ βξ : [SO, SAP ]→ AP, νξ,± ϕ = ϕξ,±

are well-defined Banach algebra homomorphisms for every ξ ∈M∞(SO).

2.3. Wiener-Hopf operators with almost periodic matrix symbols. Let
APW be the Banach algebra of all functions in AP of the form a =

∑
λ aλeλ

with aλ ∈ C, λ ∈ R, and the norm ‖a‖W :=
∑

λ |aλ| <∞. Let APW± be the
closure in APW of the set AP 0 of all almost periodic polynomials

∑
λ aλeλ

with ±λ ≥ 0. Thus, APW± are Banach subalgebras of APW .
For every function a ∈ AP , there exist the quantities

M(a) := lim
T→+∞

1

T

∫ T

0
a(t)dt, Ω(a) :=

{
λ ∈ R : M(ae−λ) 6= 0

}
,

κ(a) := lim
x→∞

(
x−1 arg a(x)

)
if a±1 ∈ AP, d(a) := eM(ln a) if ln a ∈ AP,

which are called, respectively, the Bohr mean value, the Bohr-Fourier spec-
trum, the mean motion, and the geometric mean of a (see [6]).

Given 1 < p < ∞ and w ∈ A0
p(R), let APWp,w be the Banach subalgebra

of Mp,w composed by the series a =
∑

λ aλeλ with coefficients aλ ∈ C and the
norm

‖a‖W :=
∑

λ
|aλ| ‖eλ‖Mp,w ,

where ‖eλ‖Mp,w = ‖vλ‖L∞(R) for λ ∈ R and the functions vλ(x) = w(x+λ)
w(x) are

in L∞(R) for weights w ∈ A0
p(R) (see [12, Proposition 2.3]).

Let AP±p,w be the Mp,w closure of the set of all almost periodic polynomials∑
λ aλeλ with ±λ ≥ 0. Along with the Banach subalgebras AP±p,w of Mp,w we

consider the Banach subalgebras APW±p,w := APWp,w ∩ AP±p,w of APWp,w.
Clearly,

APWp,w ⊂ APp,w ⊂ AP, APW±p,w ⊂ AP±p,w ⊂ AP±.

Given p ∈ (1,∞), consider the weights w ∈ A0
p(R) satisfying the condition

(5) lim
|t|→∞

ess sup
x,y∈[t, t+1]

∣∣ lnw(x)− lnw(y)
∣∣ = 0.
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According to [12, Example 2.4], if parameters δ, ν, η ∈ R satisfy the relations

−1/p < δ − |ν|
√
η2 + 1 ≤ δ + |ν|

√
η2 + 1 < 1/q,

then the weight

w(x) =

{
e(δ+ν sin(η log(log |x|))) log |x| if |x| ≥ e,

eδ if |x| < e,

with different indices of powerlikeness at ∞ (see [5, Section 3.6]), gives an
example of weights in A0

p(R) possessing the property (5). According to [17], a

weight w ∈ A0
p(R) is equivalent to the continuous weight ω ∈ C(R) given by

(6) ω(x) = exp

(∫ 1/2

−1/2
lnw(x+ t) dt

)
,

where the equivalence means that w/ω, ω/w ∈ L∞(R). Furthermore, by (6),∣∣ lnω(x)− lnω(y)
∣∣ ≤ ∫ 1/2

−1/2

∣∣ ln(w(x+ t))− ln(w(y + t))
∣∣dt,

whence ω satisfies (5) too. Hence we may without loss of generality assume
that w ∈ C(R) ∩A0

p(R). Then, for every λ ∈ R, we infer from (5) that

(7) vλ(x) =
w(x+ λ)

w(x)
∈ C(Ṙ) and lim

|x|→∞
vλ(x) = 1.

Let GA denote the group of all invertible elements of a unital algebra A.
Since ‖vλ‖∞ ≥ 1 for all λ ∈ R due to (7), we conclude that

G[APWp,w]N×N ⊂ GAPWN×N , G[APW±p,w]N×N ⊂ GAPW±N×N
for all N ∈ N in view of the relation∑

λ
‖aλ‖CN×N ≤

∑
λ
‖aλ‖CN×N ‖vλ‖∞.

Consider now the invertibility of Wiener-Hopf operators W(a) with matrix
symbols a ∈ [APWp,w]N×N on weighted Lebesgue spaces LpN (R+, w) where
1 < p < ∞, N ∈ N, w ∈ A0

p(R) and (5) holds. By [12, Section 6.1], in that

case the operator W(a) is invertible on the spaces LpN (R+, w) and LpN (R+)
only simultaneously. Hence from [6, Corollary 19.11] we obtain the following
([12, Theorem 6.1]):

Theorem 1. Let 1 < p <∞, N ∈ N, w ∈ A0
p(R), and let condition (5) hold.

If a ∈ [APWp,w]N×N , then the Wiener-Hopf operator W(a) is invertible on the
space LpN (R+, w) if and only if a admits a canonical right APW factorization,

that is, a = a−a+ where a± ∈ GAPW±N×N .

If a ∈ APWN×N admits a canonical right APW factorization a = a−a+,
then the matrix d(a) = M(a−)M(a+) ∈ CN×N , where the Bohr mean va-
lues M(a±) are defined entry-wise, is called the geometric mean of a. By [6,
Proposition 8.4], d(a) is uniquely defined by a. Obviously, det d(a) 6= 0.
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2.4. Wiener-Hopf operators: semi-almost periodic matrix symbols.
Consider now the Fredholmness of Wiener-Hopf operators W(a) with matrix
symbols a ∈ [SAPp,w]N×N on weighted Lebesgue spaces LpN (R+, w) where
1 < p < ∞, N ∈ N, w ∈ A0

p(R) and (5) holds. In what follows, according to
(3), we denote by ar := a+ and al := a− the almost periodic representatives of
a at +∞ and −∞, respectively. We also assume that al, ar ∈ [APWp,w]N×N .

According to [6, Definition 3.13], the Cauchy index of any function a ∈
GSAP with κ(al) = κ(ar) = 0 is defined by the formula

ind a :=
1

2π
lim

T→+∞

1

T

∫ T

0

(
(arg a)(x)− (arg a)(−x)

)
dx

where the limit exists, is finite, independent of the particular choice of con-
tinuous branch of arg a, and possesses the logarithmic property: for every
f1, f2 ∈ GSAP with almost periodic representatives at ±∞ having zero mean
motions,

ind (f1f2) = ind f1 + ind f2.

Theorem 2. [12, Theorem 6.8] Let 1 < p < ∞, N ∈ N, w ∈ A0
p(R), let

condition (5) hold. If a ∈ [SAPp,w]N×N and al, ar ∈ [APWp,w]N×N , then the
Wiener-Hopf operator W(a) is Fredholm on the space LpN (R+, w) if and only
if the following three conditions are satisfied:

(i) a ∈ GSAPN×N ,
(ii) al and ar admit canonical right APW factorizations,

(iii)
1

p
+

1

2π
arg ηj /∈ Z for all eigenvalues ηj of the matrix d−1(ar)d(al).

If W(a) is Fredholm, then its index is calculated by the formula

(8) Ind W(a) = −ind (det a) +
N

p
−

N∑
j=1

{
1

p
+

1

2π
arg ηj

}
,

where {x} denotes the fractional part of a number x ∈ R.

3. AN APPLICATION OF THE ALLAN-DOUGLAS LOCAL PRINCIPLE

Given p ∈ (1,∞), w ∈ A0
p(R) and N ∈ N, we consider the Banach subal-

gebra Z of B(LpN (R+, w)) generated by all Wiener-Hopf operators W(c) with
symbols cIN where c ∈ SOp,w and IN is the N ×N identity matrix.

By [13, Lemma 5.3], the commutators of the multiplication operators aI
(a ∈ PC) and the convolution operators W0(b) (b ∈ SOp,w) are compact on
the space Lp(R, w). Hence

(9) W(a)W(b) 'W(ab) 'W(b)W(a) for all a ∈Mp,w and all b ∈ SOp,w,

where A ' B means that the operator A−B is compact on the space Lp(R+, w).
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Let Λ := Λ(Z) denote the Banach subalgebra of B := B(LpN (R+, w)) that
consists of all operators of local type (with respect to Z), that is,

Λ :=
{

A ∈ B : W(c)A−W(c) ∈ K for all c ∈ SOp,w
}
,

where K := K(LpN (R+, w)) is the ideal of all compact operators in B. The
quotient Banach algebra Λπ = Λ/K is inverse closed in the Calkin algebra
Bπ = B/K, and Zπ = (Z + K)/K is a central subalgebra of Λπ. For A ∈ B,
let Aπ := A + K. By (9), the Wiener-Hopf operators W(a) with symbols
a ∈ [SOp,w, SAPp,w]N×N belong to the Banach algebra Λ.

For every ξ ∈ M(SO) = M(SOp,w), let Jπξ denote the closed two-sided
ideal of Λπ generated by the maximal ideal

Iπξ :=
{

Wπ(bIN ) : b ∈ SOp,w, ξ(b) = 0
}

of the commutative algebra Zπ, and let Λπξ := Λπ/Jπξ be the corresponding
quotient Banach algebra. Consider the cosets

Wπ
ξ (a) := Wπ(a) + Jπξ ∈ Λπξ .

To study the Fredholmness of Wiener-Hopf operators W(a) with oscillating
matrix symbols a on the space LpN (R+, w), we need to apply the Allan-Douglas
local principle (see, e.g., [7, Section 1.7]), which gives the following.

Theorem 3. The operator W(a) with a symbol a ∈ [SOp,w, SAPp,w]N×N
is Fredholm on the space LpN (R+, w) if and only if for every ξ ∈ M(SO) the
coset Wπ

ξ (a) = Wπ(a) + Jπξ is invertible in the quotient algebra Λπξ .

The mappings νξ,± defined by (4) allows us to obtain a necessary condition
for the Fredholmness of the Wiener-Hopf operators W(a) with symbols a ∈
[SOp,w, SAPp,w]N×N on weighted Lebesgue spaces LpN (R+, w). We obtain the
following corollary ([14, Corollary 4.5]):

Corollary 2. If p ∈ (1,∞), w ∈ A0
p(R), N ∈ N, and the Wiener-Hopf

operator W(a) with a symbol a ∈ [SOp,w, SAPp,w]N×N is Fredholm on the
space LpN (R+, w), then for every ξ ∈ M∞(SO) the operators W(aξ,±) with
symbols aξ,± = νξ,±a ∈ [APp,w]N×N are invertible on the space LpN (R+, w)
and the norms of their inverses are uniformly bounded.

4. CONVOLUTION TYPE OPERATORS

Let p ∈ (1,∞), w ∈ A0
p(R), let χδ stand for the operator of multiplication by

the characteristic function of a set δ ⊂ R, and let J =
⋃n
m=1 Jm where Jm are

intervals of R admitting only endpoints in common. Consider the convolution
type operator

(10) W : Lp(J,w)→ Lp(J,w), f 7→ χJ

(∑n

m=1
km ∗ (χJmf)

)
,
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where km are tempered distributions such that Km = Fkm ∈ [SOp,w, SAPp,w],
and f ∈ Lp(J,w) is extended by zero to R \ J . Assume that

(11) Jm = [am−1, am] (m = 1, 2, . . . , n), 0 = a0 < a1 < a2 < . . . < an <∞.

We say that two bounded linear operators A and B are equivalent if ei-
ther both operators are not normally solvable or both A and B are normally
solvable and

dim Ker A = dim KerB, dim Coker A = dim CokerB.

By analogy with [3, Section 2] (cf. also [20], [16]), we obtain the following
result for weighted Lebesgue spaces.

Lemma 2. The convolution type operator W : Lp(J,w)→ Lp(J,w) given by
(10) is equivalent to the Wiener-Hopf operator

(12) W(G) := χ+F−1GF : LpN (R+, w)→ LpN (R+, w)

where N = n+ 1,

(13) G =


e−γ1 0 . . . 0 0

0 e−γ2 . . . 0 0
...

...
. . .

...
...

0 0 . . . e−γn 0
K1 K2eε1 . . . Kneεn−1 eεn

 ∈ [SOp,w, SAPp,w]N×N ,

(14) γm = am − am−1, εm = γ1 + · · ·+ γm (m = 1, 2, . . . , n),

and am are given by (11).

Indeed, the operator W : Lp(J,w)→ Lp(J,w) is equivalent to the operator

(15) W̃ := χ+

∑n

m=1
F−1KmFχJmI + (1− χJ)I : Lp(R+, w)→ Lp(R+, w),

where χ+ = χR+ . Setting for m = 1, 2, . . . , n, χm = χJmI,

V ±1
m := χ+F−1e±γmF : Lp(R+, w)→ Lp(R+, w),

Wm := χ+F−1KmF : Lp(R+, w)→ Lp(R+, w),

with γm given by (14), we conclude from (15) that

W̃ =
∑n

m=1
Wmχm +

(
I −

∑n

m=1
χm

)
,

where the projections χm = χJm can be represented in the form

(16) χm = V1V2 · · ·Vm−1(I − VmV −1
m )V −1

m−1 · · ·V
−1

2 V −1
1 .

Taking now Ŵ = W(G) and W0 = W̃, we immediately infer the equivalence

of the operators W(G) and W̃ (see (12) and (15)) from the following lemma
([3, Lemma 2.3]).
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Lemma 3. Let Vm (m = 1, 2, . . . , n) be bounded linear operators acting on a
Banach space X, invertible from the left with bounded left inverses V −1

m , and
let χm (m = 1, 2, . . . , n) be the bounded projections defined by (16). Then for
any bounded operators Wm (m = 1, 2, . . . , n) we have

Ŵ :=


V −1

1 0 . . . 0 0
0 V −1

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . V −1
n 0

W1 W2V1 . . . WnV1V2 · · ·Vn−1 V1V2 · · ·Vn



=


I 0 . . . 0 0
0 I . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0
W1V1 W2V1V2 . . . WnV1V2 · · ·Vn W0

Y,

where W0 =
∑n

m=1
Wmχm +

(
I −

∑n

m=1
χm

)
,

Y =


V −1

1 0 . . . 0 0
0 V −1

2 . . . 0 0
...

...
. . .

...
...

0 0 . . . V −1
n 0

χ1 χ2V1 . . . χnV1V2 · · ·Vn−1 V1V2 · · ·Vn

 ,

Y −1 =


V1 0 . . . 0 χ1

0 V2 . . . 0 V −1
1 χ2

...
...

. . .
...

...
0 0 . . . Vn V −1

n−1 · · ·V
−1

2 V −1
1 χn

0 0 . . . 0 V −1
n · · ·V −1

2 V −1
1

 .
By analogy with [3, Theorem 2.5], Lemmas 2 and 3 imply the following.

Theorem 4. The operators

W : Lp(J,w)→ Lp(J,w) and W(G) : LpN (R+, w)→ LpN (R+, w)

are invertible only simultaneously, and

W−1 =
(
χJ1 , χJ2W(eε1), . . . , χJnW(eεn−1), χJW(eεn)

)
× (W(G))−1 (0, . . . , 0, χJI)T .

Theorem 5. The operators

W : Lp(J,w)→ Lp(J,w) and W(G) : LpN (R+, w)→ LpN (R+, w)

are Fredholm only simultaneously, and in that case Ind W = Ind W(G),

dim Ker W = dim Ker W(G), dim Coker W = dim Coker W(G).
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5. CONVOLUTION OPERATORS WITH OSCILLATING DATA

Given 1 < p < ∞, w ∈ A0
p(R) and N ∈ N, in this section we study

the Fredholmness of Wiener-Hopf operators W(a) with matrix symbols a ∈
[SOp,w, SAPp,w]N×N on the space LpN (R+, w) under the condition that for
every ξ ∈ M∞(SO) the matrix functions aξ,± = νξ,±a admit right APp,w
factorizations.

According to [12, Section 5], a matrix function a ∈ [APp,w]N×N is said to
admit a right APp,w factorization if it can be represented in the form

a = a− diag{eλ1 , . . . , eλN } a
+

where a± ∈ G[AP±p,w]N×N and κ(a) := (λ1, . . . , λN ) ⊂ RN . A right APp,w
factorization with κ(a) = (0, . . . , 0) is referred to as a canonical right APp,w
factorization. If a ∈ [APp,w]N×N admits a canonical right APp,w factorization,
then the geometric mean d(a) = M(a−)M(a+) ∈ GCN×N is independent of
the particular choice of the canonical right APp,w factorization of a.

Recall the following theorem ([14, Theorem 7.2])

Theorem 6. Let 1 < p <∞, w ∈ A0
p(R), N ∈ N, a ∈ [SOp,w, SAPp,w]N×N .

If for every ξ ∈ M∞(SO) the matrix functions aξ,± = νξ,±a ∈ [APp,w]N×N
admit right APp,w factorizations, then the Wiener-Hopf operator W(a) is Fred-
holm on the space LpN (R+, w) if and only if the following three conditions are
satisfied:

(i) det a(x) 6= 0 for all x ∈ R;
(ii) for every ξ ∈M∞(SO), κ(aξ,±) = (0, . . . , 0);

(iii) for every ξ ∈M∞(SO) and all j = 1, 2, . . . , N, the eigenvalues ηξ,j of
the matrix d−1(aξ,+)d(aξ,−) satisfy the condition

(17)
1

p
+

1

2π
arg ηξ,j /∈ Z.

Theorems 5 and 6 immediately imply the following result.

Theorem 7. Let 1 < p <∞, w ∈ A0
p(R), N ∈ N, let

W := χ+

∑n

m=1
F−1KmFχJmI : Lp(J,w)→ Lp(J,w),

where Km ∈ [SOp,w, SAPp,w] and Jm = [am−1, am] for all m = 1, 2, . . . , n and
0 = a0 < a1 < a2 < . . . < an < ∞, and let G ∈ [SOp,w, SAPp,w]N×N be
given by (13)–(14) where N = n + 1. If for every ξ ∈ M∞(SO) the matrix
functions Gξ,± = νξ,±G ∈ [APp,w]N×N admit right APp,w factorizations, then
the convolution type operator W is Fredholm on the space Lp(J,w) if and only
if the following three conditions are satisfied:

(i) detG(x) 6= 0 for all x ∈ R;
(ii) for every ξ ∈M∞(SO), κ(Gξ,±) = (0, . . . , 0);

(iii) for every ξ ∈M∞(SO) and all j = 1, 2, . . . , N, the eigenvalues ηξ,j of
the matrix d−1(Gξ,+)d(Gξ,−) satisfy the condition (17).
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We consider now the weights w ∈ A0
p(R) satisfying the additional condition

(5) and assume that the almost periodic representatives of G at ±∞ belong
to the algebra [APWp,w]N×N . Then we obtain the following result.

Theorem 8. Let 1 < p < ∞, N ∈ N, w ∈ A0
p(R), and let condition (5)

hold. Suppose the matrix function G ∈ [SOp,w, SAPp,w]N×N is given by (13)
and (14), where N = n + 1, Km ∈ [SOp,w, SAPp,w] for all m = 1, 2, . . . , n
and 0 = a0 < a1 < a2 < . . . < an < ∞. If for every ξ ∈ M∞(SO) the
matrix functions Gξ,± = νξ,±G are in [APWp,w]N×N , then the convolution
type operator

W := χ+

∑n

m=1
F−1KmFχJmI

is Fredholm on the space Lp(J,w) if the following three conditions are satisfied:

(i) G ∈ G[SOp,w, SAPp,w]N×N (equivalently, G−1 ∈ L∞N×N (R));
(ii) for every ξ ∈ M∞(SO), the matrix functions Gξ,± admit canonical

right APW factorizations;
(iii) for every ξ ∈M∞(SO) and every j = 1, 2, . . . , N, the eigenvalues ηξ,j

of the matrix d−1(Gξ,+)d(Gξ,−) satisfy (17).

Proof. Suppose all the conditions of Theorem 8 are fulfilled. Then for ev-
ery ξ ∈ M∞(SO) we take a matrix function Gξ ∈ [SAPp,w]N×N with al-
most periodic representatives Gξ,± ∈ [APWp,w]N×N at ±∞ and such that
detGξ(x) 6= 0 for all x ∈ R. Hence, taking into account the invertibility of the
matrix functions Gξ,± ∈ [APWp,w]N×N in [APWp,w]N×N due to condition (i)
or (ii), we conclude that the matrix function Gξ is invertible in L∞N×N (R), and
therefore Gξ ∈ G[SAPp,w]N×N . Applying now Theorem 2, we infer that the
Wiener-Hopf operator W(Gξ) is Fredholm on the space LpN (R+, w). Then the
coset Wπ

ξ (Gξ) = Wπ(Gξ) + Jπξ is invertible in the quotient algebra Λπξ . Since

Wπ
ξ (Gξ) = Wπ

ξ (G) where G ∈ [SOp,w, SAPp,w]N×N , we conclude that for ev-

ery ξ ∈M∞(SO) the coset Wπ
ξ (G) is invertible in the algebra Λπξ . As additio-

nally detG(ξ) 6= 0 for ξ ∈ R and therefore the coset Wπ
ξ (G) = [G(ξ)I]π +Jπξ is

invertible in the quotient algebra Λπξ for every ξ ∈ R, we infer from Theorem 3

that the Wiener-Hopf operator W(G) is Fredholm on the space LpN (R+, w) be-
cause for all ξ ∈ M(SO) = R ∪M∞(SO) the cosets Wπ

ξ (G) are invertible in

the quotient algebras Λπξ . Since the operator W(G) is Fredholm on the space

LpN (R+, w), we infer from Theorem 5 that the convolution type operator W is
Fredholm on the space Lp(J,w). �

6. GENERALIZED ALMOST PERIODIC FACTORIZATION AND ITS APPLICATIONS

Consider the set AP 0 of all almost periodic polynomials on R. The Besi-
covitch space B2 is defined as the completion of AP 0 with respect to the norm

‖f‖B2 :=
(∑

λ
|fλ|2

)1/2
=
(
M(|f |2)

)1/2
,
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where f =
∑

λ fλeλ ∈ AP 0. As is known (see, e.g., [6, Chapter 7]), AP can
be identified with C(RB) where RB is the Bohr compactification of R. In its
turn B2 can be identified with L2(RB,dµ) where dµ is the normalized Haar
measure on RB. Thus, B2 is a (nonseparable) Hilbert space, and the inner
product in B2 = L2(RB, dµ) is given by

(f, g) =

∫
RB

f(ξ)g(ξ) dµ(ξ).

Since µ(RB) = 1 is finite, we have AP ⊂ B2. Moreover, AP is a dense subset
of B2. The Cauchy-Schwarz inequality shows that the mean value

M(f) :=

∫
RB

f(ξ) dµ(ξ)

exists and is finite for every f ∈ B2. The set Ω(f) :=
{
λ ∈ R : M(fe−λ) 6= 0

}
called the Bohr-Fourier spectrum of f is at most countable. Thus,

‖f‖B2 =
∑

λ∈Ω(f)
|M(fe−λ)|2 for every f ∈ B2.

Let l2(R) denote the collection of all functions f : R→ C for which the set
{λ ∈ C : f(λ) 6= 0} is at most countable and

‖f‖2l2(R) :=
∑
|f(λ)|2 <∞.

Note that l2(R) is a (nonseparable) Hilbert space with pointwise operations
and the inner product

(f, g) :=
∑

λ∈R
f(λ)g(λ).

The map FB : l2(R) → B2 which sends a function f ∈ l2(R) with a finite
support to the function

(FBf)(x) =
∑
λ∈R

f(λ)eiλx, x ∈ R,

can be extended by continuity to all of l2(R). It is referred to as the Bohr-
Fourier transform. The operator FB is an isometric isomorphism. The inverse
Bohr-Fourier transform acts by the rule

F−1
B : B2 → l2(R), (F−1

B f)(λ) = M(fe−λ), λ ∈ R.
We also consider the Hilbert subspaces B2

± := {f ∈ B2 : Ω(f) ⊂ R±} and

the projections P̃± := FBχ±F−1
B : B2 → B2

± where R± = {x ∈ R : ±x ≥ 0}.
In order to establish a criterion for the invertibility of W(a) on L2

N (R+)
with a ∈ APN×N and to study the Fredholmness of W(a) on L2

N (R+) with
a ∈ SAPN×N it is necessary to generalize the notion of AP factorization.

Definition 1 ([6]). A canonical generalized right AP factorization of a
matrix function a ∈ GAPN×N is a representation a = a−a+ where

a− ∈ G[B2
−]N×N , a

+ ∈ G[B2
+]N×N , a

−P̃ (a−)−1I ∈ B(B2
N ).
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Recall the following theorem ([6, Theorem 21.7]).

Theorem 9. Let a ∈ APN×N . Then the Wiener-Hopf operator W(a) is
invertible on the space L2

N (R+) if and only if a has a canonical generalized
right AP factorization.

Theorems 4 and 9 imply the following corollary for the convolution type
operator W ∈ B(L2(J)) with Km ∈ SAP (m = 1, 2, . . . , n).

Corollary 3. Let Km ∈ SAP and Jm = [am−1, am] for all m = 1, 2, . . . , n,
where 0 = a0 < a1 < a2 < . . . < an <∞. Then the convolution type operator

W = χ+

∑n

m=1
F−1KmFχJmI

is invertible on the space L2(J) if and only if the matrix function G ∈ SAPN×N
given by (13)–(14) with N = n + 1 admits a canonical generalized right AP
factorization.

We denote by GN×N the open subset of all a ∈ APN×N for which W(a) is in-
vertible on the space L2

N (R+) or, equivalently, a admits a canonical generalized
right AP factorization a = a−a+. By [6, Corollary 21.8], the map a 7→ d(a)
given by d(a) = M(a−)M(a+) is continuous from GN×N onto GCN×N .

Recall the following theorem ([6, Theorem 21.7]).

Theorem 10. Let a ∈ SAPN×N . Then the Wiener-Hopf operator W(a) is
Fredholm on the space L2

N (R+) if and only if

(i) a ∈ GSAPN×N ,
(ii) the almost periodic representatives al and ar of a have canonical gen-

eralized right AP factorizations,
(iii) for every j = 1, 2, . . . , N the eigenvalues ηj of the matrix d−1(ar)d(al)

lie in C \ R−.

If W(a) is Fredholm, then Ind W(a) is calculated by (8) with p replaced by 2.

Applying Theorems 9 and 10 we establish now a Fredholm criterion for the
convolution type operator W ∈ B(L2(J)) defined by (2), where all functions
Km belong to the C∗-algebra [SO, SAP ].

Theorem 11. Let 0 = a0 < a1 < a2 < . . . < an <∞, let Km ∈ [SO, SAP ]
and Jm = [am−1, am] for all m = 1, 2, . . . , n, and let G ∈ [SO, SAP ]N×N be
given by (13)–(14), where N = n+ 1. The convolution type operator

W = χ+

∑n

m=1
F−1KmFχJmI

is Fredholm on the space L2(J) if and only if the following three conditions
hold:

(i) detG(x) 6= 0 for all x ∈ R;
(ii) for every ξ ∈ M∞(SO) the matrix functions Gξ,± = νξ,±G ∈ APN×N

admit canonical generalized right AP factorizations;
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(iii) for every ξ ∈M∞(SO) and all j = 1, 2, . . . , N, the eigenvalues ηξ,j of
the matrix d−1(Gξ,+)d(Gξ,−) lie in C \ R−.

Proof. By Theorem 5, the convolution type operator W is Fredholm on the
space L2(J) if and only if the Wiener-Hopf operator W(G) is Fredholm on
the space L2

N (R+). In its turn, the operator W(G) is Fredholm on the space
L2
N (R+) if and only if the Toeplitz operator T (G) = FW(G)F−1 is Fredholm

on the Hardy space H2
N = Fχ+F−1(L2

N (R+)). Applying now the Fredholm
criterion for the Toeplitz operator T (G) with symbol G ∈ [SO, SAP ]N×N
on the space H2

N , which requires the fulfillment of all conditions (i)–(iii) of
Theorem 11 (see [4, Theorem 11]), we complete the proof. �
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